EN
登录

设计TadA直系同源胞嘧啶碱基编辑器,无基序偏好和腺苷活性限制

Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation

Nature 等信源发布 2024-09-16 15:54

可切换为仅中文


AbstractThe engineered TadA variants used in cytosine base editors (CBEs) present distinctive advantages, including a smaller size and fewer off-target effects compared to cytosine base editors that rely on natural deaminases. However, the current TadA variants demonstrate a preference for base editing in DNA with specific motif sequences and possess dual deaminase activity, acting on both cytosine and adenosine in adjacent positions, limiting their application scope.

摘要胞嘧啶碱基编辑器(CBE)中使用的工程化TadA变体具有独特的优势,与依赖天然脱氨酶的胞嘧啶碱基编辑器相比,其尺寸更小,脱靶效应更少。然而,目前的TadA变体表现出对具有特定基序序列的DNA中碱基编辑的偏好,并且具有双重脱氨酶活性,作用于相邻位置的胞嘧啶和腺苷,限制了它们的应用范围。

To address these issues, we employ TadA orthologs screening and multi sequence alignment (MSA)-guided protein engineering techniques to create a highly effective cytosine base editor (aTdCBE) without motif and adenosine deaminase activity limitations. Notably, the delivery of aTdCBE to a humanized mouse model of Duchenne muscular dystrophy (DMD) mice achieves robust exon 55 skipping and restoration of dystrophin expression.

。值得注意的是,将aTdCBE递送至杜兴氏肌营养不良症(DMD)小鼠的人源化小鼠模型可实现强大的外显子55跳跃和肌营养不良蛋白表达的恢复。

Our advancement in engineering TadA ortholog for cytosine editing enriches the base editing toolkits for gene-editing therapy and other potential applications..

我们在设计用于胞嘧啶编辑的TadA直系同源物方面的进步丰富了基因编辑疗法和其他潜在应用的基础编辑工具包。。

IntroductionDNA base editors composed of Cas9 nickase and deaminases can perform specific single base conversion on target sequences without requiring DNA double-stranded breaks1. The main effector domains of the cytosine base editor (CBE) and adenine base editor (ABE) are cytidine and adenine deaminase, catalyzing the base conversion from C·G to T·A and A·T to G·C, respectively.

引言由Cas9切口酶和脱氨酶组成的DNA碱基编辑器可以在不需要DNA双链断裂的情况下对靶序列进行特定的单碱基转化1。胞嘧啶碱基编辑器(CBE)和腺嘌呤碱基编辑器(ABE)的主要效应域是胞苷和腺嘌呤脱氨酶,分别催化从C·G到T·A和A·T到G·C的碱基转化。

Cytidine deaminases derived from proteins such as APOBEC, AID, and CDA naturally possess cytosine deamination activity1,2,3. The adenosine deaminases TadA of ABEs were engineered from tRNA-specific adenosine deaminase for adenosine base editing of DNA4,5. After removing uracil glycosylase inhibitor (UGI) from CBEs, C-to-G base editors (CGBEs) were developed to catalyze the conversion of bases from C.G to T.A6,7.By introducing stop codons (CAA/CAG/CGA to TAA/TAG/TGA), CBEs have shown great potential in the treatment of common diseases such as T-cell acute lymphoblastic leukemia8, Hepatitis B9,10, and acquired immunodeficiency syndrome11.

源自APOBEC,AID和CDA等蛋白质的胞苷脱氨酶天然具有胞嘧啶脱氨活性1,2,3。。从CBE中去除尿嘧啶糖基化酶抑制剂(UGI)后,开发了C-to-G碱基编辑器(CGBE),以催化碱基从C.G到T.A6的转化,7。通过引入终止密码子(CAA/CAG/CGA到TAA/TAG/TGA),CBE在治疗常见疾病如T细胞急性淋巴细胞白血病8,乙型肝炎9,10和获得性免疫缺陷综合征11方面显示出巨大潜力。

Although high on-target DNA editing efficiency can be achieved with traditional CBEs12, they can also exhibit different types of DNA and RNA off-target effects13,14,15,16. Compared to natural cytidine deaminases with high intrinsic single-stranded DNA (ssDNA) affinity, TadA of ABE exhibited undetectable guide-independent off-target effects at DNA and RNA levels17.

