EN
登录

新皮质祖细胞中BRN1和BRN2的保守转录调控驱动哺乳动物神经规范和新皮质扩张

Conserved transcriptional regulation by BRN1 and BRN2 in neocortical progenitors drives mammalian neural specification and neocortical expansion

Nature 等信源发布 2024-09-14 12:34

可切换为仅中文


AbstractThe neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution.

摘要由于物种间神经元亚型的数量和多样性存在巨大差异,哺乳动物新皮层的大小和复杂性各不相同。细胞多样性的增加与新皮层祖细胞库的扩大以及大脑进化过程中间接神经发生的出现相平行。

The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis.

控制这些生物过程并在神经系统疾病中被破坏的分子途径在很大程度上仍然未知。在这里,我们显示转录因子BRN1和BRN2在新皮层祖细胞中具有进化保守功能,以控制其增殖能力以及从直接神经发生到间接神经发生的转换。

Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution..

对小鼠和雪貂的功能研究表明,BRN1/2与NOTCH和原发性小头畸形基因协同作用,以调节祖细胞的行为。对来自转基因猕猴的转录组学数据的分析提供了证据,表明这些分子途径在非人灵长类动物中是保守的。因此,我们的研究结果表明,BRN1/2是新皮层祖细胞中基因表达程序的中枢调节因子,对于确定进化过程中大脑的大小至关重要。。

IntroductionThe mammalian neocortex differs vastly in size and complexity between species1,2. This cellular diversity is associated with differences in the complexity of the progenitor pools that generate cortical neurons2,3,4,5,6, yet the mechanisms that lead to an increase in brain size during evolution and are disrupted in disease remain largely unknown.

引言哺乳动物新皮层的大小和复杂性在物种之间差异很大1,2。这种细胞多样性与产生皮质神经元的祖细胞池的复杂性差异有关2,3,4,5,6,然而导致进化过程中大脑大小增加并在疾病中被破坏的机制仍然很大程度上未知。

Defects in progenitor behavior have been associated to diverse neurodevelopmental disorders including microcephaly7,8,9. Mutations in genes linked to primary microcephaly, the most severe form of the disease, affect molecular pathways that regulate cell-cycle and progenitor proliferation7,9. Thus, an understanding of cortical progenitor diversity and of the mechanisms by which these progenitors self-renew and differentiate is critical to understand brain evolution and the defects in progenitor behavior that lead to neurological and psychiatric disorders.

祖细胞行为缺陷与多种神经发育障碍有关,包括小头畸形7,8,9。与原发性小头畸形(该疾病最严重的形式)相关的基因突变会影响调节细胞周期和祖细胞增殖的分子途径7,9。因此,了解皮质祖细胞的多样性以及这些祖细胞自我更新和分化的机制对于理解大脑进化以及导致神经和精神疾病的祖细胞行为缺陷至关重要。

Cortical progenitors have been broadly divided into two classes named apical progenitors (APs) that undergo mitosis in the ventricular zone (VZ), and basal progenitors (BPs) that undergo mitosis in the subventricular zone (SVZ)10,11,12,13,14. APs engage in two modes of neurogenesis termed direct and indirect neurogenesis.

皮质祖细胞大致分为两类,即在心室区(VZ)经历有丝分裂的顶端祖细胞(AP)和在心室下区(SVZ)经历有丝分裂的基底祖细胞(BP)10,11,12,13,14。AP参与两种神经发生模式,称为直接和间接神经发生。

During direct neurogenesis, APs divide asymmetrically to self-renew and to generate one neuron, while during indirect neurogenesis, APs divide asymmetrically to self-renew and generate a BP that then gives rise to neurons10,11,12,13,14. Indirect neurogenesis generates neurons for all cortical layers but is the predominant neurogenic mode that produces upper layer projection neurons (ULNs)11,12,15,16,17,18.

在直接神经发生过程中,AP不对称分裂以自我更新并产生一个神经元,而在间接神经发生过程中,AP不对称分裂以自我更新并产生BP,然后产生神经元10,11,12,13,14。间接神经发生产生所有皮质层的神经元,但是产生上层投射神经元(ULN)11,12,15,16,17,18的主要神经发生模式。

The number and complexity of ULNs have dramatically increased in gyrencephalic brains, and indirect neurogenesis is thus intricately linked to ne.

