EN
登录

线粒体rRNA单倍型变异易患代谢综合征

Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome

Nature 等信源发布 2024-09-11 18:45

可切换为仅中文


AbstractMetabolic syndrome is a growing concern in developed societies and due to its polygenic nature, the genetic component is only slowly being elucidated. Common mitochondrial DNA sequence variants have been associated with symptoms of metabolic syndrome and may, therefore, be relevant players in the genetics of metabolic syndrome.

。常见的线粒体DNA序列变异与代谢综合征的症状有关,因此可能是代谢综合征遗传学的相关参与者。

We investigate the effect of mitochondrial sequence variation on the metabolic phenotype in conplastic rat strains with identical nuclear but unique mitochondrial genomes, challenged by high-fat diet. We find that the variation in mitochondrial rRNA sequence represents risk factor in the insulin resistance development, which is associated with diacylglycerols accumulation, induced by tissue-specific reduction of the oxidative capacity.

我们研究了线粒体序列变异对高脂饮食挑战的具有相同核但独特线粒体基因组的conplastic大鼠品系代谢表型的影响。我们发现线粒体rRNA序列的变化代表了胰岛素抵抗发展的危险因素,这与组织特异性氧化能力降低引起的甘油二酯积累有关。

These metabolic perturbations stem from the 12S rRNA sequence variation affecting mitochondrial ribosome assembly and translation. Our work demonstrates that physiological variation in mitochondrial rRNA might represent a relevant underlying factor in the progression of metabolic syndrome..

这些代谢扰动源于影响线粒体核糖体组装和翻译的12S rRNA序列变异。我们的工作表明,线粒体rRNA的生理变异可能是代谢综合征进展的相关潜在因素。。

IntroductionMitochondria, the organelles of bacterial origin, still maintain mitochondrial DNA (mtDNA), and its sequence exerts variability (single nucleotide polymorphisms – SNPs), dividing the population into mtDNA families known as haplogroups1. Unlike nuclear DNA (nDNA), mtDNA in mammals is maternally inherited and encodes only 13 structural proteins, the subunits of the oxidative phosphorylation apparatus (OXPHOS), two ribosomal RNAs and 22 transfer RNAs required for mitochondrial protein synthesis.

引言线粒体是细菌起源的细胞器,仍然维持线粒体DNA(mtDNA),其序列具有变异性(单核苷酸多态性–SNP),将种群划分为称为单倍群的mtDNA家族1。与核DNA(nDNA)不同,哺乳动物中的mtDNA是母体遗传的,仅编码13种结构蛋白,氧化磷酸化装置(OXPHOS)的亚基,线粒体蛋白合成所需的两个核糖体RNA和22种转移RNA。

The nuclear genome encodes the remaining more than 1000 mitochondrial proteins, which are transported into the mitochondria2. This requires coordination in expression and translation between the two genomes3,4. Recently, studies in human populations have associated mtDNA haplogroups with the risk of metabolic syndrome or its complications5,6,7, and sequence variation in mtDNA has also been shown to influence the expression of stress response genes8.A higher risk of metabolic syndrome is strongly associated with weight gain due to high nutrient excess9.

核基因组编码剩余的1000多种线粒体蛋白,这些蛋白被转运到线粒体2中。这需要两个基因组之间的表达和翻译协调3,4。。

The resulting aberrant distribution of fat, mainly in visceral and intra-abdominal depots10,11, leads to lipotoxicity—ectopic fat storage in metabolically active tissues such as the liver, myocardium, or skeletal muscle12. The metabolic disbalance is associated with symptoms such as insulin resistance, type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease, or cardiovascular disease13.While the link between mitochondrial function and metabolic syndrome is widely accepted, the molecular mechanisms behind it still need to be better defined.

由此产生的脂肪异常分布,主要在内脏和腹腔内储存10,11,导致脂肪毒性异位脂肪储存在代谢活跃的组织如肝脏,心肌或骨骼肌12。代谢失衡与胰岛素抵抗,2型糖尿病(T2DM),非酒精性脂肪肝或心血管疾病等症状有关13。虽然线粒体功能与代谢综合征之间的联系已被广泛接受,但其背后的分子机制仍需要更好地定义。

Many studies have associated insulin resistance and T2DM with a decrease in mitochondrial oxidative capacity14,15, which results in the inefficient fatty acid oxidation. Subs.

许多研究将胰岛素抵抗和T2DM与线粒体氧化能力降低联系起来[14,15],这导致脂肪酸氧化效率低下。。

Data availability

数据可用性

The published article and its supplementary information include all data generated and analysed in the study. Uncropped and unedited western blot images are provided in the Supplementary information as Supplementary Fig. 9. A complete source data file is provided as Supplementary Data. Label-free quantification mass spectrometry (LFQ-MS) data have been deposited at PRIDE and are publicly available (accession numbers: PXD045910 and PXD052976)..

已发表的文章及其补充信息包括研究中产生和分析的所有数据。补充信息中提供了未剪切和未编辑的蛋白质印迹图像作为补充图9。完整的源数据文件作为补充数据提供。无标记定量质谱(LFQ-MS)数据已保存在PRIDE,并可公开获得(登录号:PXD045910和PXD052976)。。

ReferencesKenney, M. C. et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: implications for population susceptibility to diseases. Biochim Biophys. Acta 1842, 208–219 (2014).CAS

。Biochim Biophys公司。Acta 1842208–219(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).CAS

Rath,S。等人。MitoCarta3.0:一种更新的线粒体蛋白质组,现在具有亚细胞器定位和途径注释。核酸研究49,D1541–D1547(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cagin, U. & Enriquez, J. A. The complex crosstalk between mitochondria and the nucleus: What goes in between? Int. J. Biochem Cell Biol. 63, 10–15 (2015).CAS

