商务合作
动脉网APP
可切换为仅中文
AbstractSuperoxide anion is thought to be a natural by-product with strong oxidizing ability in all living organisms and was recently found to accumulate in plant meristems to maintain stem cells in the shoot and undifferentiated meristematic cells in the root. Here we show that the DNA demethylase repressor of silencing 1 (ROS1) is one of the direct targets of superoxide in stem cells.
摘要超氧阴离子被认为是所有生物体中具有强氧化能力的天然副产物,最近发现它在植物分生组织中积累,以维持茎中的干细胞和根中未分化的分生组织细胞。在这里,我们显示沉默1(ROS1)的DNA脱甲基酶阻遏物是干细胞中超氧化物的直接靶标之一。
The Fe–S clusters in ROS1 are oxidized by superoxide to activate its DNA glycosylase/lyase activity. We demonstrate that superoxide extensively participates in the establishment of active DNA demethylation in the Arabidopsis genome and that ARABIDOPSIS RESPONSE REGULATOR 12 acts downstream of ROS1-mediated superoxide signaling to maintain stem cell fate.
ROS1中的Fe–S簇被超氧化物氧化以激活其DNA糖基化酶/裂解酶活性。我们证明超氧化物广泛参与拟南芥基因组中活性DNA去甲基化的建立,并且拟南芥响应调节剂12在ROS1介导的超氧化物信号传导的下游起作用以维持干细胞命运。
Our results provide a mechanistic framework for superoxide control of the stem cell niche and demonstrate how redox and DNA demethylation interact to define stem cell fate in plants..
我们的研究结果为干细胞生态位的超氧化物控制提供了一个机制框架,并证明了氧化还原和DNA去甲基化如何相互作用以定义植物中的干细胞命运。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: ROS1 has important roles in SAM regulation.Fig. 2: ROS1 mediates superoxide signaling in the stem cell niche.Fig. 3: Superoxide maintains stem cell fate by regulating ROS1-mediated ARR12 demethylation.Fig. 4: Genome-wide DNA demethylation profiles of superoxide.Fig. 5: Superoxide oxidation of Fe–S clusters activates ROS1 glycosylases/lyases.Fig.
图1:ROS1在SAM调节中具有重要作用。图2:ROS1介导干细胞生态位中的超氧化物信号传导。图3:超氧化物通过调节ROS1介导的ARR12去甲基化来维持干细胞的命运。图4:超氧化物的全基因组DNA去甲基化谱。图5:Fe–S簇的超氧化物氧化激活ROS1糖基化酶/裂解酶。图。
6: Hypothetical mechanism of superoxide control of the stem cell niche in plants..
6: 超氧化物控制植物干细胞生态位的假设机制。。
Data availability
数据可用性
The bisulfite sequencing data have been deposited in the NCBI SRA and are accessible through BioProject accession number PRJNA856724. Source data are provided with this paper.