脑回大脑中ULN的数量和复杂性急剧增加,因此间接神经发生与ne错综复杂地联系在一起。

Data availability

数据可用性

The raw single cell RNA sequencing datasets generated in this study have been deposited in the GEO repository database under the accession code GSE229129. Raw single cell RNA sequencing datasets for the monkey data24 are deposited in the SRA repository database under the accession code SRP366952. All the other data generated in this study are provided in the Supplementary Information and Supplementary Data files. Source data are provided with this paper..

本研究中产生的原始单细胞RNA测序数据集已以登录号GSE229129保存在GEO存储库数据库中。猴子数据24的原始单细胞RNA测序数据集以登录号SRP366952保存在SRA存储库数据库中。本研究中产生的所有其他数据均在补充信息和补充数据文件中提供。本文提供了源数据。。

Material availability

材料可用性

All data are available in the main text or the supplementary information. Correspondence and requests for materials should be addressed to U.M.

所有数据均可在正文或补充信息中找到。信件和材料要求应寄给U.M。

Code availability

代码可用性

The code for the scRNAsequencing analysis presented in this manuscript is available on: https://doi.org/10.5281/zenodo.12582808 (https://doi.org/10.5281/zenodo.12582809).

本手稿中提供的scRNA测序分析代码可在以下网站获得:https://doi.org/10.5281/zenodo.12582808(笑声)(https://doi.org/10.5281/zenodo.12582809)。

ReferencesLodato, S. & Arlotta, P. Generating Neuronal Diversity in the Mammalian Cerebral Cortex. Annu. Rev. Cell Dev. Biol. 31, 699–720 (2015).Article

参考文献Lodato,S。&Arlotta,P。在哺乳动物大脑皮层中产生神经元多样性。年。Rev.Cell Dev.Biol。31699-720(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Borrell, V. & Reillo, I. Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev. Neurobiol. 72, 955–971 (2012).Article

Borrell,V。&Reillo,I。神经干细胞在大脑皮层发育和进化中的新兴作用。神经生物学发展。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kalebic, N. & Huttner, W. B. Basal Progenitor Morphology and Neocortex Evolution. Trends Neurosci. 43, 843–853 (2020).Article

Kalebic,N。&Huttner,W.B。基底祖细胞形态和新皮层进化。趋势神经科学。43843-853(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Pinson, A. & Huttner, W. B. Neocortex expansion in development and evolution—from genes to progenitor cell biology. Curr. Opin. Cell Biol. 73, 9–18 (2021).Article

Pinson,A。&Huttner,W.B。新皮层在从基因到祖细胞生物学的发育和进化中的扩展。货币。奥平。细胞生物学。73,9-18(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Pebworth, M. P., Ross, J., Andrews, M., Bhaduri, A. & Kriegstein, A. R. Human intermediate progenitor diversity during cortical development. Proc. Natl Acad. Sci. USA 118, 1–10 (2021).Article

Pebworth,M.P.,Ross,J.,Andrews,M.,Bhaduri,A。&Kriegstein,A.R。皮质发育过程中的人类中间祖细胞多样性。程序。国家科学院。科学。美国118,1-10(2021)。文章

Google Scholar

谷歌学者

Cárdenas, A. et al. Evolution of Cortical Neurogenesis in Amniotes Controlled by Robo Signaling Levels. Cell 174, 590–606.e21 (2018).Article

Cárdenas,A。等人。由机器人信号水平控制的羊膜皮质神经发生的进化。细胞174590-606.e21(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jayaraman, D. et al. The genetics of primary microcephaly. Annu Rev. Genomics Hum. Genet 19, 177–200 (2018).Article

Jayaraman,D。等人。原发性小头畸形的遗传学。Annu Rev.Genomics Hum。Genet 19177-200(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Villalba, A., Götz, M. & Borrell, V. The regulation of cortical neurogenesis. Curr. Top. Dev. Biol. 142, 1–66 (2021).Article

Villalba,A.,Götz,M。&Borrell,V。皮质神经发生的调节。货币。顶部。开发生物。142,1-66(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Klingler, E., Francis, F., Jabaudon, D. & Cappello, S. Mapping the molecular and cellular complexity of cortical malformations. Science (1979) 371, eaba4517 (2021).

