商务合作
动脉网APP
可切换为仅中文
AbstractAcrylamide (ACR) with its extensive industrial applications is a classified occupational hazard toxin and carcinogenic compound. Its formation in fried potatoes, red meat and coffee during high-temperature cooking is a cause for consideration. The fabrication of chitosan-coated probiotic nanoparticles (CSP NPs) aims to enhance the bioavailability of probiotics in the gut, thereby improving their efficacy against ACR-induced toxicity in Drosophila melanogaster.
摘要丙烯酰胺(ACR)具有广泛的工业应用,是一种分类为职业危害毒素和致癌化合物。在高温烹饪过程中,它在炸土豆、红肉和咖啡中的形成是一个值得考虑的原因。壳聚糖包被的益生菌纳米颗粒(CSP-NPs)的制备旨在提高益生菌在肠道中的生物利用度,从而提高其对果蝇ACR诱导的毒性的功效。
Nanoencapsulation, a vital domain of the medical nanotechnology field plays a key role in targeted drug delivery, bioavailability, multi-drug load delivery systems and synergistic treatment options. Our study exploited the nanoencapsulation technology to coat Lactobacillus fermentum (probiotic) with chitosan (prebiotic), both with substantial immunomodulatory effects, to ensure the stability and sustained release of microbial load and its secondary metabolites in the gut.
纳米封装是医学纳米技术领域的一个重要领域,在靶向药物递送,生物利用度,多药物负载递送系统和协同治疗选择中起着关键作用。我们的研究利用纳米封装技术用壳聚糖(益生元)包被发酵乳杆菌(益生菌),两者都具有显着的免疫调节作用,以确保肠道中微生物负荷及其次级代谢产物的稳定性和持续释放。
The combination of pre-and probiotic components, called synbiotic formulations establishes the correlation between the gut microbiota and the overall well-being of an organism. Our study aimed to develop a potent synbiotic to alleviate the impacts of heat-processed dietary toxins that significantly influence behaviour, development, and survival.
pre和益生菌成分(称为合生元制剂)的组合建立了肠道微生物群与生物体整体健康之间的相关性。我们的研究旨在开发一种有效的合生元,以减轻热处理饮食毒素的影响,这些毒素会显着影响行为,发育和生存。
Our synbiotic co-treatment with ACR in fruit flies normalised neuro-behavioural, survival, redox status, and restored ovarian mitochondrial activity, contrasting with several physiological deficits observed in the ACR-treated model..
我们与ACR在果蝇中的合生元共同治疗使神经行为,存活,氧化还原状态正常化,并恢复了卵巢线粒体活性,与ACR治疗模型中观察到的几种生理缺陷形成对比。。
IntroductionGut health has gained considerable attention recently and has become an essential part of most fitness regimes. The gut microbiota, consisting of trillions of microorganisms residing in the gastrointestinal tract, plays a crucial role in maintaining human health and well-being. This microbial community is not just a passive bystander but actively contributes to numerous physiological processes essential for human health including mental fitness, immunological and metabolic mechanisms.
引言肠道健康最近受到了相当大的关注,并已成为大多数健身制度的重要组成部分。肠道微生物群由居住在胃肠道中的数万亿微生物组成,在维持人类健康和福祉方面起着至关重要的作用。这种微生物群落不仅是一个被动的旁观者,而且积极地促进了许多对人类健康至关重要的生理过程,包括心理健康,免疫和代谢机制。
However, this niche of vital microbes gets easily disrupted due to several factors including the consumption of foods lacking fibre content, lack of exercise, stress, excessive intake of antibiotics, proton pump inhibitors (PPIs), and non-steroidal anti-inflammatory drugs (NSAIDs), etc. Among these factors affecting the gut microbiome, the food we consume plays a major role in regulating our health1.The healthy food items or supplements we consume undergo several physical and chemical changes during digestion in our gastrointestinal tract before the nutrients from them get absorbed into our body.
然而,由于多种因素,包括食用缺乏纤维含量的食物,缺乏运动,压力,过量摄入抗生素,质子泵抑制剂(PPIs)和非甾体抗炎药(NSAIDs)等,这种重要微生物的生态位很容易被破坏。在这些影响肠道微生物组的因素中,我们食用的食物在调节我们的健康方面起着重要作用1。我们食用的健康食品或补充剂在消化过程中会发生一些物理和化学变化,然后营养物质就会被吸收到我们的体内。
These nutrients or bioactives present in our vegetables, herbs, spices, or fruits serve as cofactors, vitamins, or essential factors for better functioning of our body. However, their absorption in the small intestine is often affected by several factors including chemical form, matrix, and metabolic pathways2.
这些存在于我们的蔬菜、草药、香料或水果中的营养素或生物活性物质可以作为辅助因子、维生素或人体更好功能的必需因素。然而,它们在小肠中的吸收通常受到多种因素的影响,包括化学形式,基质和代谢途径2。
Therefore, it is essential to develop a suitable delivery matrix to ensure the bioavailability of essential bioactives for a healthy population. Advances in nanotechnology offer us vast opportunities to manipulate the chemical, physical and biological properties of various compounds to suit our goals.
因此,必须开发合适的递送基质,以确保健康人群必需生物活性的生物利用度。纳米技术的进步为我们提供了巨大的机会来操纵各种化合物的化学,物理和生物学特性,以满足我们的目标。
One such development is the synthesis of nano-delivery systems made with bioco.