Cagin,U.&Enriquez,J.A。线粒体与细胞核之间的复杂串扰:两者之间有什么?Int.J.Biochem细胞生物学。63,10-15(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dennerlein, S., Wang, C. & Rehling, P. Plasticity of Mitochondrial Translation. Trends Cell Biol. 27, 712–721 (2017).CAS

Dennerlein,S.,Wang,C。&Rehling,P。线粒体翻译的可塑性。趋势细胞生物学。27712-721(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Estopinal, C. B. et al. Mitochondrial haplogroups are associated with severity of diabetic retinopathy. Invest Ophthalmol. Vis. Sci. 55, 5589–5595 (2014).PubMed

线粒体单倍群与糖尿病视网膜病变的严重程度有关。投资眼科。可见。科学。555589-5595(2014)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chinnery, P. F., Elliott, H. R., Syed, A., Rothwell, P. M. & Oxford Vascular, S. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: a genetic association study. Lancet Neurol. 9, 498–503 (2010).CAS

Chinnery,P.F.,Elliott,H.R.,Syed,A.,Rothwell,P.M。和Oxford Vascular,S。线粒体DNA单倍群和短暂性脑缺血发作和缺血性中风的风险:遗传关联研究。柳叶刀神经学。9498-503(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martikainen, M. H., Ronnemaa, T. & Majamaa, K. Association of mitochondrial DNA haplogroups and vascular complications of diabetes mellitus: a population-based study. Diab Vasc. Dis. Res. 12, 302–304 (2015).PubMed

Martikainen,M.H.,Ronnemaa,T。&Majamaa,K。线粒体DNA单倍群与糖尿病血管并发症的关联:一项基于人群的研究。Diab Vasc。Dis。。PubMed出版社

Google Scholar

谷歌学者

Bellizzi, D. et al. Gene expression of cytokines and cytokine receptors is modulated by the common variability of the mitochondrial DNA in cybrid cell lines. Genes Cells 11, 883–891 (2006).CAS

Bellizzi,D。等人。细胞因子和细胞因子受体的基因表达受杂交细胞系中线粒体DNA的共同变异性调节。基因细胞11883-891(2006)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Grundy, S. M. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 89, 2595–2600 (2004).CAS

Grundy,S.M。肥胖,代谢综合征和心血管疾病。J、 临床。内分泌。代谢。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Castro, A. V., Kolka, C. M., Kim, S. P. & Bergman, R. N. Obesity, insulin resistance and comorbidities? Mechanisms of association. Arq. Bras. Endocrinol. Metab. 58, 600–609 (2014).

Castro,A.V.,Kolka,C.M.,Kim,S.P。&Bergman,R.N。肥胖,胰岛素抵抗和合并症?关联机制。阿Q。胸罩。内分泌。代谢。58600–609(2014)。

Google Scholar

谷歌学者

Vazquez, G., Duval, S., Jacobs, D. R. Jr. & Silventoinen, K. Comparison of body mass index, waist circumference, and waist/hip ratio in predicting incident diabetes: a meta-analysis. Epidemiol. Rev. 29, 115–128 (2007).PubMed

Vazquez,G.,Duval,S.,Jacobs,D。R。Jr。&Silventoinen,K。体重指数,腰围和腰臀比在预测糖尿病事件中的比较:荟萃分析。流行病。第29115-128版(2007年)。PubMed出版社

Google Scholar

谷歌学者

Unger, R. H. Lipotoxic diseases. Annu. Rev. Med. 53, 319–336 (2002).CAS

。年。修订版医学53319-336(2002)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Boutari, C. & Mantzoros, C. S. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 133, 155217 (2022).CAS

。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kelley, D. E., Goodpaster, B., Wing, R. R. & Simoneau, J. A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol. 277, E1130–E1141 (1999).CAS

Kelley,D.E.,Goodpaster,B.,Wing,R.R。&Simoneau,J.A。骨骼肌脂肪酸代谢与胰岛素抵抗,肥胖和体重减轻有关。Am.J.Physiol。277,E1130–E1141(1999)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mootha, V. K. et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).CAS

Mootha,V.K.等人,参与氧化磷酸化的PGC-1α反应基因在人类糖尿病中协同下调。纳特·吉内特。34267-273(2003)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chavez, J. A. & Summers, S. A. A ceramide-centric view of insulin resistance. Cell Metab. 15, 585–594 (2012).CAS

Chavez,J.A。和Summers,S.A。以神经酰胺为中心的胰岛素抵抗观点。细胞代谢。15585-594(2012)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002).CAS

Yu,C.等人。脂肪酸抑制肌肉中胰岛素受体底物-1(IRS-1)相关磷脂酰肌醇3-激酶活性的胰岛素活化的机制。J、 生物。化学。27750230–50236(2002)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Teruel, T., Hernandez, R. & Lorenzo, M. Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes 50, 2563–2571 (2001).CAS

Teruel,T.,Hernandez,R。&Lorenzo,M。神经酰胺通过维持Akt处于非活性去磷酸化状态来介导棕色脂肪细胞中肿瘤坏死因子α的胰岛素抵抗。糖尿病502563-2571(2001)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Powell, D. J., Hajduch, E., Kular, G. & Hundal, H. S. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol. Cell Biol. 23, 7794–7808 (2003).CAS

Powell,D.J.,Hajduch,E.,Kular,G。&Hundal,H.S。神经酰胺通过PKCzeta依赖性机制禁用3-磷酸肌醇与蛋白激酶B(PKB)/Akt的pleckstrin同源结构域的结合。。237794-7808(2003)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anderson, E. J. et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest 119, 573–581 (2009).CAS

Anderson,E.J.等人,《线粒体H2O2排放和细胞氧化还原状态将啮齿动物和人类的过量脂肪摄入与胰岛素抵抗联系起来》。J、 临床。投资119573-581(2009)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jani, S. et al. Distinct mechanisms involving diacylglycerol, ceramides, and inflammation underlie insulin resistance in oxidative and glycolytic muscles from high fat-fed rats. Sci. Rep. 11, 19160 (2021).CAS