Klingler,E.,Francis,F.,Jabaudon,D。&Cappello,S。绘制皮质畸形的分子和细胞复杂性。《科学》(1979)371,eaba4517(2021)。

Google Scholar

谷歌学者

Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).Article

Noctor,S.C.,Flint,A.C.,Weissman,T.A.,Dammerman,R.S。&Kriegstein,A.R。源自放射状神经胶质细胞的神经元在新皮层中建立放射状单位。自然409714-720(2001)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).Article

Haubensak,W.,Attardo,A.,Denk,W。&Huttner,W.B。神经元出现在早期哺乳动物端脑的基底神经上皮中:这是神经发生的主要部位。程序。国家科学院。科学。美国1013196-3201(2004)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Noctor, S. C., Martínez-Cerdeño, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).Article

Noctor,S.C.,Martínez-Cerdeño,V.,Ivic,L。&Kriegstein,A.R。皮质神经元出现在对称和不对称的分裂区,并通过特定阶段迁移。自然神经科学。7136-144(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).Article

Miyata,T。等人。表面分裂和非表面分裂皮质祖细胞的不对称产生。发展1313133-3145(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).Article

Hansen,D.V.,Lui,J.H.,Parker,P.R.L。和Kriegstein,A.R。人类新皮层脑室下区的神经源性放射状胶质细胞。《自然》464554–561(2010)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Tarabykin, V., Stoykova, A., Usman, N. & Gruss, P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128, 1983–1993 (2001).Article

如Svet1基因表达所示,Tarabykin,V.,Stoykova,A.,Usman,N。&Gruss,P。皮质上层神经元来自脑室下区。发展1281983-1993(2001)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kowalczyk, T. et al. Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb. Cortex 19, 2439–2450 (2009).Article

Kowalczyk,T。等人。中间神经元祖细胞(基底祖细胞)产生大脑皮层所有层的锥体投射神经元。塞雷布。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vasistha, N. A. et al. Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb. Cortex 25, 3290–3302 (2015).Article

Vasistha,N.A。等人。发育中的小鼠大脑中表达Tbr2的祖细胞的皮质和克隆贡献。塞雷布。皮质253290-3302(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Huilgol, D. et al. Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex. Neuron 111, 2557–2569.e4 (2023).Article

Huilgol,D。等人。直接和间接神经发生在大脑皮层产生不同谷氨酸能投射神经元类型的马赛克。神经元1112557–2569.e4(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reillo, I., De Juan Romero, C., García-Cabezas, M. Á. & Borrell, V. A Role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674–1694 (2011).Article

莱罗,I.,德胡安·罗梅罗,C.,加西亚·卡贝萨斯,M.&Borrell,V。中间放射状胶质细胞在哺乳动物大脑皮层切向扩张中的作用。塞雷布。皮质211674-1694(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Molnár, Z. et al. New insights into the development of the human cerebral cortex. J. Anat. 235, 432–451 (2019).Article

Molnár,Z.等人。对人类大脑皮层发育的新见解。J、 阿纳特。235432-451(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sugitani, Y. et al. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev. 16, 1760–1765 (2002).Article

Sugitani,Y。等人,Brn-1和Brn-2在小鼠新皮层神经元的产生和定位中起着至关重要的作用。Genes Dev.161760–1765(2002)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McEvilly, R. J., Ortiz de Diaz, M., Schonemann, M. D., Hooshmand, F. & Rosenfeld, M. G. Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295, 1528–1532 (2002).Article

McEvilly,R.J.,Ortiz de Diaz,M.,Schonemann,M.D.,Hooshmand,F。&Rosenfeld,M.G。通过POU结构域因子对皮质神经元迁移的转录调控。科学2951528-1532(2002)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Dominguez, M. H., Ayoub, A. E. & Rakic, P. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb. Cortex 23, 2632–2643 (2013).Article

Dominguez,M.H.,Ayoub,A.E。&Rakic,P.POU-III转录因子(Brn1,Brn2和Oct6)影响大脑皮层上层细胞的神经发生,分子身份和迁移目的地。塞雷布。皮质232632-2643(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhu, X. et al. BRN2 as a key gene drives the early primate telencephalon development. Sci. Adv. 8, 1–17 (2022).Article