一个这样的发展是用bioco制成的纳米递送系统的合成。
Male flies post-exposure to respective treatment groups were homogenised in suitable buffers to estimate redox stress parameters. Following the behaviour analysis, baseline control groups (CS, CS NPs and probiotics) along with control, ACR and CSPA groups were tested for fluctuations in the ROS levels.
将暴露于各个处理组后的雄性苍蝇在合适的缓冲液中匀浆以估计氧化还原应激参数。在行为分析之后,测试基线对照组(CS,CS NPs和益生菌)以及对照组,ACR和CSPA组的ROS水平波动。
As illustrated in Fig. 6A, there were no significant variations in ROS levels between the control and baseline control groups. The observed ROS levels are commonly attributed to normal cellular activity, however, a marked increase in ROS intensity was noticed in flies treated with ACR thereby indicating the presence of xenobiotic-induced oxidative stress and activation of antioxidant mechanisms.
如图6A所示,对照组和基线对照组之间的ROS水平没有显着变化。观察到的ROS水平通常归因于正常的细胞活性,然而,在用ACR处理的果蝇中注意到ROS强度显着增加,从而表明存在异生素诱导的氧化应激和抗氧化机制的激活。
Owing to the non-toxic nature of the baseline control groups (CS, CS NPs and probiotics) as evidenced by long survival period, high locomotor function at larval and fly stages and no significant induction of ROS levels, further experiments were performed with control, ACR, CSP NPs and CSPA treatment groups.Fig.
由于基线对照组(CS,CS-NPs和益生菌)的无毒性,如存活期长,幼虫和苍蝇阶段的高运动功能以及ROS水平没有显着诱导所证明的,进一步的实验用对照,ACR,CSP-NPs和CSPA治疗组进行。图。
6Biochemical Factors of D.mel. The effects of CSP NP were tested against ACR-induced ROS levels (A), antioxidant enzyme activity (SOD—B and GST—C) and protein levels (D) using the fruit fly model.Full size imageACR-treated flies exhibited increased ROS, SOD and GST activities as depicted in Fig. 6A–C respectively.
6 D.mel的生物化学因子。使用果蝇模型测试CSP-NP对ACR诱导的ROS水平(A),抗氧化酶活性(SOD-B和GST-C)和蛋白质水平(D)的影响。。
Furthermore, ACR exposure indicated a negative influence on protein levels (Fig. 6D). On the other hand, the CSPA-treated group demonstrated a significant recovery in ROS and antioxidant enzyme activity levels. Comparing the data with the control group revealed the prominent effect of CSPA treatment in restoring the alterations in vital biochemical factors and thereby curbing the toxic influence of ACR within the fruit fly model.CSP NPs reverse ACR-induced mitocho.
此外,ACR暴露表明对蛋白质水平有负面影响(图6D)。另一方面,CSPA治疗组表现出ROS和抗氧化酶活性水平的显着恢复。将数据与对照组进行比较,发现CSPA治疗在恢复重要生化因子的改变方面具有显着效果,从而抑制了果蝇模型中ACR的毒性影响。CSP-NPs逆转ACR诱导的线粒体。
Drosophila rearing and maintenanceThe Drosophila Oregon K wild-type strain was maintained at 25 ± 2 °C and 60% humidity under a 12 h dark–light cycle. Flies were cultured on a standard cornmeal agar medium consisting of cornflour, agar–agar type 1, D-glucose, sugar, and yeast extract. To prevent microbial contamination, the medium was autoclaved and supplemented with antifungal agents including propionic acid, Tego (methyl para hydroxy benzoate dissolved in ethanol), and orthophosphoric acid at 55 °C.
果蝇饲养和维护果蝇俄勒冈州K野生型菌株在12小时的黑暗-光照循环下保持在25±2°C和60%的湿度。。为了防止微生物污染,将培养基高压灭菌并在55℃下补充抗真菌剂,包括丙酸,Tego(溶于乙醇的对羟基苯甲酸甲酯)和正磷酸。
As baseline control groups—0.5% chitosan (CS), 10 µg/ml CS NPs and 3 ml of L. fermentum culture (8 log CFU/ml) treatment groups were analysed to comprehend the impact on behaviour and ROS levels. Additionally, 2 mM acrylamide (ACR), 10 µg/ml CSP NPs, and 10 µg/ml CSP NPs + ACR (CSPA) treatment groups were prepared by the stoichiometric addition of respective compounds to the media at 50–55 °C.Survival and behavioural assayThe lifespan of flies was estimated by transferring twenty-five healthy newborn adult male flies to freshly prepared treatment media.
作为基线对照组,分析了0.5%壳聚糖(CS),10µg/ml CS NPs和3 ml发酵乳杆菌培养物(8 log CFU/ml)处理组,以了解对行为和ROS水平的影响。此外,通过在50-55°C下向培养基中化学计量添加相应化合物,制备了2 mM丙烯酰胺(ACR),10µg/ml CSP NPs和10µg/ml CSP NPs+ ACR(CSPA)处理组。存活和行为测定通过将25只健康的新生成年雄性苍蝇转移到新鲜制备的治疗培养基中来估计苍蝇的寿命。
The flies were then constantly monitored and the mortality rate was calculated by tallying the number of dead flies every 24 h. To assess the locomotor functions at the larval stage, male and female flies were added to the respective media for 5 days. The parent flies were then discarded and the vials were carefully maintained till the development of third instar larvae.