Jani,S。等人。涉及二酰基甘油,神经酰胺和炎症的不同机制是高脂喂养大鼠氧化和糖酵解肌肉胰岛素抵抗的基础。科学。19160年(2021年)第11页。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pickup, J. C. & Crook, M. A. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41, 1241–1248 (1998).CAS

Pickup,J.C.&Crook,M.A。II型糖尿病是先天免疫系统的疾病吗?。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, H. & Ballantyne, C. M. Metabolic inflammation and insulin resistance in obesity. Circ. Res. 126, 1549–1564 (2020).CAS

Wu,H。&Ballantyne,C.M。肥胖中的代谢炎症和胰岛素抵抗。保监会。第1261549-1564号决议(2020年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tornatore, L., Thotakura, A. K., Bennett, J., Moretti, M. & Franzoso, G. The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 22, 557–566 (2012).CAS

Tornatore,L.,Thotakura,A.K.,Bennett,J.,Moretti,M。&Franzoso,G。核因子-κB信号通路:将代谢与炎症整合。趋势细胞生物学。22557-566(2012)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest 116, 1494–1505 (2006).CAS

Kanda,H。等人。MCP-1在肥胖中有助于巨噬细胞浸润到脂肪组织,胰岛素抵抗和肝脂肪变性。J、 临床。投资1161494-1505(2006)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852–871 (2012).CAS

Samuel,V.T。和Shulman,G.I。胰岛素抵抗的机制:共同的线索和缺失的环节。细胞148852-871(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Houstek, J. et al. Effects of mtDNA in SHR-mtF344 versus SHR conplastic strains on reduced OXPHOS enzyme levels, insulin resistance, cardiac hypertrophy, and systolic dysfunction. Physiol. Genomics 46, 671–678 (2014).CAS

Houstek,J。等人。SHR-mtF344与SHR共塑性菌株中mtDNA对降低OXPHOS酶水平,胰岛素抵抗,心脏肥大和收缩功能障碍的影响。生理学。基因组学46671-678(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pravenec, M. Conplastic. 155–157 (ScienceDirect, 2013).Pravenec, M. et al. Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Res. 17, 1319–1326 (2007).CAS

Pravenec,M.Conplastic。155-157(ScienceDirect,2013)。Pravenec,M.等人。线粒体基因组变异与2型糖尿病危险因素的直接联系。Genome Res.171319–1326(2007)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pravenec, M. et al. Conplastic strains for identification of retrograde effects of mitochondrial dna variation on cardiometabolic traits in the spontaneously hypertensive rat. Physiol. Res. 70, S471–S484 (2021).CAS

Pravenec,M.等人,用于鉴定自发性高血压大鼠线粒体dna变异对心脏代谢性状的逆行影响的Conplastic菌株。生理学。第70号决议,S471–S484(2021年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Houstek, J. et al. Nonsynonymous variants in mt-Nd2, mt-Nd4, and mt-Nd5 are linked to effects on oxidative phosphorylation and insulin sensitivity in rat conplastic strains. Physiol. Genomics 44, 487–494 (2012).CAS

Houstek,J。等人。mt-Nd2,mt-Nd4和mt-Nd5中的非同义变体与大鼠conplastic菌株中氧化磷酸化和胰岛素敏感性的影响有关。生理学。基因组学44487-494(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Korshunov, S. S., Skulachev, V. P. & Starkov, A. A. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 15–18 (1997).CAS

Korshunov,S.S.,Skulachev,V.P。&Starkov,A.A。高质子电位驱动线粒体中活性氧产生的机制。FEBS Lett。416,15-18(1997)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lambert, A. J. & Brand, M. D. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem. J. 382, 511–517 (2004).CAS

Lambert,A.J。&Brand,M.D。NADH产生超氧化物:泛醌氧化还原酶(复合物I)取决于线粒体内膜的pH梯度。生物化学。J、 382511-517(2004)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cai, N. et al. Mitochondrial DNA variants modulate N-formylmethionine, proteostasis and risk of late-onset human diseases. Nat. Med. 27, 1564–1575 (2021).CAS

Cai,N。等人。线粒体DNA变体调节N-甲酰甲硫氨酸,蛋白质稳态和迟发性人类疾病的风险。《自然医学》271564-1575(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Itoh, Y. et al. Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature 606, 603–608 (2022).CAS

Itoh,Y。等人。线粒体小亚基生物发生和预启动的机制。自然606603-608(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vila-Sanjurjo, A., Mallo, N., Atkins, J. F., Elson, J. L. & Smith, P. M. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol. 14, 1082953 (2023).PubMed

Vila Sanjurjo,A.,Mallo,N.,Atkins,J.F.,Elson,J.L。&Smith,P.M。我们目前对线粒体蛋白质合成过程中线粒体保真度改变的毒性的理解:它能告诉我们关于人类疾病的什么?。141082953(2023)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harper, N. J., Burnside, C. & Klinge, S. Principles of mitoribosomal small subunit assembly in eukaryotes. Nature 614, 175–181 (2023).CAS

Harper,N.J.,Burnside,C。&Klinge,S。真核生物中线粒体小亚基组装的原理。自然614175-181(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nuskova, H. et al. Biochemical thresholds for pathological presentation of ATP synthase deficiencies. Biochem. Biophys. Res. Commun. 521, 1036–1041 (2020).CAS

Nuskova,H。等人。ATP合酶缺陷病理表现的生化阈值。生物化学。生物物理。公共资源。5211036-1041(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rossignol, R. et al. Mitochondrial threshold effects. Biochem. J. 370, 751–762 (2003).CAS