Zhu,X。等人。BRN2作为关键基因驱动灵长类动物端脑的早期发育。科学。Adv.8,1-17(2022年)。文章

Google Scholar

谷歌学者

Jaegle, M. et al. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev. 17, 1380–1391 (2003).Article

Jaegle,M。等人。POU蛋白Brn-2和Oct-6在雪旺氏细胞发育中具有重要功能。Genes Dev.171380–1391(2003)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gorski, J. A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309–6314 (2002).Article

Gorski,J.A。等人。在表达Emx1的谱系中产生皮质兴奋性神经元和神经胶质,但不产生GABA能神经元。J、 神经科学。226309–6314(2002)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Greig, L. C., Woodworth, M. B., Galazo, M. J., Padmanabhan, H. & Macklis, J. D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 14, 755–769 (2013).Article

Greig,L.C.,Woodworth,M.B.,Galazo,M.J.,Padmanabhan,H。&Macklis,J.D。新皮层投射神经元规格,发育和多样性的分子逻辑。神经科学杂志。14755-769(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

SK, M. & CE, K. Cell cycle dependence of laminar determination in developing neocortex. Science 254, 282–285 (1991).Article

SK,M。&CE,K。发育中的新皮层层流测定的细胞周期依赖性。科学254282-285(1991)。文章

Google Scholar

谷歌学者

Frantz, G. D. et al. Restriction of Late Cerebral Cortical Progenitors to an Upper-Layer Fate. Neuron 17, 55–61 (1996).Article

Frantz,G.D.等人。晚期大脑皮层祖细胞对上层命运的限制。神经元17,55-61(1996)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Desai, A. R. & McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872 (2000).Article

Desai,A.R。&McConnell,S.K。在大脑皮层发育过程中神经祖细胞对命运潜力的进行性限制。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Telley, L. et al. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443–1446 (2016).Article

Telley,L。等人。顺序转录波指导小鼠新皮层新生神经元的分化。科学3511443-1446(2016)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Telley, L. et al. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 364, eaav2522 (2019).Article

Telley,L.等人。发育中的新皮层中顶端祖细胞及其子神经元的时间模式。科学364,eaav2522(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Moreau, M. X., Saillour, Y., Cwetsch, A. W., Pierani, A. & Causeret, F. Single-cell transcriptomics of the early developing mouse cerebral cortex disentangle the spatial and temporal components of neuronal fate acquisition. Development 148, dev197962 (2021).Article

Moreau,M.X.,Saillour,Y.,Cwetsch,A.W.,Pierani,A。&Causeret,F。早期发育的小鼠大脑皮层的单细胞转录组学解开了神经元命运获取的时空成分。发展148,dev197962(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Di Bella, D. J. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021).Article

Di Bella,D.J.等人,《小鼠大脑皮层细胞多样化的分子逻辑》。自然595554-559(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zimmer, C., Tiveron, M. C., Bodmer, R. & Cremer, H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb. Cortex 14, 1408–1420 (2004).Article

Zimmer,C.,Tiveron,M.C.,Bodmer,R。&Cremer,H。Cux2表达的动力学表明,SVZ前体的早期池注定会成为上层皮层神经元。塞雷布。皮质141408-1420(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Franco, S. J. et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337, 746–749 (2012).Article

Franco,S.J.等人。哺乳动物大脑皮层中命运限制的神经祖细胞。科学337746-749(2012)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gil-Sanz, C. et al. Lineage Tracing Using Cux2-Cre and Cux2-CreERT2 Mice. Neuron 86, 1091–1099 (2015).Article

Gil Sanz,C。等人。使用Cux2-Cre和Cux2-CreERT2小鼠进行谱系追踪。神经元861091-1099(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

García-Moreno, F. & Molnár, Z. Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain. Proc. Natl Acad. Sci. USA 112, E5058–E5067 (2015).Article

García-Moreno,F。&Molnár,Z。禽类大脑中不存在有助于call体神经元发育的早期放射状神经胶质祖细胞的子集。程序。国家科学院。科学。美国112,E5058–E5067(2015)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zahr, S. K. et al. A Translational Repression Complex in Developing Mammalian Neural Stem Cells that Regulates. Neuronal Specif. Neuron 97, 520–537.e6 (2018).