然后不断监测苍蝇,并通过每24小时统计死蝇数量来计算死亡率。为了评估幼虫阶段的运动功能,将雄性和雌性苍蝇添加到各自的培养基中5天。。
These larvae were then transferred to an agar plate placed on top of a graph paper and allowed to crawl for one minute. The number of 1 mm grids traversed per minute was represented as the crawling activity for statistical analysis. Similarly, the adult climbing activity was determined by exposing thirty male flies to the respective treatment media for 5 da.
然后将这些幼虫转移到放在方格纸上的琼脂平板上,让其爬行一分钟。每分钟遍历的1毫米网格数表示为用于统计分析的爬行活动。类似地,通过将30只雄性苍蝇暴露于各自的处理介质中5 da来确定成年攀爬活动。
Data availability
数据可用性
All data sets used and/or generated in this work are obtainable from the corresponding author upon reasonable request.
在这项工作中使用和/或生成的所有数据集都可以根据合理的要求从相应的作者那里获得。
ReferencesPedroza Matute, S. & Iyavoo, S. Exploring the gut microbiota: Lifestyle choices, disease associations, and personal genomics. Front. Nutr. 10, 1225120 (2023).PubMed
参考文献Pedroza-Matute,S。&Iyavoo,S。探索肠道微生物群:生活方式选择,疾病关联和个人基因组学。正面。营养。101225120(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rein, M. J. et al. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 75, 588 (2013).CAS
Rein,M.J.等人,《生物活性食品化合物的生物利用度:生物功效的挑战之旅》。Br.J.临床。药理学。75588(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, T. et al. Cytoprotection of probiotics by nanoencapsulation for advanced functions. Trends Food Sci. Technol. 142, 104227 (2023).CAS
Zhang,T。等人。通过纳米封装对益生菌进行细胞保护以实现高级功能。趋势食品科学。技术。142104227(2023)。中科院
Google Scholar
谷歌学者
Bauer-Estrada, K., Sandoval-Cuellar, C., Rojas-Muñoz, Y. & Quintanilla-Carvajal, M. X. The modulatory effect of encapsulated bioactives and probiotics on gut microbiota: Improving health status through functional food. Food Funct. 14, 32–55 (2023).CAS
。食物功能。14,32-55(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saulnier, D. M., Spinler, J. K., Gibson, G. R. & Versalovic, J. Mechanisms of probiosis and prebiosis: Considerations for enhanced functional foods. Curr. Opin. Biotechnol. 20, 135 (2009).CAS
Saulnier,D.M.,Spinler,J.K.,Gibson,G.R。&Versalovic,J。益生菌和益生菌的机制:增强功能食品的考虑因素。货币。奥平。生物技术。20135(2009)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hemarajata, P. & Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol. 6, 39 (2013).CAS
Hemarajata,P。&Versalovic,J。益生菌对肠道微生物群的影响:肠道免疫调节和神经调节的机制。治疗。高级胃肠病。6,39(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goodoory, V. C. et al. Efficacy of probiotics in irritable bowel syndrome: Systematic review and meta-analysis. Gastroenterology 165, 1206–1218 (2023).CAS
。胃肠病学1651206-1218(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Joseph, N. et al. Gut microbiota and short-chain fatty acids (SCFAs) profiles of normal and overweight school children in Selangor after probiotics administration. J. Funct. Foods 57, 103–111 (2019).CAS
Joseph,N.等人。服用益生菌后雪兰莪州正常和超重学龄儿童的肠道微生物群和短链脂肪酸(SCFAs)谱。J、 函数。食品57103-111(2019)。中科院
Google Scholar
谷歌学者
Markowiak-Kopeć, P. & Śliżewska, K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12, 1107 (2020).PubMed
Markowiak Kopeć,P。&Śliżewska,K。益生菌对人类肠道微生物产生短链脂肪酸的影响。营养素121107(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hagmar, L. et al. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand J Work Environ Health 27, 219–226 (2001).CAS
Hagmar,L.等人。使用血红蛋白加合物作为内剂量生物标志物的丙烯酰胺职业暴露对健康的影响。Scand J Work Environ Health 27219-226(2001)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Koszucka, A., Nowak, A., Nowak, I. & Motyl, I. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit. Rev. Food Sci. Nutr. 60, 1677–1692. https://doi.org/10.1080/10408398.2019.1588222 (2020).Article .