Rossignol,R。等人。线粒体阈值效应。生物化学。J、 370751-762(2003)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rossignol, R., Malgat, M., Mazat, J. P. & Letellier, T. Threshold effect and tissue specificity. Implication for mitochondrial cytopathies. J. Biol. Chem. 274, 33426–33432 (1999).CAS

Rossignol,R.,Malgat,M.,Mazat,J.P。&Letellier,T。阈值效应和组织特异性。线粒体细胞病变的意义。J、 生物。化学。27433426-33432(1999)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

McLaughlin, T., Ackerman, S. E., Shen, L. & Engleman, E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J. Clin. Invest. 127, 5–13 (2017).PubMed

McLaughlin,T.,Ackerman,S.E.,Shen,L。&Engleman,E。先天性和适应性免疫在肥胖相关代谢疾病中的作用。J、 临床。投资。。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ludwig-Slomczynska, A. H. & Rehm, M. Mitochondrial genome variations, mitochondrial-nuclear compatibility, and their association with metabolic diseases. Obes. (Silver Spring) 30, 1156–1169 (2022).

Ludwig Slomczynska,A.H。&Rehm,M。线粒体基因组变异,线粒体核相容性及其与代谢疾病的关系。Obes。。

Google Scholar

谷歌学者

Fang, H. et al. mtDNA Haplogroup N9a Increases the Risk of Type 2 Diabetes by Altering Mitochondrial Function and Intracellular Mitochondrial Signals. Diabetes 67, 1441–1453 (2018).CAS

Fang,H。等人。mtDNA单倍群N9a通过改变线粒体功能和细胞内线粒体信号来增加2型糖尿病的风险。糖尿病671441-1453(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chalkia, D. et al. Mitochondrial DNA associations with East Asian metabolic syndrome. Biochim. Biophys. Acta Bioenerg. 1859, 878–892 (2018).CAS

Chalkia,D.等人。线粒体DNA与东亚代谢综合征的关系。生物化学。生物物理。《生物能源学报》1859878-892(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).CAS

线粒体和核DNA的匹配塑造了新陈代谢和健康衰老。自然535561-565(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goios, A., Pereira, L., Bogue, M., Macaulay, V. & Amorim, A. mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res. 17, 293–298 (2007).CAS

Goios,A.,Pereira,L.,Bogue,M.,Macaulay,V。&Amorim,A。实验室小鼠品系的mtDNA系统发育和进化。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kleinert, M. et al. Animal models of obesity and diabetes mellitus. Nat. Rev. Endocrinol. 14, 140–162 (2018).PubMed

。《国家内分泌杂志》。14140-162(2018)。PubMed出版社

Google Scholar

谷歌学者

Dunham-Snary, K. J. et al. Mitochondrial - nuclear genetic interaction modulates whole body metabolism, adiposity and gene expression in vivo. EBioMedicine 36, 316–328 (2018).PubMed

Dunham Snary,K.J.等人。线粒体-核遗传相互作用调节体内全身代谢,肥胖和基因表达。EBioMedicine 36316-328(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kunstner, A., Schilf, P., Busch, H., Ibrahim, S. M. & Hirose, M. Changes of gut microbiota by natural mtDNA variant differences augment susceptibility to metabolic disease and ageing. Int. J. Mol. Sci. 23, 1056 (2022).PubMed

Kunstner,A.,Schilf,P.,Busch,H.,Ibrahim,S.M。&Hirose,M。通过天然mtDNA变异差异改变肠道微生物群增加了对代谢疾病和衰老的易感性。Int.J.Mol.Sci。231056(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qatanani, M. & Lazar, M. A. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 21, 1443–1455 (2007).CAS

Qatanani,M。&Lazar,M.A。肥胖相关胰岛素抵抗的机制:菜单上有许多选择。Genes Dev.211443-1455(2007)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sergi, D. et al. Mitochondrial (Dys)function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol. 10, 532 (2019).PubMed

。。10532(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, J. Y., Hickner, R. C., Cortright, R. L., Dohm, G. L. & Houmard, J. A. Lipid oxidation is reduced in obese human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 279, E1039–E1044 (2000).CAS

Kim,J.Y.,Hickner,R.C.,Cortright,R.L.,Dohm,G.L。&Houmard,J.A。肥胖的人骨骼肌中脂质氧化减少。Am.J.Physiol。内分泌。代谢。279,E1039–E1044(2000)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kelley, D. E., He, J., Menshikova, E. V. & Ritov, V. B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944–2950 (2002).CAS

Kelley,D.E.,He,J.,Menshikova,E.V。&Ritov,V.B。2型糖尿病患者骨骼肌线粒体功能障碍。糖尿病512944-2950(2002)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cardoso, A. R., Kakimoto, P. A. & Kowaltowski, A. J. Diet-sensitive sources of reactive oxygen species in liver mitochondria: role of very long chain acyl-CoA dehydrogenases. PLoS ONE 8, e77088 (2013).CAS

Cardoso,A.R.,Kakimoto,P.A。&Kowaltowski,A.J。肝线粒体中活性氧的饮食敏感来源:超长链酰基辅酶A脱氢酶的作用。PLoS ONE 8,e77088(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raffaella, C. et al. Alterations in hepatic mitochondrial compartment in a model of obesity and insulin resistance. Obes. (Silver Spring) 16, 958–964 (2008).