Zahr,S.K.等人。发育中的哺乳动物神经干细胞中的翻译抑制复合物,可调节。神经元特异性。神经元97520–537.e6(2018)。

Google Scholar

谷歌学者

Zheng, S. C. et al. Universal prediction of cell-cycle position using transfer learning. Genome Biol. 23, 1–27 (2022).Article

Zheng,S.C.等人。使用转移学习对细胞周期位置进行通用预测。基因组生物学。23,1-27(2022)。文章

Google Scholar

谷歌学者

Bertrand, N., Castro, D. S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).Article

Bertrand,N.,Castro,D。S。&Guillemot,F。Proneural基因和神经细胞类型的规范。神经科学杂志。3517-530(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Britz, O. et al. A role for proneural genes in the maturation of cortical progenitor cells. Cereb. Cortex 16, i138–i151 (2006).Article

Britz,O.等人。前脑基因在皮质祖细胞成熟中的作用。塞雷布。皮质16,i138–i151(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chou, R. H., Yu, Y. L. & Hung, M. C. The roles of EZH2 in cell lineage commitment. Am. J. Transl. Res 3, 243–250 (2011).PubMed

Chou,R.H.,Yu,Y.L。&Hung,M.C。EZH2在细胞谱系承诺中的作用。美国J.Transl。第3243-250号决议(2011年)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nieto, M. et al. Expression of Cux-1 and Cux-2 in the subventricular zone and upper layers II-IV of the cerebral cortex. J. Comp. Neurol. 479, 168–180 (2004).Article

Nieto,M.等人。大脑皮层脑室下区和上层II-IV中Cux-1和Cux-2的表达。J、 公司。神经病学。479168-180(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cubelos, B. et al. Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cereb. Cortex 18, 1758–1770 (2008).Article

Cubelos,B。等人Cux-2控制皮层脑室下区神经元中间前体的增殖。塞雷布。皮质181758-1770(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in Notch Signaling Regulate Maintenance of Neural Progenitors. Neuron 58, 52–64 (2008).Article

Shimojo,H.,Ohtsuka,T。&Kageyama,R。Notch信号传导中的振荡调节神经祖细胞的维持。神经元58,52-64(2008)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Imayoshi, I. et al. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342, 1203–1208 (2013).Article

Imayoshi,I。等人。振荡控制决定小鼠神经祖细胞多能性和命运的因素。科学3421203-1208(2013)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Borrell, V. et al. Slit/Robo Signaling Modulates the Proliferation of Central Nervous System Progenitors. Neuron 76, 338–352 (2012).Article

Borrell,V。等人。Slit/Robo信号调节中枢神经系统祖细胞的增殖。神经元76338-352(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Castro, D. S. et al. Proneural bHLH and Brn Proteins Coregulate a Neurogenic Program through Cooperative Binding to a Conserved DNA Motif. Dev. Cell 11, 831–844 (2006).Article

Castro,D.S。等人,Proneural bHLH和Brn蛋白通过与保守的DNA基序的协同结合来共同调节神经原性程序。Dev.Cell 11831–844(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Johnson, M. B. et al. Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size letter. Nature 556, 370–375 (2018).Article

Johnson,M.B.等人Aspm基因敲除雪貂揭示了控制大脑皮层大小字母的进化机制。自然556370-375(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marinopoulou, E. et al. HES1 protein oscillations are necessary for neural stem cells to exit from quiescence. iScience 24, 103198 (2021).Article

Marinopoulou,E。等人。HES1蛋白振荡是神经干细胞从静止状态退出所必需的。iScience 24103198(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baek, J. H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T. & Kageyama, R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133, 2467–2476 (2006).Article

Baek,J.H.,Hatakeyama,J.,Sakamoto,S.,Ohtsuka,T。&Kageyama,R。持续和高水平的Hes1表达调节发育中中枢神经系统的边界形成。发展1332467-2476(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Saade, M., Morin, X., Onorati, M., Wilsch-Bräuninger, M. & Huttner, W. B. Primary Cilia and Centrosomes in Neocortex Development. Front. Neurosci. 15, 755867 (2021).Article