Koszucka,A.,Nowak,A.,Nowak,I。&Motyl,I。人类饮食中的丙烯酰胺,其代谢,毒性,失活以及食品工业中相关的欧盟法律法规。暴击。食品科学评论。营养。601677-1692年。https://doi.org/10.1080/10408398.2019.1588222(2020年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dolan, L. C., Matulka, R. A. & Burdock, G. A. Naturally occurring food toxins. Toxins (Basel) 2, 2289 (2010).CAS
Dolan,L.C.,Matulka,R.A。和Burdock,G.A。天然存在的食物毒素。毒素(巴塞尔)22289(2010)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Matoso, V., Bargi-Souza, P., Ivanski, F., Romano, M. A. & Romano, R. M. Acrylamide: A review about its toxic effects in the light of developmental origin of health and disease (DOHaD) concept. Food Chem. 283, 422–430. https://doi.org/10.1016/j.foodchem.2019.01.054 (2019).Article
Matoso,V.,Bargi-Souza,P.,Ivanski,F.,Romano,M.A。和Romano,R.M。丙烯酰胺:根据健康和疾病的发展起源(DOHaD)概念对其毒性作用的综述。食品化学。283422-430。https://doi.org/10.1016/j.foodchem.2019.01.054(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shamla, L. & Nisha, P. Acrylamide in deep-fried snacks of India. Food Addit. Contam. Part B Surveill. 7, 220–225 (2014).CAS
Shamla,L。和Nisha,P。印度油炸零食中的丙烯酰胺。食品添加剂。继续。B部分监督。7220-225(2014)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
CDC, Nceh, DLS & Od. Fourth National Report on Human Exposure to Environmental Chemicals Update.Lai, S. M. et al. Toxic effect of acrylamide on the development of hippocampal neurons of weaning rats. Neural Regen Res 12, 1648–1654 (2017).ADS
CDC、Nceh、DLS和Od。关于人类接触环境化学品的第四次国家报告更新。Lai,S.M.等人。丙烯酰胺对断奶大鼠海马神经元发育的毒性作用。神经再生研究121648-1654(2017)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stagi, S. et al. Increased incidence of precocious and accelerated puberty in females during and after the Italian lockdown for the coronavirus 2019 (COVID-19) pandemic. Ital. J. Pediatr. 46, 165 (2020).CAS
Stagi,S.等人在意大利2019年冠状病毒(COVID-19)大流行期间和之后,女性早熟和青春期加速的发病率增加。意大利。J、 儿科。46165(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, H. et al. Reproductive toxicity of acrylamide-treated male rats. Reprod. Toxicol. 29, 225–230 (2010).PubMed
Wang,H.等人。丙烯酰胺处理的雄性大鼠的生殖毒性。重新编程。毒理学。29225-230(2010)。PubMed出版社
Google Scholar
谷歌学者
Huang, Z. et al. Mitochondrial dysfunction promotes the necroptosis of Purkinje cells in the cerebellum of acrylamide-exposed rats. Food Chem. Toxicol. 171, 113522 (2023).CAS
Huang,Z.等人。线粒体功能障碍促进丙烯酰胺暴露大鼠小脑浦肯野细胞的坏死性凋亡。食品化学。毒理学。171113522(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yilmaz, B. O., Yildizbayrak, N., Aydin, Y. & Erkan, M. Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum. Exp. Toxicol. 36, 1225–1235 (2017).CAS
Yilmaz,B.O.,Yildizbayrak,N.,Aydin,Y。&Erkan,M。丙烯酰胺和缩水甘油酰胺诱导Leydig和Sertoli细胞氧化应激和凋亡的证据。嗯,实验毒物。361225-1235(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, M., Jiao, J., Wang, J., Xia, Z. & Zhang, Y. Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. J. Hazard Mater. 347, 451–460 (2018).CAS
Huang,M.,Jiao,J.,Wang,J.,Xia,Z.&Zhang,Y.斑马鱼胚胎中丙烯酰胺诱导的氧化应激和心血管毒性的表征。J、 危险物质。347451-460(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhao, S. et al. Protective effect of Lactobacillus plantarum ATCC8014 on acrylamide-induced oxidative damage in rats. Appl. Biol. Chem. 63, 1–4 (2020).
赵,S。等。植物乳杆菌ATCC8014对丙烯酰胺诱导的大鼠氧化损伤的保护作用。应用。生物化学。63,1-4(2020)。
Google Scholar
谷歌学者
Alkhalaf, M. I. Diosmin protects against acrylamide-induced toxicity in rats: Roles of oxidative stress and inflammation. J. King Saud. Univ. Sci. 32, 1510–1515 (2020).
Alkhalaf,M.I。地奥司明可预防丙烯酰胺诱导的大鼠毒性:氧化应激和炎症的作用。J、 沙特国王。科学大学。321510-1515(2020)。
Google Scholar
谷歌学者
Alturfan, A. A. et al. Resveratrol ameliorates oxidative DNA damage and protects against acrylamide-induced oxidative stress in rats. Mol. Biol. Rep. 39, 4589–4596 (2012).CAS
Alturfan,A.A.等人,白藜芦醇可改善大鼠的氧化性DNA损伤并防止丙烯酰胺诱导的氧化应激。分子生物学。代表394589–4596(2012)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Westfall, S., Iqbal, U., Sebastian, M. & Pasinetti, G. M. Gut Microbiota Mediated Allostasis Prevents Stress-Induced Neuroinflammatory Risk Factors of Alzheimer’s Disease. Progress in Molecular Biology and Translational Science Vol. 168 (Elsevier, 2019).
Westfall,S.,Iqbal,U.,Sebastian,M。&Pasinetti,G.M。肠道微生物群介导的同种异体抑制可预防应激诱导的阿尔茨海默病神经炎症危险因素。分子生物学和转化科学进展第168卷(Elsevier,2019)。
Google Scholar
谷歌学者
Storelli, G. et al. Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).CAS
植物乳杆菌通过TOR依赖性营养感应调节激素信号,促进果蝇的全身生长。细胞代谢。14403-414(2011)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rivas-Jimenez, L. et al. Evaluation of acrylamide-removing properties of two Lactobacillus strains under simulated gastrointestinal conditions using a dynamic system. Microbiol. Res. 190, 19–26 (2016).CAS
Rivas Jimenez,L.等人。使用动态系统评估两种乳酸杆菌菌株在模拟胃肠道条件下的丙烯酰胺去除特性。微生物。第190、19-26号决议(2016年)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Joseph, J. J., Sangeetha, D. & Gomathi, T. Sunitinib loaded chitosan nanoparticles formulation and its evaluation. Int. J. Biol. Macromol. 82, 952–958 (2016).CAS
Joseph,J.J.,Sangeetha,D。&Gomathi,T。舒尼替尼负载的壳聚糖纳米颗粒制剂及其评估。国际生物学杂志。。82952-958(2016)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ahmad, N., Khan, M. R., Palanisamy, S. & Mohandoss, S. Anticancer drug-loaded chitosan nanoparticles for in vitro release, promoting antibacterial and anticancer activities. Polymers (Basel) 15, 3925 (2023).CAS
Ahmad,N.,Khan,M.R.,Palanisamy,S。&Mohandoss,S。抗癌载药壳聚糖纳米颗粒用于体外释放,促进抗菌和抗癌活性。聚合物(巴塞尔)153925(2023)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mogol, B. A. & Gökmen, V. Thermal process contaminants: Acrylamide, chloropropanols and furan. Curr. Opin. Food Sci. 7, 86–92 (2016).