虽然传统的CBEs12可以实现高的靶向DNA编辑效率,但它们也可以表现出不同类型的DNA和RNA脱靶效应13,14,15,16。与具有高内在单链DNA(ssDNA)亲和力的天然胞苷脱氨酶相比,ABE的TadA在DNA和RNA水平上表现出不可检测的指导独立的脱靶效应17。

Previous studies reported that the TadA8e variant derived from E. coli TadA exhibited partial cytidine deaminase activity for TC sequences within the editing window18. Recently, various CBEs, including Td-CBEmax and TadCBEd, have been developed by engineering TadA8e into a cytosine deaminase, demonstrating the engineering plasticity of TadA for versatile base editors development19,20,21.

先前的研究报道,源自大肠杆菌TadA的TadA8e变体在编辑窗口内对TC序列表现出部分胞苷脱氨酶活性18。最近,通过将TadA8e工程化为胞嘧啶脱氨酶,已经开发了各种CBE,包括Td-CBEmax和TadCBEd,证明了TadA对多功能基础编辑器开发的工程可塑性19,20,21。

In addition, T.

此外,T。

Data availability

数据可用性

The deep-seq data and RNA-seq data generated in this study have been deposited in the NCBI database under accession code PRJNA1061823. Source data are provided with this paper.

本研究中产生的deep-seq数据和RNA-seq数据已保存在NCBI数据库中,登录号为PRJNA1061823。本文提供了源数据。

Code availability

代码可用性

The scripts and codes used in this manuscript are available at zenodo.org (accession code: 13337534).

本手稿中使用的脚本和代码可在zenodo.org上获得(登录号:13337534)。

ReferencesKomor, A. C. et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).Article

ReferencesKomor,A.C.等人。基因组DNA中靶碱基的可编程编辑,无需双链DNA切割。。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).Article

Nishida,K.等人。使用杂交原核和脊椎动物适应性免疫系统进行靶向核苷酸编辑。科学353,aaf8729(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029–1035 (2016).Article

。自然方法131029-1035(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).Article

Gaudelli,N.M.等人。基因组DNA中A•T到G•C的可编程碱基编辑,无需DNA切割。自然551464-471(2017)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Porto, E. M. et al. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug Discov. 19, 839–859 (2019).Article

Porto,E.M.等人,《基础编辑:进展和治疗机会》。《药物目录》修订版。19839-859(2019)。文章

Google Scholar

谷歌学者

Zhao, D. et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35–40 (2021).Article

Zhao,D。等人。糖基化酶碱基编辑器可以实现C到A和C到G碱基的变化。美国国家生物技术公司。39,35-40(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).Article

Kurt,I.C.等人,CRISPR C-to-G碱基编辑器,用于在人类细胞中诱导靶向DNA转化。美国国家生物技术公司。39,41-46(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chiesa, R. et al. Base-edited CAR7 T cells for relapsed T-Cell acute lymphoblastic leukemia. N. Engl. J. Med. 389, 899–910 (2023).Article

Chiesa,R.等人对复发性T细胞急性淋巴细胞白血病的CAR7 T细胞进行了碱基编辑。N、 英语。J、 医学389899-910(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Smekalova, E. M. et al. Cytosine base editing inhibits hepatitis B virus replication and reduces HBsAg expression in vitro and in vivo. Mol. Ther. Nucleic Acids 35, 102112 (2023).Article

Smekalova,E.M.等人。胞嘧啶碱基编辑抑制乙型肝炎病毒复制并在体外和体内降低HBsAg表达。摩尔热。核酸35102112(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, H. et al. Efficient silencing of hepatitis B virus S gene through CRISPR-mediated base editing. Hepatol. Commun. 6, 1652–1663 (2022).Article

Zhou,H。等人。通过CRISPR介导的碱基编辑有效沉默乙型肝炎病毒S基因。肝脏。Commun公司。61652-1663(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Knipping, F. et al. Disruption of HIV-1 co-receptors CCR5 and CXCR4 in primary human T cells and hematopoietic stem and progenitor cells using base editing. Mol. Ther. 30, 130–144 (2022).Article