Raffaella,C。等人。肥胖和胰岛素抵抗模型中肝线粒体区室的改变。Obes。(银泉)16958-964(2008)。

Google Scholar

谷歌学者

Cole, M. A. et al. A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res. Cardiol. 106, 447–457 (2011).CAS

高脂肪饮食会增加线粒体脂肪酸的氧化和解偶联,从而降低大鼠心脏的效率。基础Res.Cardiol。106447-457(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shao, D. et al. Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating Parkin-mediated mitophagy. Circulation 142, 983–997 (2020).CAS

Shao,D。等人。增加脂肪酸氧化通过调节Parkin介导的线粒体自噬来预防高脂饮食诱导的心肌病。发行量142983–997(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Murashige, D. et al. Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370, 364–368 (2020).CAS

Murashige,D.等人,《衰竭和非衰竭人类心脏燃料使用的综合量化》。科学370364-368(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Arguello, T., Kohrer, C., RajBhandary, U. L. & Moraes, C. T. Mitochondrial methionyl N-formylation affects steady-state levels of oxidative phosphorylation complexes and their organization into supercomplexes. J. Biol. Chem. 293, 15021–15032 (2018).CAS

Arguello,T.,Kohrer,C.,RajBhandary,U.L。和Moraes,C.T。线粒体甲硫氨酰N-甲酰化影响氧化磷酸化复合物的稳态水平及其组织成超复合物。J、 生物。化学。29315021-15032(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tucker, E. J. et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 14, 428–434 (2011).CAS

MTFMT突变是人类甲酰化疾病的基础,导致线粒体翻译受损。细胞代谢。14428-434(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aibara, S., Singh, V., Modelska, A. & Amunts, A. Structural basis of mitochondrial translation. Elife 9, e58362 (2020).CAS

。Elife 9,e58362(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vila-Sanjurjo, A. et al. Structural analysis of mitochondrial rRNA gene variants identified in patients with deafness. Front Physiol. 14, 1163496 (2023).PubMed

Vila Sanjurjo,A。等人。耳聋患者线粒体rRNA基因变异的结构分析。。141163496(2023)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. Ribosome. The structure of the human mitochondrial ribosome. Science 348, 95–98 (2015).CAS

Amunts,A.,Brown,A.,Toots,J.,Scheres,S.H.W。和Ramakrishnan,V.Ribosome。人线粒体核糖体的结构。科学348,95-98(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bolze, A. et al. A catalog of homoplasmic and heteroplasmic mitochondrial DNA variants in humans. BioRxiv https://doi.org/10.1101/798264 (2020).Article

Bolze,A。等人。人类同质和异质线粒体DNA变体目录。生物十四https://doi.org/10.1101/798264(2020年)。文章

Google Scholar

谷歌学者

MITOMAP: A Human Mitochondrial Genome Database. http://www.mitomap.org.Guan, M. X., Fischel-Ghodsian, N. & Attardi, G. Nuclear background determines biochemical phenotype in the deafness-associated mitochondrial 12S rRNA mutation. Hum. Mol. Genet. 10, 573–580 (2001).CAS

MITOMAP:人类线粒体基因组数据库。http://www.mitomap.org.Guan,M.X.,Fischel Ghodsian,N。&Attardi,G。核背景决定了耳聋相关线粒体12S rRNA突变的生化表型。嗯,摩尔·吉内特。10573-580(2001)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, S. et al. Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing. Hum. Mol. Genet. 24, 7286–7294 (2015).CAS

。247286-7294(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

O’Sullivan, M. et al. Mitochondrial m.1584A 12S m62A rRNA methylation in families with m.1555A>G associated hearing loss. Hum. Mol. Genet. 24, 1036–1044 (2015).PubMed

O'Sullivan,M。等人。线粒体M.1584A 12S m62A rRNA甲基化与M.1555A>G相关听力损失的家庭。嗯,摩尔·吉内特。241036-1044(2015)。PubMed出版社

Google Scholar

谷歌学者

Raimundo, N. et al. Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell 148, 716–726 (2012).CAS

Raimundo,N。等人。线粒体应激参与E2F1凋亡信号传导,导致耳聋。细胞148716-726(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aboulmaouahib, B. et al. First mitochondrial genome-wide association study with metabolomics. Hum. Mol. Genet. 31, 3367–3376 (2022).CAS

Aboulmaouahib,B。等人。首次线粒体全基因组关联代谢组学研究。嗯,摩尔·吉内特。313367-3376(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kong, B. S., Lee, C. & Cho, Y. M. Mitochondrial-Encoded Peptide MOTS-c, Diabetes, and Aging-Related Diseases. Diab. Metab. J. 47, 315–324 (2023).

Kong,B.S.,Lee,C。&Cho,Y.M。线粒体编码肽MOTS-C,糖尿病和衰老相关疾病。迪亚布。代谢。J、 47315-324(2023)。

Google Scholar

谷歌学者

Vila-Sanjurjo, A., Smith, P. M. & Elson, J. L. Heterologous Inferential Analysis (HIA) and Other Emerging Concepts: In Understanding Mitochondrial Variation In Pathogenesis: There is no More Low-Hanging Fruit. Methods Mol. Biol. 2277, 203–245 (2021).CAS

Vila Sanjurjo,A.,Smith,P.M。&Elson,J.L。异源推理分析(HIA)和其他新兴概念:在理解发病机制中的线粒体变异时:不再有低垂的果实。方法分子生物学。2277203-245(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Aw, W. C. et al. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet. 14, e1007735 (2018).PubMed

Aw,W.C.等人。基因型到表型:线粒体DNA单倍型相互作用的饮食驱动代谢灵活性和机体适应性。PLoS Genet。14,e1007735(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dobson, A. J. et al. Mitonuclear interactions shape both direct and parental effects of diet on fitness and involve a SNP in mitoribosomal 16s rRNA. PLoS Biol. 21, e3002218 (2023).CAS

Dobson,A.J.等人,《有丝分裂核相互作用塑造了饮食对健康的直接和亲本影响,并涉及线粒体16s rRNA中的SNP。《公共科学图书馆·生物学》。21,e3002218(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Haumann, S. et al. Mitochondrial DNA mutations induce mitochondrial biogenesis and increase the tumorigenic potential of Hodgkin and Reed-Sternberg cells. Carcinogenesis 41, 1735–1745 (2020).CAS