Mogol,B.A。和Gökmen,V。热过程污染物:丙烯酰胺,氯丙醇和呋喃。货币。奥平。食品科学。7,86-92(2016)。
Google Scholar
谷歌学者
Yousef, M. I. & El-Demerdash, F. M. Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology 219, 133–141 (2006).CAS
Yousef,M.I。&El Demerdash,F.M。丙烯酰胺诱导大鼠的氧化应激和生化扰动。毒理学219133-141(2006)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Khiralla, G., Elhariry, H. & Selim, S. M. Chitosan-stabilized selenium nanoparticles attenuate acrylamide-induced brain injury in rats. J. Food Biochem. 44, e13413 (2020).CAS
Khiralla,G.,Elhariry,H。&Selim,S.M。壳聚糖稳定的硒纳米颗粒减轻丙烯酰胺诱导的大鼠脑损伤。J、 食品生物化学。44,e13413(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Singh, M. P., Jakhar, R. & Kang, S. C. BiotransformaMorin hydrate attenuates the acrylamide-induced imbalance in antioxidant enzymes in a murine model. Int. J. Mol. Med. 36, 992–1000 (2015).CAS
Singh,M.P.,Jakhar,R。&Kang,S.C。生物转化酶水合物减弱了小鼠模型中丙烯酰胺诱导的抗氧化酶失衡。《国际分子医学杂志》36992-1000(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Albalawi, A. et al. Carnosic acid attenuates acrylamide-induced retinal toxicity in zebrafish embryos. Exp. Eye Res. 175, 103–114 (2018).CAS
Albalawi,A。等人。鼠尾草酸减弱丙烯酰胺诱导的斑马鱼胚胎视网膜毒性。Exp.Eye Res.175103-114(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tan, X. et al. Acrylamide aggravates cognitive deficits at night period via the gut–brain axis by reprogramming the brain circadian clock. Arch Toxicol. 93, 467–486 (2019).CAS
Tan,X。等人。丙烯酰胺通过重新编程大脑生物钟,通过肠-脑轴加重夜间认知缺陷。Arch Toxicol公司。93467-486(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yue, Z. et al. Acrylamide induced glucose metabolism disorder in rats involves gut microbiota dysbiosis and changed bile acids metabolism. Food Res. Int. 157, 111405 (2022).CAS
Yue,Z.等人。丙烯酰胺诱导的大鼠葡萄糖代谢紊乱涉及肠道微生物群失调和胆汁酸代谢改变。《食品研究国际》157111405(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Muszyński, S. et al. Maternal acrylamide exposure changes intestinal epithelium, immunolocalization of leptin and ghrelin and their receptors, and gut barrier in weaned offspring. Sci. Rep. 2023(13), 1–16 (2023).
Muszyński,S.等人。母体丙烯酰胺暴露会改变断奶后代的肠上皮,瘦素和生长素释放肽及其受体的免疫定位以及肠道屏障。Sci。代表2023(13),1-16(2023)。
Google Scholar
谷歌学者
Schabacker, J., Schwend, T. & Wink, M. Reduction of acrylamide uptake by dietary proteins in a Caco-2 gut model. J. Agric. Food Chem. 52, 4021–4025 (2004).CAS
Schabacker,J.,Schwend,T。&Wink,M。在Caco-2肠道模型中减少膳食蛋白质对丙烯酰胺的摄取。J、 农业。食品化学。524021-4025(2004)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Amirshahrokhi, K. Acrylamide exposure aggravates the development of ulcerative colitis in mice through activation of NF-κB, inflammatory cytokines, iNOS, and oxidative stress. Iran J. Basic Med. Sci. 24, 312 (2021).PubMed
Amirshahrokhi,K。丙烯酰胺暴露通过激活NF-κB,炎性细胞因子,iNOS和氧化应激加重小鼠溃疡性结肠炎的发展。伊朗J.基础医学科学。24312(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brownlee, I. A., Uranga, J. A. & Palus, K. Dietary exposure to acrylamide has negative effects on the gastrointestinal tract: A review. Nutrients 16, 2032 (2024).