亚硫酸氢盐测序数据已保存在NCBI SRA中,可通过生物项目登录号PRJNA856724访问。本文提供了源数据。
ReferencesNathan, C. & Ding, A. Snapshot: reactive oxygen intermediates (ROI). Cell 140, 951–951 (2010).Article
参考文献Nathan,C。&Ding,A。快照:活性氧中间体(ROI)。细胞140951-951(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dietz, K. J., Turkan, I. & Krieger-Liszkay, A. Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast. Plant Physiol. 171, 1541–1550 (2016).Article
Dietz,K.J.,Turkan,I。&Krieger-Liszkay,A。氧化还原和活性氧依赖性信号传导进出光合作用叶绿体。植物生理学。1711541-1550(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moller, I. M. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 561–591 (2001).Article
Moller,I.M。植物线粒体和氧化应激:电子传递,NADPH周转和活性氧的代谢。。。植物分子生物学。52561-591(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zeng, J., Dong, Z., Wu, H., Tian, Z. & Zhao, Z. Redox regulation of plant stem cell fate. EMBO J. 36, 2844–2855 (2017).Article
Zeng,J.,Dong,Z.,Wu,H.,Tian,Z。&Zhao,Z。植物干细胞命运的氧化还原调节。EMBO J.362844–2855(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tsukagoshi, H., Busch, W. & Benfey, P. N. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143, 606–616 (2010).Article
Tsukagoshi,H.,Busch,W。&Benfey,P.N。ROS的转录调控控制根中从增殖到分化的转变。细胞143606-616(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kim, J. B. et al. OCT4-induced pluripotency in adult neural stem cells. Cell 136, 411–419 (2009).Article
Kim,J.B.等人,OCT4诱导成人神经干细胞的多能性。细胞136411-419(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Soldner, Frank et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).Article
Soldner,Frank等人。帕金森病患者来源的不含病毒重编程因子的诱导多能干细胞。细胞136964-977(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gardner, P. R. & Fridovich, I. Superoxide sensitivity of the Escherichia coli aconitase. J. Biol. Chem. 266, 19328–19333 (1991).Article
Gardner,P.R。&Fridovich,I。大肠杆菌乌头酸酶的超氧化物敏感性。J、 生物。。26619328-19333(1991)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Flint, D. H., Emptage, M. H., Finnegan, M. G., Fu, W. & Johnson, M. K. The role and properties of the iron–sulfur cluster in Escherichia coli dihydroxy-acid dehydratase. J. Biol. Chem. 268, 14732–14742 (1993).Article
Flint,D.H.,Emptage,M.H.,Finnegan,M.G.,Fu,W。&Johnson,M.K。铁硫簇在大肠杆菌二羟基酸脱水酶中的作用和性质。J、 生物。。26814732-14742(1993)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gaudu, P. & Weiss, B. SoxR, a [2Fe–2S] transcription factor, is active only in its oxidized form. Proc. Natl Acad. Sci. USA 93, 10094–10098 (1996).Article
Gaudu,P。&Weiss,B。SoxR是一种[2Fe-2S]转录因子,仅以其氧化形式具有活性。国家科学院。科学。美国9310094–10098(1996)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ding, H., Hidalgo, E. & Demple, B. The redox state of the [2Fe–2S] clusters in SoxR protein regulates its activity as a transcription factor. J. Biol. Chem. 271, 33173–33175 (1996).Article
Ding,H.,Hidalgo,E。&Demple,B。SoxR蛋白中[2Fe-2S]簇的氧化还原状态调节其作为转录因子的活性。J、 生物。。27133173-33175(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, H. & Krämer, U. Differential diel translation of transcripts with roles in the transfer and utilization of iron–sulfur clusters in Arabidopsis. Front. Plant Sci. 9, 1641 (2018).Article
Zhang,H.&Krämer,U。转录本的差异diel翻译在拟南芥铁硫簇的转移和利用中起作用。正面。。91641(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zeng, J. et al. Endogenous stress-related signal directs shoot stem cell fate in Arabidopsis thaliana. Nat. Plants 7, 1276–1287 (2021).Article
Zeng,J。等人。内源性应激相关信号指导拟南芥芽干细胞的命运。《自然植物》71276-1287(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tian, C. et al. A gene expression map of shoot domains reveals regulatory mechanisms. Nat. Commun. 10, 141 (2019).Article
Tian,C。等人。芽结构域的基因表达图谱揭示了调控机制。国家公社。10141(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814 (2002).Article