Saade,M.,Morin,X.,Onorati,M.,Wilsch-Bräuninger,M。&Huttner,W.B。新皮层发育中的初级纤毛和中心体。正面。神经科学。15755867(2021)。文章

Google Scholar

谷歌学者

Li, S., Hannenhalli, S. & Ovcharenko, I. De novo human brain enhancers created by single-nucleotide mutations. Sci. Adv. 9, eadd2911 (2023).Article

Li,S.,Hannenhalli,S。&Ovcharenko,I。由单核苷酸突变产生的从头人脑增强子。科学。广告9,eadd2911(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Levine, M. S. et al. Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals. Dev. Cell 40, 313–322.e5 (2017).Article

Levine,M.S.等人。中心体扩增足以促进哺乳动物的自发性肿瘤发生。Dev.Cell 40313–322.e5(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moyer, T. C. & Holland, A. J. PLK4 promotes centriole duplication by phosphorylating STIL to link the procentriole cartwheel to the microtubule wall. Elife 8, e46054 (2019).Article

Moyer,T.C。&Holland,A.J。PLK4通过磷酸化STIL来促进中心粒复制,从而将中心粒车轮连接到微管壁。Elife 8,e46054(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tang, X., Falls, D. L., Li, X., Lane, T. & Luskin, M. B. Antigen-retrieval procedure for bromodeoxyuridine immunolabeling with concurrent labeling of nuclear DNA and antigens damaged by HCl pretreatment. J. Neurosci. 27, 5837–5844 (2007).Article

Tang,X.,Falls,D.L.,Li,X.,Lane,T。&Luskin,M.B。用于溴脱氧尿苷免疫标记的抗原修复程序,同时标记由HCl预处理损伤的核DNA和抗原。J、 神经科学。275837–5844(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, F. et al. RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagnostics 14, 22–29 (2012).Article

。J、 分子诊断学14,22-29(2012)。文章

Google Scholar

谷歌学者

Long, J. Z., Lackan, C. S. & Hadjantonakis, A. K. Genetic and spectrally distinct in vivo imaging: Embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol. 5, 1–11 (2005).Article

Long,J.Z.,Lackan,C.S。&Hadjantonakis,A.K。遗传和光谱不同的体内成像:胚胎干细胞和广泛表达单体红色荧光蛋白的小鼠。BMC生物技术。5,1-11(2005)。文章

Google Scholar

谷歌学者

Matsuda, T. & Cepko, C. L. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl Acad. Sci. USA 104, 1027–1032 (2007).Article

Matsuda,T。&Cepko,C.L。通过体内电穿孔引入的转基因的控制表达。程序。国家科学院。科学。。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).Article

Schroeter,E.H.,Kisslinger,J.A。&Kopan,R。Notch-1信号传导需要配体诱导的细胞内结构域的蛋白水解释放。自然393382-386(1998)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Kim, D. S., Matsuda, T. & Cepko, C. L. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J. Neurosci. 28, 7748–7764 (2008).Article

Kim,D.S.,Matsuda,T。&Cepko,C.L。核心配对型和含有POU同源结构域的转录因子程序驱动视网膜双极细胞基因表达。J、 神经科学。287748-7764(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).Article

Saito,T。&Nakatsuji,N。使用体内电穿孔将有效的基因转移到胚胎小鼠大脑中。开发生物。240237-246(2001)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kawasaki, H., Iwai, L. & Tanno, K. Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation. Mol. Brain 5, 24 (2012).Article

川崎,H.,岩井,L。&Tanno,K。使用子宫内电穿孔对gyrencephalic食肉动物进行快速有效的遗传操作。Mol.Brain 5,24(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Urban, S. et al. A Brn2-Zic1 axis specifies the neuronal fate of retinoic-acid-treated embryonic stem cells. J. Cell Sci. 128, 2303–2318 (2015).Article

Urban,S。等人,Brn2-Zic1轴指定了视黄酸处理的胚胎干细胞的神经元命运。J、 细胞科学。1282303-2318(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).Article

Cao,J。等人。哺乳动物器官发生的单细胞转录景观。自然566496-502(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).Article