Knipping,F。等人。使用碱基编辑破坏原代人T细胞和造血干细胞和祖细胞中的HIV-1共受体CCR5和CXCR4。摩尔热。30130-144(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Anzalone, A. V. et al. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).Article

Anzalone,A.V.等人。使用CRISPR-Cas核酸酶,碱基编辑,转座酶和主要编辑进行基因组编辑。美国国家生物技术公司。38824-844(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).Article

Zuo,E。等人,《胞嘧啶碱基编辑器》在小鼠胚胎中产生大量脱靶单核苷酸变体。科学364289-292(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).Article

Jin,S。等人。胞嘧啶,而不是腺嘌呤,碱基编辑器在水稻中诱导全基因组脱靶突变。科学364292-295(2019)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).Article

Zhou,C.等人。DNA碱基编辑诱导的脱靶RNA突变及其诱变消除。自然571275-278(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Grünewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).Article

Grünewald,J。等人。由CRISPR引导的DNA碱基编辑器诱导的转录组范围的脱靶RNA编辑。自然569433-437(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yan, N. et al. Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice. Nat. Commun. 14, 1784 (2023).Article

Yan,N。等人。胞嘧啶碱基编辑器在转基因小鼠中诱导脱靶突变和不良表型效应。国家公社。141784(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, H. S. et al. Adenine base editors catalyze cytosine conversions in human cells. Nat. Biotechnol. 37, 1145–1148 (2019).Article

Kim,H.S.等人。腺嘌呤碱基编辑器催化人类细胞中的胞嘧啶转化。美国国家生物技术公司。371145-1148(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chen, L. et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 41, 663–672 (2023).Article

Chen,L.等人重新设计腺嘌呤脱氨酶TadA-8e,以进行有效且特异的基于CRISPR的胞嘧啶碱基编辑。美国国家生物技术公司。41663-672(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lam, D. K. et al. Improved cytosine base editors generated from TadA variants. Nat. Biotechnol. 41, 1686–1697 (2023).Article

Lam,D.K.等人改进了由TadA变体产生的胞嘧啶碱基编辑器。美国国家生物技术公司。411686-1697(2023)。文章

Google Scholar

谷歌学者

Neugebauer, M. E. et al. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nat. Biotechnol. 41, 673–685 (2023).Article

Neugebauer,M.E.等人。腺嘌呤碱基编辑器进化为具有低脱靶活性的小型高效胞嘧啶碱基编辑器。美国国家生物技术公司。41673-685(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, S. et al. TadA orthologs enable both cytosine and adenine editing of base editors. Nat. Commun. 14, 414 (2023).Article

Zhang,S。等人。TadA直系同源物可以对碱基编辑器进行胞嘧啶和腺嘌呤编辑。国家公社。14414(2023)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ogden, T. H. et al. Multiple sequence alignment accuracy and phylogenetic inference. Syst. Biol. 55, 314–328 (2006).Article

Ogden,T.H.等人。多序列比对准确性和系统发育推断。系统。生物学55314-328(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article

Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).Article

Baek,M.等人,《使用三轨神经网络精确预测蛋白质结构和相互作用》,《科学》373871–876(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hopf, T. A. et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 35, 128–135 (2017).Article

Hopf,T.A.等人。从序列共变异预测突变效应。美国国家生物技术公司。35128-135(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature 599, 91–95 (2021).Article

Frazer,J.等人。利用进化数据的深度生成模型进行疾病变异预测。自然599,91-95(2021)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

McGaw, C. et al. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing. Nat. Commun. 13, 2833 (2022).Article

McGaw,C.等人设计的Cas12i2是一种用于治疗性基因组编辑的多功能高效平台。国家公社。132833(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, H. et al. An engineered xCas12i with high activity, high specificity, and broad PAM range. Protein Cell. 14, 538–543 (2023).PubMed

Zhang,H。等人。一种具有高活性,高特异性和广泛PAM范围的工程化xCas12i。蛋白质细胞。14538-543(2023)。PubMed出版社

Google Scholar

谷歌学者

Saito, M. et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 620, 660–668 (2023).Article

Saito,M。等人Fanzor是一种真核可编程RNA引导的核酸内切酶。自然620660-668(2023)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, D. et al. Development of miniature base editors using engineered IscB nickase. Nat. Methods 20, 1029–1036 (2023).Article