Gong,Z。等人。ROS1是拟南芥转录基因沉默的阻遏物,编码DNA糖基化酶/裂解酶。细胞111803-814(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).Article
Zhang,X。等。拟南芥DNA甲基化的全基因组高分辨率定位和功能分析。细胞1261189-1201(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. & Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet. 39, 61–69 (2007).Article
Zilberman,D.,Gehring,M.,Tran,R.K.,Ballinger,T。&Henikoff,S。拟南芥DNA甲基化的全基因组分析揭示了甲基化和转录之间的相互依赖性。纳特·吉内特。39,61-69(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhu, J., Kapoor, A., Sridhar, V. V., Agius, F. & Zhu, J. K. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 17, 54–59 (2007).Article
Zhu,J.,Kapoor,A.,Sridhar,V.V.,Agius,F。&Zhu,J.K。DNA糖基化酶/裂解酶ROS1在修剪拟南芥中的DNA甲基化模式中起作用。货币。生物学17,54-59(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Penterman, J. et al. DNA demethylation in the Arabidopsis genome. Proc. Natl Acad. Sci. USA 104, 6752–6757 (2007).Article
Penterman,J。等人。拟南芥基因组中的DNA去甲基化。程序。国家科学院。科学。美国1046752-6757(2007)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Penterman, J., Uzawa, R. & Fischer, R. L. Genetic interactions between DNA demethylation and methylation in Arabidopsis. Plant Physiol. 145, 1549–1557 (2007).Article
Penterman,J.,Uzawa,R。&Fischer,R.L。拟南芥中DNA去甲基化和甲基化之间的遗传相互作用。植物生理学。1451549-1557(2007)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, J. S. et al. ROS1-dependent DNA demethylation is required for ABA-inducible NIC3 expression. Plant Physiol. 179, 1810–1821 (2019).Article
Kim,J.S.等人。ABA诱导的NIC3表达需要依赖ROS1的DNA去甲基化。植物生理学。1791810-1821(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ortega-Galisteo, A. P., Morales-Ruiz, T., Ariza, R. R. & Roldán-Arjona, T. Arabidopsis DEMETER-LIKE proteins DML2 and DML3 are required for appropriate distribution of DNA methylation marks. Plant Mol. Biol. 67, 671–681 (2008).Article
Ortega-Galisteo,A.P.,Morales-Ruiz,T.,Ariza,R.R。&Roldán-Arjona,拟南芥DEMETER样蛋白DML2和DML3是DNA甲基化标记适当分布所必需的。植物分子生物学。67671-681(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Agius, F., Kapoor, A. & Zhu, J. K. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc. Natl Acad. Sci. USA 103, 11796–11801 (2006).Article
Agius,F.,Kapoor,A。&Zhu,J.K。拟南芥DNA糖基化酶/裂解酶ROS1在活性DNA去甲基化中的作用。程序。国家科学院。科学。美国10311796–11801(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Morales-Ruiz, Teresa et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl Acad. Sci. USA 103, 6853–6858 (2006).Article
Morales-Ruiz,Teresa等人。DEMETER和沉默抑制因子1编码5-甲基胞嘧啶DNA糖基化酶。程序。国家科学院。科学。美国1036853–6858(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, J. X. & Kirkham, M. B. Lipid peroxidation in sorghum and sunflower seedlings as affected by ascorbic acid, benzoic acid, and propyl gallate. J. Plant Physiol. 149, 489–493 (1996).Article
Zhang,J.X.&Kirkham,M.B。抗坏血酸,苯甲酸和没食子酸丙酯对高粱和向日葵幼苗脂质过氧化的影响。J、 植物生理学。。文章
CAS
中科院
Google Scholar
谷歌学者
Kim, S. et al. The DME demethylase regulates sporophyte gene expression, cell proliferation, differentiation, and meristem resurrection. Proc. Natl Acad. Sci. USA 118, e2026806118 (2021).Article
。程序。国家科学院。科学。美国118,e2026806118(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhu, H. et al. Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145, 242–256 (2011).Article
Zhu,H。等人。拟南芥Argonaute10特异性地隔离miR166/165以调节茎尖分生组织的发育。细胞145242-256(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, B. et al. Integration of transcriptional repression and polycomb-mediated silencing of WUSCHEL in floral meristems. Plant Cell 31, 1488–1505 (2019).Article
Sun,B.等人。转录抑制和polycomb介导的花分生组织中WUSCHEL沉默的整合。植物细胞311488-1505(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Meng, W. et al. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29, 1357–1372 (2017).Article