Brownlee,I.A.,Uranga,J.A。&Palus,K。膳食暴露于丙烯酰胺对胃肠道有负面影响:综述。营养素162032(2024)。
Google Scholar
谷歌学者
Zhao, Y. et al. Lactobacillus fermentum and its potential immunomodulatory properties. J. Funct. Foods 56, 21–32 (2019).CAS
赵,Y。等。发酵乳杆菌及其潜在的免疫调节特性。J、 函数。食品56,21-32(2019)。中科院
Google Scholar
谷歌学者
Dempsey, E. & Corr, S. C. Lactobacillus spp. for gastrointestinal health: Current and future perspectives. Front. Immunol. 13, 840245 (2022).CAS
Dempsey,E。&Corr,S.C。用于胃肠道健康的乳酸杆菌:当前和未来的前景。正面。免疫。13840245(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lacerda, D. C. et al. Potential role of Limosilactobacillus fermentum as a probiotic with anti-diabetic properties: A review. World J. Diabetes 13, 717 (2022).PubMed
Lacerda,D.C.等人。发酵乳杆菌作为具有抗糖尿病特性的益生菌的潜在作用:综述。世界J.糖尿病13717(2022)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
De Gregorio, A. et al. Protective Effect of Limosilactobacillus fermentum ME-3 against the Increase in Paracellular Permeability Induced by Chemotherapy or Inflammatory Conditions in Caco-2 Cell Models. Int J Mol Sci 24, 6225 (2023).PubMed
De Gregorio,A。等人。发酵乳杆菌ME-3对Caco-2细胞模型中化疗或炎症条件诱导的细胞旁通透性增加的保护作用。《国际分子科学杂志》246225(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chou, Y.-C., Ho, P.-Y., Chen, W.-J., Wu, S.-H. & Pan, M.-H. Lactobacillus fermentum V3 ameliorates colitis-associated tumorigenesis by modulating the gut microbiome. Am. J. Cancer Res. 10, 1170 (2020).PubMed
Chou,Y.-C.,Ho,P.-Y.,Chen,W.-J.,Wu,S.-H。&Pan,M.-H。发酵乳杆菌V3通过调节肠道微生物组来改善结肠炎相关的肿瘤发生。《美国癌症杂志》第101170号(2020年)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ozen, M., Piloquet, H. & Schaubeck, M. Limosilactobacillus fermentum CECT5716: Clinical potential of a probiotic strain isolated from human milk. Nutrients 15, 2207 (2023).CAS
Ozen,M.,Piloquet,H。&Schaubeck,M。发酵乳杆菌CECT5716:从母乳中分离的益生菌菌株的临床潜力。营养素152207(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guan, Z. & Feng, Q. Chitosan and chitooligosaccharide: The promising non-plant-derived prebiotics with multiple biological activities. Int. J. Mol. Sci. 23, 6761 (2022).CAS
。Int.J.Mol.Sci。236761(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gunasangkaran, G., Ravi, A. K., Arumugam, V. A. & Muthukrishnan, S. Preparation, characterization, and anticancer efficacy of chitosan, chitosan encapsulated piperine and probiotics (Lactobacillus plantarum (MTCC-1407), and Lactobacillus rhamnosus (MTCC-1423) nanoparticles. Bionanoscience 12, 527–539 (2022)..
Gunasangkaran,G.,Ravi,A.K.,Arumugam,V.A。&Muthukrishnan,S。壳聚糖,壳聚糖包封的胡椒碱和益生菌(植物乳杆菌(MTCC-1407))和鼠李糖乳杆菌(MTCC-1423)纳米颗粒的制备,表征和抗癌功效。生物纳米科学12527-539(2022)。。
Google Scholar
谷歌学者
Ebrahimnejad, P., Khavarpour, M. & Khalili, S. Survival of Lactobacillus acidophilus as probiotic bacteria using chitosan nanoparticles. Int. J. Eng. Trans. A Basics 30, 456–463 (2017).CAS
Ebrahimnejad,P.,Khavarpour,M。&Khalili,S。使用壳聚糖纳米颗粒将嗜酸乳杆菌作为益生菌存活。内景J.Eng.Trans。基础30456-463(2017)。中科院
Google Scholar
谷歌学者
Alkushi, A. G. et al. Probiotics-loaded nanoparticles attenuated colon inflammation, oxidative stress, and apoptosis in colitis. Sci. Rep. 12, 1–19 (2022).
。科学。代表12,1-19(2022)。
Google Scholar
谷歌学者
Pandey, R. P., Gunjan, H., Mukherjee, R. & Chang, C. M. Nanocarrier-mediated probiotic delivery: A systematic meta-analysis assessing the biological effects. Sci. Rep. 14, 1–11 (2024).
Pandey,R.P.,Gunjan,H.,Mukherjee,R。&Chang,C.M。纳米载体介导的益生菌递送:评估生物学效应的系统荟萃分析。科学。代表14,1-11(2024)。
Google Scholar
谷歌学者
Alkushi, A. G. et al. Multi-strain-probiotic-loaded nanoparticles reduced colon inflammation and orchestrated the expressions of tight junction, NLRP3 inflammasome and caspase-1 genes in dss-induced colitis model. Pharmaceutics 14, 1183 (2022).CAS
Alkushi,A.G.等人。多菌株益生菌负载纳米颗粒减少了结肠炎,并协调了dss诱导的结肠炎模型中紧密连接,NLRP3炎性体和caspase-1基因的表达。药剂学141183(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pupa, P. et al. The efficacy of three double-microencapsulation methods for preservation of probiotic bacteria. Sci. Rep. 11, 13753 (2021).ADS
Pupa,P。等人。三种双微胶囊化方法保存益生菌的功效。科学。代表1113753(2021)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kumar, N. et al. Preparation of probiotic-loaded solid lipid nanoparticles and in vitro survival in gastrointestinal conditions. BIO Web Conf. 86, 01051 (2024).