Haghverdi,L.,Lun,A.T.L.,Morgan,M.D。和Marioni,J.C。通过匹配相互最近的邻居来校正单细胞RNA测序数据中的批次效应。美国国家生物技术公司。36421-427(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–47 (2019).Article

Becht,E。等人。使用UMAP可视化单细胞数据的降维。美国国家生物技术公司。37,38-47(2019)。文章

Google Scholar

谷歌学者

Molyneaux, B. J. et al. DeCoN: Genome-wide analysis of invivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron 85, 275–288 (2015).Article

Molyneaux,B.J.等人,DeCoN:新皮层锥体神经元命运选择过程中活体转录动力学的全基因组分析。神经元85275-288(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank members of the Müller and Kolodkin laboratories for suggestions, reagents and technical help; Alex Kolodkin, Jakub Ziak and Cristina Gil-Sanz for critical comments on the manuscript; Caiying Guo for help in generating the Brn1 floxed mice; Amanda Maxwell, Caroline Garrett and Eric Hutchinson for help with ferrets; Michele Pucak for imaging assistance; Linda Orzolek and Tyler J.

下载参考文献致谢我们感谢Müller和Kolodkin实验室的成员提供的建议,试剂和技术帮助;Alex Kolodkin,Jakub Ziak和Cristina Gil Sanz对稿件发表了批评意见;郭彩英帮助产生Brn1 floxed小鼠;阿曼达·麦克斯韦、卡罗琳·加勒特和埃里克·哈钦森为雪貂提供帮助;Michele Pucak提供成像帮助;琳达·奥尔佐莱克和泰勒·J。

Creamer for help with scRNAseq; Anna-Katerina Hadjantonakis, Connie Cepko and Raphael Kopan for plasmids; Ryoichiro Kageyama for the HES1 antibody; Andrew Holland for the γ-TUBULIN and Centrin antibodies. We are grateful to Michelle Monroe, Tajma Smith, Kaiping Zhang, Femi Cleola Villamor and Trinity Walker for assistance with mouse maintenance and genotyping.

Creamer帮助使用scRNAseq;Anna Katerina Hadjantonakis,Connie Cepko和Raphael Kopan用于质粒;Ryoichiro Kageyama用于HES1抗体;Andrew Holland用于γ-微管蛋白和中心蛋白抗体。我们感谢Michelle Monroe,Tajma Smith,张开平,Femi Cleola Villamor和Trinity Walker在小鼠维护和基因分型方面的帮助。

National Institutes of Health grant R01HG012357 and RF1MH121539 (UM); Brain Research Foundation grant BRFSG-2022-02 (B.-I.B).Author informationAuthors and AffiliationsThe Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USASoraia Barão, Yijun Xu, José P.

美国国立卫生研究院拨款R01HG012357和RF1MH121539(UM);大脑研究基金会拨款BRFSG-2022-02(B.-I.B)。。

Llongueras, Rachel Vistein, Loyal Goff, Kristina J. Nielsen, Genevieve Stein-O’Brien & Ulrich MüllerDepartment of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06032, USAByoung-Il BaeNorthwestern University, Feinberg School of Medicine, Department of Pharmacology, Chicago, IL, 60611, USARichard S.

Llongueras,Rachel Vistein,Loyalty Goff,Kristina J.Nielsen,Genevieve Stein-O'Brien&Ulrich Müller康涅狄格大学医学院神经科学系,法明顿,康涅狄格州,06032,美国伊利诺伊州芝加哥市范伯格医学院,美国理查德·S。

SmithDivision of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USAChristopher A. WalshHoward Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USAChristopher A. WalshAuthorsSoraia BarãoView author publicationsY.

马萨诸塞州波士顿哈佛医学院波士顿儿童医院曼顿孤儿病研究中心遗传学和基因组学史密斯分部,02115,美国马萨诸塞州波士顿哈佛医学院波士顿儿童医院克里斯托弗·沃尔什·霍华德·休斯医学研究所,02115,美国克里斯托弗·A·沃尔沙索拉亚·巴若维作者出版物。

PubMed Google ScholarYijun XuView author publicationsYou can also search for this author in

PubMed Google ScholarYijun XuView作者出版物您也可以在

PubMed Google ScholarJosé P. LlonguerasView author publicationsYou can also search for this author in