Meng,W。等人。B型拟南芥反应调节剂通过WUSCHEL的双重调节来指定芽干细胞生态位。植物细胞291357-1372(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, J. et al. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell 29, 1373–1387 (2017).Article
Wang,J。等人。细胞分裂素信号在腋窝分生组织起始期间激活WUSCHEL表达。植物细胞291373-1387(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, H., Lang, Z. & Zhu, J. K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).Article
Zhang,H.,Lang,Z。&Zhu,J.K。植物DNA甲基化的动力学和功能。Nat。Rev。Mol。Cell Biol。19489-506(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Luo, C. et al. Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant J. 73, 77–90 (2013).Article
Luo,C。等人。拟南芥染色质状态的综合分析确定了天然反义转录物产生的潜在调控机制。植物J.73,77–90(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Qian, W. et al. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336, 1445–1448 (2012).Article
Qian,W。等人。组蛋白乙酰转移酶调节拟南芥中的活性DNA去甲基化。科学3361445-1448(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
White, M. F. & Dillingham, M. S. Iron–sulphur clusters in nucleic acid processing enzymes. Curr. Opin. Struct. Biol. 22, 94–100 (2012).Article
White,M.F。和Dillingham,M.S。核酸加工酶中的铁硫簇。货币。奥平。结构。生物学杂志22,94-100(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Buzas, D. M., Nakamura, M. & Kinoshita, T. Epigenetic role for the conserved Fe–S cluster biogenesis protein AtDRE2 in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 111, 13565–13570 (2014).Article
Buzas,D.M.,Nakamura,M。和Kinoshita,T。拟南芥中保守的Fe-S簇生物发生蛋白AtDRE2的表观遗传作用。程序。国家科学院。科学。美国11113565-13570(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mok, Y. G. et al. Domain structure of the DEMETER 5-methylcytosine DNA glycosylase. Proc. Natl Acad. Sci. USA 107, 19225–19230 (2010).Article
Mok,Y.G.等人。DEMETER 5-甲基胞嘧啶DNA糖基化酶的结构域。程序。国家科学院。科学。美国10719225-19230(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Duan, C. et al. MET18 connects the cytosolic iron–sulfur cluster assembly pathway to active DNA demethylation in Arabidopsis. PLoS Genet. 11, e1005559 (2015).Article
Duan,C。等人MET18将胞质铁硫簇组装途径与拟南芥中的活性DNA去甲基化联系起来。。11,e1005559(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nishikimi, M., Appaji, N. & Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46, 849–854 (1972).Article
Nishikimi,M.,Appaji,N。&Yagi,K。还原的吩嗪甲硫酸盐与分子氧反应中超氧阴离子的出现。生物化学。生物物理。公共资源。46849-854(1972)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gui, X., Liu, C., Qi, Y. & Zhou, X. Geminiviruses employ host DNA glycosylases to subvert DNA methylation-mediated defense. Nat. Commun. 13, 575 (2022).Article
Gui,X.,Liu,C.,Qi,Y。&Zhou,X。双子病毒利用宿主DNA糖基化酶来破坏DNA甲基化介导的防御。国家公社。13575(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, H., Gong, Z. & Zhu, J. K. Active DNA demethylation in plants: 20 years of discovery and beyond. J. Integr. Plant Biol. 64, 2217–2239 (2022).Article
Zhang,H.,Gong,Z。&Zhu,J.K。植物中的活性DNA去甲基化:20年的发现及其以后。J、 。植物生物学。642217-2239(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yang, L. et al. ROS1-mediated decrease in DNA methylation and increase in expression of defense genes and stress response genes in Arabidopsis thaliana due to abiotic stresses. BMC Plant Biol. 22, 104 (2022).Article
Yang,L。等人。由于非生物胁迫,ROS1介导了拟南芥中DNA甲基化的降低以及防御基因和应激反应基因表达的增加。BMC植物生物学。22104(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lill, R. Function and biogenesis of iron–sulphur proteins. Nature 460, 831–838 (2009).Article
Lill,R。铁硫蛋白的功能和生物发生。《自然》460831-838(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, X. et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).Article
Zhang,X。等人。使用花浸法农杆菌介导的拟南芥转化。自然协议。1641-646(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhao, Z. et al. Hormonal control of the shoot stem-cell niche. Nature 465, 1089–1092 (2010).Article