Haumann,S。等人。线粒体DNA突变诱导线粒体生物发生并增加霍奇金和里德·斯腾伯格细胞的致瘤潜力。致癌作用411735-1745(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Akbergenov, R. et al. Mutant MRPS5 affects mitoribosomal accuracy and confers stress-related behavioral alterations. EMBO Rep. 19, e46193 (2018).PubMed

Akbergenov,R。等人。突变MRPS5影响线粒体的准确性并赋予压力相关的行为改变。EMBO Rep.19,e46193(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shcherbakov, D. et al. Mitochondrial mistranslation in brain provokes a metabolic response which mitigates the age-associated decline in mitochondrial gene expression. Int. J. Mol. Sci. 22, 2746 (2021).CAS

Shcherbakov,D。等人。大脑中的线粒体错误翻译会引起代谢反应,从而减轻与年龄相关的线粒体基因表达下降。Int.J.Mol.Sci。222746(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shcherbakov, D. Sr. et al. Mitochondrial misreading in skeletal muscle accelerates metabolic aging and confers lipid accumulation and increased inflammation. RNA 27, 265–272 (2020).

Shcherbakov,D.Sr.等人。骨骼肌中的线粒体误读加速了代谢衰老,并导致脂质积聚和炎症增加。RNA 27265-272(2020)。

Google Scholar

谷歌学者

Ferreira, N. et al. Stress signaling and cellular proliferation reverse the effects of mitochondrial mistranslation. EMBO J. 38, e102155 (2019).CAS

Ferreira,N。等人。应激信号传导和细胞增殖逆转了线粒体误译的影响。EMBO J.38,e102155(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Richman, T. R. et al. Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespan. Aging Cell 20, e13408 (2021).CAS

Richman,T.R。等人。代谢应激调节的线粒体翻译错误会导致心血管疾病和寿命缩短。衰老细胞20,e13408(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Antunes, L. C., Elkfury, J. L., Jornada, M. N., Foletto, K. C. & Bertoluci, M. C. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Arch. Endocrinol. Metab. 60, 138–142 (2016).PubMed

Antunes,L.C.,Elkfury,J.L.,Jornada,M.N.,Foletto,K.C。和Bertoluci,M.C。在Wistar大鼠高脂饮食诱导的胰岛素抵抗模型中验证HOMA-IR。拱门。内分泌。代谢。60138-142(2016)。PubMed出版社

Google Scholar

谷歌学者

Pecinova, A., Drahota, Z., Nuskova, H., Pecina, P. & Houstek, J. Evaluation of basic mitochondrial functions using rat tissue homogenates. Mitochondrion 11, 722–728 (2011).CAS

Pecinova,A.,Drahota,Z.,Nuskova,H.,Pecina,P。&Houstek,J。使用大鼠组织匀浆评估基本线粒体功能。线粒体11722-728(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS

Bradford,M.M。一种利用蛋白质-染料结合原理定量微克蛋白质的快速灵敏方法。肛门。生物化学。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Seluanov, A., Vaidya, A. & Gorbunova, V. Establishing primary adult fibroblast cultures from rodents. J. Vis. Exp. https://doi.org/10.3791/2033 (2010).Article

Seluanov,A.,Vaidya,A。&Gorbunova,V。建立啮齿动物的原代成纤维细胞培养物。J、 可见。实验。https://doi.org/10.3791/2033(2010年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pecinova, A. et al. Pleiotropic effects of biguanides on mitochondrial reactive oxygen species production. Oxid. Med. Cell Longev. 2017, 7038603 (2017).PubMed

Pecinova,A。等人。双胍对线粒体活性氧产生的多效性作用。氧化剂。医学Cell Longev。20177038603(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miwa, S. et al. Carboxylesterase converts Amplex red to resorufin: Implications for mitochondrial H2O2 release assays. Free Radic. Biol. Med. 90, 173–183 (2016).CAS

Miwa,S。等人。羧酸酯酶将Amplex red转化为resorufin:对线粒体H2O2释放测定的影响。自由基。生物学杂志90173-183(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hricko, J. et al. Short-term stability of serum and liver extracts for untargeted metabolomics and lipidomics. Antioxid. (Basel) 12, 986 (2023).CAS

Hricko,J.等人。血清和肝脏提取物对非靶向代谢组学和脂质组学的短期稳定性。抗氧化剂。。中科院

Google Scholar

谷歌学者

Sistilli, G. et al. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients 13, 437 (2021).CAS

Sistilli,G。等人。补充磷虾油可减少饮食诱导肥胖小鼠中由热中性住房引起的加剧的肝脂肪变性。营养素13437(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cajka, T. et al. Optimization of mobile phase modifiers for Fast LC-MS-based untargeted metabolomics and lipidomics. Int. J. Mol. Sci. 24, 1987 (2023).CAS

。Int.J.Mol.Sci。241987(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38, 1159–1163 (2020).CAS

Tsugawa,H。等人。MS-DIAL 4中的脂质组图谱。美国国家生物技术公司。381159-1163(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pang, Z. et al. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761 (2022).CAS

Pang,Z.等人。使用MetaboAnalyst 5.0进行LC-HRMS光谱处理,多组学整合和全球代谢组学数据的协变量调整。自然协议。171735-1761(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Markovic, A. et al. Genetic complementation of ATP synthase deficiency due to dysfunction of TMEM70 assembly factor in rat. Biomedicines 10, 276 (2022).CAS

Markovic,A。等人。大鼠TMEM70装配因子功能障碍引起的ATP合酶缺陷的遗传互补。生物医学10276(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Johnston, H. E. et al. Solvent precipitation SP3 (SP4) enhances recovery for proteomics sample preparation without magnetic beads. Anal. Chem. 94, 10320–10328 (2022).CAS

