EN
登录

突破性的管状支架显著增强关键尺寸颅骨缺损的骨再生

Groundbreaking Tubular Scaffolds Significantly Enhance Bone Regeneration of Critical-Sized Skull Defects

HospiMedica 等信源发布 2024-09-12 22:43

可切换为仅中文


Critical-sized bone defects present a major challenge in the medical field. Traditional treatments like autografts and allografts face limitations due to donor shortages, mismatches in graft sizes, and immune rejection, making their widespread application difficult. Bone tissue engineering, which combines cells with biomaterials, offers a promising alternative.

临界尺寸的骨缺损是医学领域的主要挑战。由于供体短缺,移植物大小不匹配和免疫排斥反应,自体移植物和同种异体移植物等传统治疗方法面临局限性,使其难以广泛应用。骨组织工程将细胞与生物材料结合在一起,提供了一种有前途的替代方案。

Adipose-derived stem cells (ADSCs) have gained attention in bone regeneration due to their easy accessibility and strong potential for osteogenic differentiation. However, directly injecting ADSCs results in a short survival time, while combining them with scaffold materials greatly improves their retention and bone regeneration performance in vivo.

脂肪干细胞(ADSCs)由于其易于获得和成骨分化的强大潜力而在骨再生中受到关注。。

Techniques like electrospinning and 3D printing are currently used to create scaffolds that mimic bone, significantly enhancing bone regeneration. Adding chemical signals such as growth factors to the physical properties of scaffolds can further promote ADSCs’ osteogenic differentiation. Despite these advances, challenges remain in replicating the hierarchical structure of bone, highlighting the need for further optimization of scaffold designs and combination strategies to improve clinical outcomes in bone regeneration..

静电纺丝和3D打印等技术目前用于创建模仿骨骼的支架,从而显着增强骨骼再生。向支架的物理性质中添加生长因子等化学信号可以进一步促进ADSCs的成骨分化。尽管取得了这些进展,但在复制骨骼的层次结构方面仍然存在挑战,这突出表明需要进一步优化支架设计和组合策略,以改善骨再生的临床结果。。

Researchers from the School of Biomedical Engineering at Sun Yat-sen University (Guangzhou, China) have developed innovative tubular scaffolds made from electrospun membranes that significantly enhance bone regeneration in critical skull defects. These scaffolds, designed to mimic natural bone structures, create an optimal environment for adipose-derived stem cells (rADSCs), accelerating the healing process.

中山大学生物医学工程学院(中国广州)的研究人员开发了由电纺膜制成的创新管状支架,可显着增强关键颅骨缺损的骨再生。这些支架旨在模拟天然骨骼结构,为脂肪干细胞(rADSCs)创造最佳环境,加速愈合过程。

By incorporating advanced materials like polycaprolactone, poly(lactic-co-glycolic acid) (PLGA), and nano-hydroxyapatite, the researchers achieved impressive results in both lab and animal studies, paving the way for novel treatments in bone defect repair. This study represents a significant advancement in tissue engineering and regenerative medicine..

通过结合聚己内酯,聚(乳酸-共-乙醇酸)(PLGA)和纳米羟基磷灰石等先进材料,研究人员在实验室和动物研究中取得了令人印象深刻的结果,为骨缺损修复的新疗法铺平了道路。这项研究代表了组织工程和再生医学的重大进步。。

The researchers used electrospinning technology to develop multilayer composite nanofibrous tubular scaffolds that effectively mimic bone structures and provide an ideal microenvironment for rADSCs, promoting bone regeneration. Both in vitro and in vivo experiments demonstrated that these fibrous membranes hold great potential for treating bone defects, offering a promising approach to bone regeneration.

研究人员利用静电纺丝技术开发了多层复合纳米纤维管状支架,可有效模拟骨骼结构,为rADSCs提供理想的微环境,促进骨骼再生。体外和体内实验均表明,这些纤维膜具有治疗骨缺损的巨大潜力,为骨再生提供了一种有前途的方法。

Future studies should further explore the fabrication of fibrous membrane scaffolds and the mechanisms by which loaded MSCs enhance bone regeneration..

未来的研究应该进一步探索纤维膜支架的制造以及负载的MSC增强骨再生的机制。。

Related Links:

相关链接:

Sun Yat-sen University

中山大学

Visit expo >

参观世博会>

Gold Member

黄金会员

SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)

SARS-CoV-2/甲型流感/乙型流感/呼吸道合胞病毒样本回答测试SARS-CoV-2/甲型流感/乙型流感/呼吸道合胞病毒盒(CE-IVD)

Flocked Fiber Swabs Puritan® patented HydraFlock®

植绒纤维棉签Puritan®专利HydraFlock®

New

新建

Central Monitoring System Envoy Plus

中央监控系统特使升级版

New

新建

Endoscopy Display E150

内窥镜检查显示器E150