赵,Z。等。芽干细胞生态位的激素控制。《自然》4651089-1092(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lippman, Z., May, B., Yordan, C., Singer, T. & Martienssen, R. Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 1, E67 (2003).Article
Lippman,Z.,May,B.,Yordan,C.,Singer,T。&Martienssen,R。不同的机制通过小干扰RNA和组蛋白修饰决定转座子的遗传和甲基化。《公共科学图书馆·生物学》。1,E67(2003)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article
Martin,M。Cutadapt从高通量测序读数中删除了衔接子序列。EMBnet J.17,10–12(2011)。文章
Google Scholar
谷歌学者
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics 27, 1571–1572 (2011).Article
Krueger,F。&Andrews,S.R。Bismark:用于亚硫酸氢盐-seq应用的灵活对准器和甲基化调用者。生物信息学271571-1572(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13, R87 (2012).Article
Akalin,A。等人,《甲基化试剂盒:用于分析全基因组DNA甲基化谱的综合R包》。基因组生物学。13,R87(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article
Quinlan,A.R。&Hall,I.M。BEDTools:用于比较基因组特征的灵活实用程序套件。生物信息学26841-842(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).Article
Langmead,B.,Trapnell,C.,Pop,M。&Salzberg,S.L。超快和记忆有效的短DNA序列与人类基因组的比对。基因组生物学。10,R25(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).Article
Ramírez,F。等人。deepTools2:用于深度测序数据分析的下一代web服务器。核酸研究44,W160–W165(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by grants to Z.Z. from the National Natural Science Foundation of China (32130009 and 32321001) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB27030105). We thank C. Huang and F. Xiang for sharing plant materials.Author informationAuthors and AffiliationsMinistry of Education Key Laboratory for Cellular Dynamics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, ChinaShiwen Wang, Dongping Hu & Zhong ZhaoGuangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, ChinaMin Liu & Zhicheng DongAuthorsShiwen WangView author publicationsYou can also search for this author in.
下载参考文献致谢这项工作得到了国家自然科学基金(32130009和32321001)和中国科学院战略重点研究计划(XDB27030105)对Z.Z.的资助。我们感谢C.Huang和F.Xiang分享植物材料。作者信息作者和所属单位中国科学院分子植物科学卓越中心细胞动力学教育重点实验室,生命科学学院,中国科学技术大学生命科学与医学系,合肥,中国王世文,胡东平和赵忠广东省植物适应与分子设计重点实验室,广州作物基因编辑重点实验室,广州大学生命科学学院分子遗传与进化创新中心,中国广州,刘敏和董志成作者王世文作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarMin LiuView author publicationsYou can also search for this author in
PubMed Google Scholarmamin LiuView作者出版物您也可以在
PubMed Google ScholarDongping HuView author publicationsYou can also search for this author in
PubMed谷歌学者胡东平查看作者出版物您也可以在
PubMed Google ScholarZhicheng DongView author publicationsYou can also search for this author in
PubMed谷歌学者Zhicheng DongView作者出版物您也可以在
PubMed Google ScholarZhong ZhaoView author publicationsYou can also search for this author in
PubMed谷歌学者Zhong ZhaoView作者出版物您也可以在
PubMed Google ScholarContributionsZ.Z. conceived the study. Z.Z. and S.W. designed the experiments, analyzed the data and wrote the paper with input from all authors. M.L. and Z.D. analyzed the bisulfite sequencing data. D.H. performed in situ hybridization. S.W. performed all other experiments.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献。Z、 构思了这项研究。Z、 Z.和S.W.设计了实验,分析了数据,并根据所有作者的意见撰写了论文。M、 L.和Z.D.分析了亚硫酸氢盐测序数据。D、 H.进行原位杂交。S、 W.进行了所有其他实验。对应作者对应。
Zhong Zhao.Ethics declarations
钟照。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Chemical Biology thanks Christine Foyer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然化学生物学》感谢克里斯蒂娜·福耶(ChristineFoyer)和另一位匿名审稿人对这项工作的同行评议做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 ROS1 and its homologous genes mediate superoxide signaling in the SAM.a, Expression levels of DME in 7-day-old rdd-DME RNAi seedlings measured by qRT‒PCR with or without β-estradiol induction with 3 biological replicates.
Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1 ROS1及其同源基因介导SAM中的超氧化物信号传导。a,通过qRT-PCR测量7日龄rdd DME RNAi幼苗中DME的表达水平,有或没有β-雌二醇诱导,具有3个生物学重复。
b, Ratio of the first pair of true leaves in 7-day-old wild-type Col-0 and rdd-DME RNAi seedlings with or without PG treatment under β-estradiol induction. Three biological replicates were performed, with each replicate having more than 100 plants. The data are shown as the mean ± s.d. with two-tailed Student’s t tests, and P values are shown at the top of each bar.Source dataExtended Data Fig.
b、 在β-雌二醇诱导下,有或没有PG处理的7日龄野生型Col-0和rdd DME RNAi幼苗中第一对真叶的比例。进行了三次生物学重复,每个重复具有100多种植物。数据显示为两尾学生t检验的平均值±s.d.,P值显示在每个条的顶部。源数据扩展数据图。
2 The ros1 mutant partially blocks superoxide signaling in regulating the WUS expression.Expression levels of WUS in Col-0 and ros1-4 seedlings with or without MV treatment were measured by qRT‒PCR, and 5 biological replicates were performed for each sample. The data are shown as the mean ± s.d. with two-tailed Student’s t tests, and P values are shown at the top of each bar.
2 ros1突变体在调节WUS表达中部分阻断超氧化物信号传导。通过qRT-PCR测量有或没有MV处理的Col-0和ros1-4幼苗中WUS的表达水平,并对每个样品进行5个生物学重复。数据显示为两尾学生t检验的平均值±s.d.,P值显示在每个条的顶部。
The error bars indicate the highest and lowest values, the box indicates the middle 50%, and the centre line indicates the median, the whiskers indicate the data range within 1.5× the interquartile range, and outliers are not shown.Source dataExtended Data Fig. 3 AtRBOHF regulates superoxide signaling in the stem cell niche.a, b, Expression levels of NDUFS4 (a) and NDUFVI (b) in 7-day-old atrbohF seedlings with 9 biological replicates.
误差线表示最高和最低值,方框表示中间50%,中心线表示中位数,晶须表示四分位间距1.5倍内的数据范围,未显示异常值。来源数据扩展数据图3 AtRBOHF调节干细胞生态位中的超氧化物信号传导。a,b,7日龄AtRBOHF幼苗中NDUFS4(a)和NDUFVI(b)的表达水平,具有9个生物学重复。
c, Ratio of the first pair of true leaves in 7-day-old wild-type Col-0, atrbohF, ros1-4 and atrbohF ros1-4 seedlings. Three biological replicates were performed, with eac.
c、 7日龄野生型Col-0,atrbohF,ros1-4和atrbohF ros1-4幼苗中第一对真叶的比例。用eac进行了三次生物学重复。
Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01737-8Download citationReceived: 31 August 2023Accepted: 20 August 2024Published: 12 September 2024DOI: https://doi.org/10.1038/s41589-024-01737-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Chem Biol(2024)。https://doi.org/10.1038/s41589-024-01737-8Download引文接收日期:2023年8月31日接收日期:2024年8月20日发布日期:2024年9月12日OI:https://doi.org/10.1038/s41589-024-01737-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供