Johnston,H.E.等人。溶剂沉淀SP3(SP4)可提高无磁珠蛋白质组学样品制备的回收率。肛门。化学。9410320-10328(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).CAS

Kuleshov,M.V。等人。Enrichr:全面的基因集富集分析web server 2016更新。核酸研究44,W90–W97(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).CAS

Perez-Riverol,Y.等人,《2022年的PRIDE数据库资源:基于质谱的蛋白质组学证据中心》。核酸研究50,D543–D552(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sadakierska-Chudy, A. et al. The alterations in mitochondrial DNA copy number and nuclear-encoded mitochondrial genes in rat brain structures after cocaine self-administration. Mol. Neurobiol. 54, 7460–7470 (2017).CAS

Sadakierska-Chudy,A。等人。可卡因自我给药后大鼠脑结构中线粒体DNA拷贝数和核编码线粒体基因的改变。分子神经生物学。547460-7470(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mracek, T., Pecinova, A., Vrbacky, M., Drahota, Z. & Houstek, J. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Arch. Biochem. Biophys. 481, 30–36 (2009).CAS

Mracek,T.,Pecinova,A.,Vrbacky,M.,Drahota,Z。&Houstek,J。哺乳动物线粒体中甘油磷酸脱氢酶产生ROS的高效性。Arch。生物化学。生物物理。481,30-36(2009)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pajuelo Reguera, D. et al. Cytochrome c oxidase subunit 4 isoform exchange results in modulation of oxygen affinity. Cells 9, 443 (2020).PubMed

Pajuelo Reguera,D。等人。细胞色素c氧化酶亚基4亚型交换导致氧亲和力的调节。细胞9443(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pravenec, M. et al. Mutant Wars2 gene in spontaneously hypertensive rats impairs brown adipose tissue function and predisposes to visceral obesity. Physiol. Res. 66, 917–924 (2017).CAS

自发性高血压大鼠的突变Wars2基因损害棕色脂肪组织功能并易患内脏肥胖。生理学。第66917-924号决议(2017年)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cunatova, K. et al. Loss of COX4I1 Leads to combined respiratory chain deficiency and impaired mitochondrial protein synthesis. Cells 10, 369 (2021).CAS

Cunatova,K。等人。COX4I1的缺失导致呼吸链综合缺陷和线粒体蛋白质合成受损。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schagger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).CAS

Schagger,H。&von Jagow,G。Tricine十二烷基硫酸钠聚丙烯酰胺凝胶电泳,用于分离1至100 kDa范围内的蛋白质。肛门。生物化学。166368-379(1987)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7, 539 (2011).PubMed

Sievers,F。等人。使用clustal omega快速,可扩展地生成高质量蛋白质多序列比对。分子系统。生物学7539(2011)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kummer, E., Schubert, K. N., Schoenhut, T., Scaiola, A. & Ban, N. Structural basis of translation termination, rescue, and recycling in mammalian mitochondria. Mol. Cell 81, 2566–2582.e2566 (2021).CAS

Kummer,E.,Schubert,K.N.,Schoenhut,T.,Scaiola,A。&Ban,N。哺乳动物线粒体翻译终止,拯救和再循环的结构基础。分子细胞812566–2582.e2566(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goddard, T. D. et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).CAS

Goddard,T.D.等人,《UCSF ChimeraX:迎接可视化和分析方面的现代挑战》。蛋白质科学。27,14-25(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by the Czech Science Foundation GACR 19-10354S (P.P., V.K., G.P.-F., J.S., J.H., and A.P.), the National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES, ID Project No. LX22NPO5104)—Funded by the European Union-Next Generation EU (K.T., T.M.

下载参考文献致谢这项工作得到了捷克科学基金会GACR 19-10354S(P.P.,V.K.,G.P.-F.,J.S.,J.H。和A.P.)的支持,国家代谢和心血管疾病研究所(计划EXCELES,ID项目号LX22NPO5104)由欧盟下一代欧盟(K.T.,T.M.)资助。

and S.K.), and by the grant LUAUS23095 within the INTER-EXCELLENCE program of the Ministry of Education, Youth, and Sports of the Czech Republic (M.P.). O.G. was supported by the project P JAC CZ.02.01.01/00/22_008/0004575 RNA for therapy, Co-Funded by the European Union. The authors would like to acknowledge the Laboratory of Metabolomics at the Institute of Physiology of the Czech Academy of Sciences (T.C.) and the Proteomics Service Laboratory at the Institute of Physiology (supported by RVO, ID 67985823) and the Institute of Molecular Genetics (supported by RVO, ID 68378050) of the Czech Academy of Sciences (M.V.).

和S.K.),以及捷克共和国教育、青年和体育部(M.P.)卓越计划内的LUAUS23095赠款。O、 G.得到了欧盟共同资助的P JAC CZ.02.01.01/00/22\U 008/0004575 RNA治疗项目的支持。作者要感谢捷克科学院生理学研究所代谢组学实验室和生理学研究所蛋白质组学服务实验室(由RVO支持,ID 67985823)和分子遗传学研究所(由RVO支持,ID 68378050)捷克科学院(M.V.)。

The National Center for Medical Genomics (LM2023067) kindly provided WGS sequencing (S.K., V.S.). Graphical abstract and Figs. 1a and 5a were created with BioRender.com.Author informationAuthors and AffiliationsLaboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech RepublicPetr Pecina, Kristýna Čunátová, Vilma Kaplanová, Guillermo Puertas-Frias, Kateřina Tauchmannová, Marek Vrbacký, Josef Houštěk, Tomáš Mráček & Alena PecinováLaboratory of Genetics of Model Diseases, Institute of Physiology, Czech Academy of Sciences, Prague, Czech RepublicJan Šilhavý & Michal PravenecLaboratory of Translational Metabolism, Institute of Physiology, Czech Academy of Sciences, Prague, Czech RepublicTomáš ČajkaInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, České Buděj.