PubMed Google ScholarJoséP.Llongerasview作者出版物您也可以在

PubMed Google ScholarRachel VisteinView author publicationsYou can also search for this author in

PubMed Google ScholarRachel VisteinView作者出版物您也可以在

PubMed Google ScholarLoyal GoffView author publicationsYou can also search for this author in

PubMed Google ScholarLoyal GoffView作者出版物您也可以在

PubMed Google ScholarKristina J. NielsenView author publicationsYou can also search for this author in

PubMed Google ScholarKristina J.NielsenView作者出版物您也可以在

PubMed Google ScholarByoung-Il BaeView author publicationsYou can also search for this author in

PubMed Google ScholarByoung Il BaeView作者出版物您也可以在

PubMed Google ScholarRichard S. SmithView author publicationsYou can also search for this author in

PubMed Google ScholarChristopher A. WalshView author publicationsYou can also search for this author in

PubMed Google ScholarChristopher A.WalshView作者出版物您也可以在

PubMed Google ScholarGenevieve Stein-O’BrienView author publicationsYou can also search for this author in

PubMed Google ScholarUlrich MüllerView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsConceptualization: S.B., U.M.; methodology: S.B., G.S.O’.B., Y.X., L.G., K.J.N., R.V., U.M.; investigation: S.B., Y.X., J.P.L., G.S.O’.B., U.M.; validation: S.B., Y.X., J.P.L., G.S.O’.B., U.M.; visualization: S.B.; formal analysis: S.B., Y.X., J.P.L., G.S.O’.B., U.M.; data curation: S.B., Y.X., J.P.L., G.S.O’.B.; resources: K.J.N., B.-I.B, R.S.S., C.A.W., U.M.; supervision: U.M.; project administration: U.M.; funding acquisition: U.M.; writing - original draft: S.B., U.M.; writing - review & editing: S.B., Y.X., J.P.L., L.G., K.J.N., R.V., B.-I.B., R.S.S., C.A.W., G.S.O’.B., U.M.Corresponding authorsCorrespondence to.

PubMed谷歌学术贡献概念:S.B.,U.M。;方法:S.B.,G.S.O'。B、 ,Y.X.,L.G.,K.J.N.,R.V.,U.M。;调查:S.B.,Y.X.,J.P.L.,G.S.O'。B、 ,美国。;验证:S.B.,Y.X.,J.P.L.,G.S.O'。B、 ,美国。;可视化:S.B。;形式分析:S.B.,Y.X.,J.P.L.,G.S.O'。B、 ,美国。;数据管理:S.B.,Y.X.,J.P.L.,G.S.O'。B、 。;资源:K.J.N.,B.-I.B,R.S.S.,C.A.W.,U.M。;监督:U.M。;项目管理:U.M。;资金获取:U.M。;写作-原稿:S.B.,U.M。;写作-评论与编辑:S.B.,Y.X.,J.P.L.,L.G.,K.J.N.,R.V.,B.-I.B.,R.S.S.,C.A.W.,G.S.O。B、 。

Soraia Barão or Ulrich Müller.Ethics declarations

索拉雅男爵或乌尔里希·穆勒。伦理声明

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Tianqing Li and the other, anonymous, reviewers for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢李天青和其他匿名审稿人对这项工作的同行评审所做的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Reporting SummarySource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3补充数据4报告摘要源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleBarão, S., Xu, Y., Llongueras, J.P. et al. Conserved transcriptional regulation by BRN1 and BRN2 in neocortical progenitors drives mammalian neural specification and neocortical expansion.

转载和许可本文引用本文Barão,S.,Xu,Y.,Llongeras,J.P。等人。BRN1和BRN2在新皮层祖细胞中的保守转录调控驱动哺乳动物的神经规范和新皮层扩张。

Nat Commun 15, 8043 (2024). https://doi.org/10.1038/s41467-024-52443-xDownload citationReceived: 17 November 2023Accepted: 26 August 2024Published: 14 September 2024DOI: https://doi.org/10.1038/s41467-024-52443-xShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》158043(2024)。https://doi.org/10.1038/s41467-024-52443-xDownload引文接收日期:2023年11月17日接收日期:2024年8月26日发布日期:2024年9月14日OI:https://doi.org/10.1038/s41467-024-52443-xShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。