Kumar,N.等人。益生菌固体脂质纳米粒的制备和胃肠道条件下的体外存活。BIO Web Conf.8601051(2024)。
Google Scholar
谷歌学者
Kim, S. et al. Novel modified probiotic gold nanoparticles loaded with ginsenoside CK exerts an anti-inflammation effect via NF-κB/MAPK signaling pathways. Arab. J. Chem. 17, 105650 (2024).CAS
。阿拉伯人。J、 化学。17105650(2024)。中科院
Google Scholar
谷歌学者
Chang, Y. N. et al. The high permeability of nanocarriers crossing the enterocyte layer by regulation of the surface zonal pattern. Molecules 25, 919 (2020).CAS
Chang,Y.N.等人。通过调节表面带状图案,纳米载体穿过肠细胞层的高渗透性。分子25919(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stasiak-Różańska, L., Berthold-Pluta, A., Pluta, A. S., Dasiewicz, K. & Garbowska, M. Effect of simulated gastrointestinal tract conditions on survivability of probiotic bacteria present in commercial preparations. Int. J. Environ. Res. Public Health 18, 1–17 (2021).
Stasiak-Różańska,L.,Berthold Pluta,a.,Pluta,a.S.,Dasiewicz,K。&Garbowska,M。模拟胃肠道条件对商业制剂中益生菌存活率的影响。内景J.环境。第18号决议,第1-17页(2021年)。
Google Scholar
谷歌学者
Gómez, E. et al. Impact of probiotics on development and behaviour in Drosophila melanogaster -a potential in vivo model to assess probiotics. Benef Microbes 10, 179–188 (2019).PubMed
Gómez,E.等人。益生菌对果蝇发育和行为的影响-一种评估益生菌的潜在体内模型。Benef Microbes 10179-188(2019)。PubMed出版社
Google Scholar
谷歌学者
Westfall, S., Lomis, N. & Prakash, S. Longevity extension in Drosophila through gut-brain communication. Sci. Rep. https://doi.org/10.1038/s41598-018-25382-z (2018).Article
Westfall,S.,Lomis,N。和Prakash,S。通过肠-脑通信延长果蝇的寿命。科学。代表。https://doi.org/10.1038/s41598-018-25382-z(2018年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Westfall, S., Lomis, N. & Prakash, S. Ferulic acid produced by Lactobacillus fermentum influences developmental growth through a dTOR-mediated mechanism. Mol. Biotechnol. 61, 1 (2019).CAS
Westfall,S.,Lomis,N。&Prakash,S。发酵乳杆菌产生的阿魏酸通过dTOR介导的机制影响发育生长。摩尔生物技术。61,1(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Poinsot, P. et al. Probiotic from human breast milk, Lactobacillus fermentum, promotes growth in animal model of chronic malnutrition. Pediatr. Res. https://doi.org/10.1038/s41390-020-0774-0 (2020).Article
来自人乳的益生菌发酵乳杆菌促进慢性营养不良动物模型的生长。儿科。研究。https://doi.org/10.1038/s41390-020-0774-0(2020年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jang, Y. J., Kim, W. K., Han, D. H., Lee, K. & Ko, G. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes 10, 696–711. https://doi.org/10.1080/19490976.2019.1589281 (2019).Article .
Jang,Y.J.,Kim,W.K.,Han,D.H.,Lee,K。&Ko,G。发酵乳杆菌物种通过调节免疫反应和改变肠道微生物群来改善硫酸葡聚糖钠诱导的结肠炎。肠道微生物10696-711。https://doi.org/10.1080/19490976.2019.1589281(2019年)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thumu, S. C. R. & Halami, P. M. In vivo safety assessment of Lactobacillus fermentum strains, evaluation of their cholesterol-lowering ability and intestinal microbial modulation. J. Sci. Food Agric. 100, 705–713 (2020).CAS
Thumu,S.C.R。&Halami,P.M。发酵乳杆菌菌株的体内安全性评估,其降胆固醇能力和肠道微生物调节的评估。J、 。粮食农业。100705-713(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Naissinger da Silva, M. et al. In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Curr. Res. Food Sci. 4, 320–325 (2021).CAS
Naissinger da Silva,M.等人。体外试验评估商业益生菌在胃肠道中的存活率。货币。Res.食品科学。4320-325(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vecchione, A. et al. Compositional quality and potential gastrointestinal behavior of probiotic products commercialized in Italy. Front. Med. (Lausanne) 5, 59 (2018).PubMed
Vecchione,A。等人。在意大利商业化的益生菌产品的组成质量和潜在的胃肠道行为。正面。医学(洛桑)5,59(2018)。PubMed出版社
Google Scholar
谷歌学者
Patrone, V., Molinari, P. & Morelli, L. Microbiological and molecular characterization of commercially available probiotics containing Bacillus clausii from India and Pakistan. Int. J. Food Microbiol. 237, 92–97 (2016).CAS
Patrone,V.,Molinari,P。&Morelli,L。来自印度和巴基斯坦的含有芽孢杆菌的市售益生菌的微生物学和分子表征。Int.J.食品微生物。237,92-97(2016)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dioso, C. M. et al. Do your kids get what you paid for? Evaluation of commercially available probiotic products intended for children in the Republic of the Philippines and the Republic of Korea. Foods 9, 1229 (2020).CAS
Dioso,C.M.等人。你的孩子得到了你付的钱吗?评估菲律宾共和国和大韩民国儿童用市售益生菌产品。食品91229(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shehata, H. R. & Newmaster, S. G. Combined targeted and non-targeted PCR based methods reveal high levels of compliance in probiotic products sold as dietary supplements in United States and Canada. Front. Microbiol. 11, 531086 (2020).