国家医学基因组学中心(LM2023067)提供了WGS测序(S.K.,V.S.)。图形摘要和图1a和5a由BioRender.com创建。作者信息作者和附属机构捷克科学院生理学研究所生物能学实验室,捷克共和国布拉格Petr Pecina、KristýnaČunátová、Vilma Kaplanová、Guillermo Puertas Frias、Kateřina Tauchmannová、Marek Vrbacký、Josef Houstěk、TomášMráček

PubMed Google ScholarKristýna ČunátováView author publicationsYou can also search for this author in

PubMed谷歌奖学金KristýnaČunátová查看作者出版物您也可以在

PubMed Google ScholarVilma KaplanováView author publicationsYou can also search for this author in

PubMed谷歌奖学金Vilma Kaplanová查看作者出版物您也可以在

PubMed Google ScholarGuillermo Puertas-FriasView author publicationsYou can also search for this author in

PubMed Google ScholarGuillermo Puertas FriasView作者出版物您也可以在

PubMed Google ScholarJan ŠilhavýView author publicationsYou can also search for this author in

PubMed谷歌奖学金JanŠilhavý查看作者出版物您也可以在

PubMed Google ScholarKateřina TauchmannováView author publicationsYou can also search for this author in

PubMed谷歌奖学金Kateřina Tauchmanová查看作者出版物您也可以在

PubMed Google ScholarMarek VrbackýView author publicationsYou can also search for this author in

PubMed Google ScholarMarek VrbackýView作者出版物您也可以在

PubMed Google ScholarTomáš ČajkaView author publicationsYou can also search for this author in

PubMed谷歌奖学金TomášČajka查看作者出版物您也可以在

PubMed Google ScholarOndřej GahuraView author publicationsYou can also search for this author in

PubMed谷歌学术Ondřej Gahura查看作者出版物您也可以在

PubMed Google ScholarMarkéta HlaváčkováView author publicationsYou can also search for this author in

PubMed谷歌奖学金Markéta Hlaváčková查看作者出版物您也可以在

PubMed Google ScholarViktor StráneckýView author publicationsYou can also search for this author in

PubMed谷歌奖学金Viktor Stránecký查看作者出版物您也可以在

PubMed Google ScholarStanislav KmochView author publicationsYou can also search for this author in

PubMed Google ScholarStanislav KmochView作者出版物您也可以在

PubMed Google ScholarMichal PravenecView author publicationsYou can also search for this author in

PubMed Google Scholarmamichal PravenecView作者出版物您也可以在

PubMed Google ScholarJosef HouštěkView author publicationsYou can also search for this author in

PubMed谷歌学者Josef Houštěk查看作者出版物您也可以在

PubMed Google ScholarTomáš MráčekView author publicationsYou can also search for this author in

PubMed谷歌奖学金TomášMráček查看作者出版物您也可以在

PubMed Google ScholarAlena PecinováView author publicationsYou can also search for this author in

PubMed谷歌学术Alena Pecinová查看作者出版物您也可以在

PubMed Google ScholarContributionsConceptualization, J.H., T.M., and A.P.; Methodology, P.P., M.P, T.M., and A.P.; Formal analysis, M.V., T.C., O.G., and V.S.; Investigation, P.P., K.C., V.K., G.P.-F., J.S., V.S., S.K., T.M., and A.P.; Resources, M.H., M.P., T.C., and M.V., Writing—Original draft, J.H., T.M., and A.P.; Writing—Review & Editing, P.P., K.C., V.K., K.T., M.V., T.C., O.G., M.P., J.H., T.M., and A.P.; Visualization, T.M.

PubMed谷歌学术贡献概念化,J.H.,T.M。和A.P。;方法论,P.P.,M.P,T.M。和A.P。;形式分析,M.V.,T.C.,O.G。和V.S。;调查,P.P.,K.C.,V.K.,G.P.-F.,J.S.,V.S.,S.K.,T.M。和A.P。;资源,M.H.,M.P.,T.C。和M.V.,撰写原稿,J.H.,T.M。和A.P。;写作评论与编辑,P.P.,K.C.,V.K.,K.T.,M.V.,T.C.,O.G.,M.P.,J.H.,T.M。和A.P。;可视化,T.M。

and A.P.; Funding acquisition, O.G., M.P., T.M., and A.P.Corresponding authorsCorrespondence to.

和A.P。;资金收购,O.G.,M.P.,T.M。和A.P.通讯作者通讯。

Tomáš Mráček or Alena Pecinová.Ethics declarations

托马什·亚切克先生或阿莱娜·佩奇诺娃。伦理声明

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Communication Biology thanks Antón Vila-Sanjurjo and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

传播生物学感谢Antón Vila Sanjurjo和其他匿名审稿人对这项工作的同行评审所做的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationPeer Review FileSupplementary MaterialDescription of Additional Supplementary FileSupplementary DataReporting summaryRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息同行评审文件补充材料其他补充文件的说明补充数据报告摘要权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articlePecina, P., Čunátová, K., Kaplanová, V. et al. Haplotype variability in mitochondrial rRNA predisposes to metabolic syndrome.

转载和许可关于这篇文章引用这篇文章Pecina,P.,Čunátová,K.,Kaplanová,V.等人。线粒体rRNA的单倍型变异易患代谢综合征。

Commun Biol 7, 1116 (2024). https://doi.org/10.1038/s42003-024-06819-wDownload citationReceived: 19 December 2023Accepted: 30 August 2024Published: 11 September 2024DOI: https://doi.org/10.1038/s42003-024-06819-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Commun Biol 71116(2024)。https://doi.org/10.1038/s42003-024-06819-wDownloadhttps://doi.org/10.1038/s42003-024-06819-wShare。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。