Shehata,H.R。&Newmaster,S.G。结合靶向和非靶向PCR方法,揭示了在美国和加拿大作为膳食补充剂销售的益生菌产品的高依从性。正面。微生物。11531086(2020)。
Google Scholar
谷歌学者
Kesavelu, D., Rohit, A., Karunasagar, I. & Karunasagar, I. Composition and laboratory correlation of commercial probiotics in India. Cureus 12, e11334 (2020).PubMed
Kesavelu,D.,Rohit,A.,Karunasagar,I。&Karunasagar,I。印度商业益生菌的组成和实验室相关性。Cureus 12,e11334(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Golnari, M., Behbahani, M. & Mohabatkar, H. Comparative survival study of Bacillus coagulans and Enterococcus faecium microencapsulated in chitosan-alginate nanoparticles in simulated gastrointestinal condition. LWT 197, 115930 (2024).CAS
Golnari,M.,Behbahani,M。&Mohabatkar,H。在模拟胃肠道条件下,在壳聚糖-藻酸盐纳米颗粒中微胶囊化的凝结芽孢杆菌和屎肠球菌的比较存活研究。LWT 197115930(2024)。中科院
Google Scholar
谷歌学者
Sundararajan, V., Dan, P., Kumar, A. & Venkatasubbu, G. D. Applied surface science drosophila melanogaster as an in vivo model to study the potential toxicity of cerium oxide nanoparticles. Appl. Surf. Sci. 490, 70–80 (2019).ADS
。应用。冲浪。科学。490,70-80(2019)。广告
CAS
中科院
Google Scholar
谷歌学者
Senthilkumar, S. et al. Developmental and behavioural toxicity induced by acrylamide exposure and amelioration using phytochemicals in Drosophila melanogaster. J. Hazard Mater. 394, 122533 (2020).CAS
Senthilkumar,S.等人。丙烯酰胺暴露诱导的发育和行为毒性以及在果蝇中使用植物化学物质的改善。J、 危险物质。394122533(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Siddique, Y. H. et al. Toxic potential of copper-doped ZnO nanoparticles in Drosophila melanogaster (Oregon R). Toxicol. Mech. Methods 25, 425–432 (2015).CAS
Siddique,Y.H.等人。铜掺杂ZnO纳米颗粒在果蝇(俄勒冈州R)中的毒性潜力。毒理学。机械。方法25425-432(2015)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors acknowledge the SRM SCIF and DBT platform for Advanced Life Science’s support in TEM, fluorescence imaging studies and Zeta analysis. The authors also recognize the support provided by the Department of Science and Technology, Ministry of Science and Technology, Government of India through the INSPIRE Fellowship program.Author informationAuthors and AffiliationsDevelopmental Biology Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, IndiaSwetha Senthil Kumar & Sahabudeen Sheik MohideenAuthorsSwetha Senthil KumarView author publicationsYou can also search for this author in.
下载参考文献致谢作者感谢SRM SCIF和DBT平台在TEM,荧光成像研究和Zeta分析方面对高级生命科学的支持。作者还感谢印度政府科学技术部科学技术司通过INSPIRE奖学金计划提供的支持。作者信息作者和附属机构SRM科学与技术研究所生物工程学院生物技术系发展生物学实验室,Kattankulathur,603203,泰米尔纳德邦,IndiaSwetha Senthil Kumar&Sahabudeen Sheik MohideenAuthorsSwetha Senthil KumarView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarSahabudeen Sheik MohideenView author publicationsYou can also search for this author in
PubMed谷歌学者Sahabudeen Sheik MohideenView作者出版物您也可以在
PubMed Google ScholarContributionsS.S.—Conceptualization, Methodology, Data curation, Writing—original draft, Writing—review and editing, Software, Validation; S.S.M.—Conceptualization, Methodology, Validation, Writing—review and editing and Supervision.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献。S、 -概念化,方法论,数据管理,撰写原稿,撰写评论和编辑,软件,验证;S、 概念化,方法论,验证,写作评论,编辑和监督。对应作者对应。
Sahabudeen Sheik Mohideen.Ethics declarations
Sahabudeen Sheik Mohideen。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleSenthil Kumar, S., Sheik Mohideen, S. Chitosan-coated probiotic nanoparticles mitigate acrylamide-induced toxicity in the Drosophila model.
转载和许可本文引用本文Senthil Kumar,S.,Sheik Mohideen,S。壳聚糖包被的益生菌纳米粒子减轻了果蝇模型中丙烯酰胺诱导的毒性。
Sci Rep 14, 21182 (2024). https://doi.org/10.1038/s41598-024-72200-wDownload citationReceived: 22 July 2024Accepted: 04 September 2024Published: 11 September 2024DOI: https://doi.org/10.1038/s41598-024-72200-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
科学报告1421182(2024)。https://doi.org/10.1038/s41598-024-72200-wDownload引文收到日期:2024年7月22日接受日期:2024年9月4日发布日期:2024年9月11日OI:https://doi.org/10.1038/s41598-024-72200-wShare。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
KeywordsGut microbiotaNanoencapsulationAcrylamideBioactivesChitosan
关键词:微生物群无包膜丙烯酰胺生物壳聚糖
Lactobacillus
乳酸杆菌
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。