Han,D.等人。使用工程化IscB切口酶开发微型基础编辑器。自然方法201029-1036(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat. Biotechnol. 36, 946–949 (2018).Article

Wang,X。等人。用人APOBEC3A-Cas9融合物在甲基化区域进行有效的碱基编辑。美国国家生物技术公司。36946-949(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Doman, J. L. et al. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).Article

Doman,J.L.等人。胞嘧啶碱基编辑器对Cas9非依赖性脱靶DNA编辑的评估和最小化。美国国家生物技术公司。38620-628(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yuan, T. et al. Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes. Cell Discov. 10, 20 (2024).Article

Yuan,T。等人。深度学习模型结合了DNA序列以外的内源性因素,提高了碱基编辑结果的预测准确性。细胞Discov。10,20(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, E. et al. Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference. Nat. Commun. 15, 1697 (2024).Article

Zhang,E。等人。噬菌体辅助进化高活性胞嘧啶碱基编辑器,具有增强的选择性和最小的序列背景偏好。国家公社。151697(2024)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).Article

Richter,M.F。等人。噬菌体辅助进化腺嘌呤碱基编辑器,具有改进的Cas结构域相容性和活性。美国国家生物技术公司。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Roberts, T. C. et al. Therapeutic approaches for Duchenne muscular dystrophy. Nat. Rev. Drug. Discov. 22, 917–934 (2023).Article

Roberts,T.C.等人。杜兴氏肌营养不良症的治疗方法。Nat.Rev.Drug公司。迪斯科。22917-934(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bladen, C. L. et al. The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 36, 395–402 (2015).Article

TREAT-NMD DMD全球数据库:对7000多个杜兴氏肌营养不良症突变的分析。嗯。变异。36395-402(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. A Cas-embedding strategy for minimizing off-target effects of DNA base editors. Nat. Commun. 11, 6073 (2020).Article

Liu,Y。等人。一种用于最小化DNA碱基编辑器脱靶效应的Cas嵌入策略。国家公社。。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article

Altschul,S.F.等人。基本局部对齐搜索工具。J、 分子生物学。215403-410(1990)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Nakamura, T. et al. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).Article

Nakamura,T.等人。大规模多序列比对的MAFFT并行化。生物信息学342490-2492(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tamura, K. et al. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).Article

Tamura,K.等人,《MEGA11:分子进化遗传学分析》第11版。分子生物学。进化。383022-3027(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Enright, A. J. et al. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).Article

Enright,A.J.等人。大规模检测蛋白质家族的有效算法。核酸研究301575-1584(2002)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).Article

Levy,J.M.等人。通过腺相关病毒对小鼠的大脑,肝脏,视网膜,心脏和骨骼肌进行胞嘧啶和腺嘌呤碱基编辑。自然生物医学。工程4,97-110(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jin, M. et al. Correction of human nonsense mutation via adenine base editing for Duchenne muscular dystrophy treatment in mouse. Mol. Ther. Nucleic Acids 35, 102165 (2024).Article

Jin,M.等人。通过腺嘌呤碱基编辑校正人类无义突变,用于小鼠杜兴氏肌营养不良症的治疗。摩尔热。核酸35102165(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).Article

Clement,K。等人CRISPResso2提供了准确快速的基因组编辑序列分析。美国国家生物技术公司。37224-226(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bae, S. et al. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).Article

Bae,S.等人,Cas of Finder:一种快速且通用的算法,可搜索Cas9 RNA引导的核酸内切酶的潜在脱靶位点。生物信息学301473-1475(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bolger, A. M. et al. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article

Bolger,A.M.等人,《Trimmomatic:用于Illumina序列数据的灵活修剪器》。生物信息学302114-2120(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, D. et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).Article

。美国国家生物技术公司。37907-915(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Flati, T. et al. HPC-REDItools: a novel HPC-aware tool for improved large scale RNA-editing analysis. Bmc. Bioinforma. 21, 353 (2020).Article

Flati,T。等人。HPC REDItools:一种新的HPC感知工具,用于改进大规模RNA编辑分析。Bmc公司。生物信息学。21353(2020)。文章

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by HUIDAGENE Therapeutics Inc, Project of National Natural Science Foundation of China (82271048 to J.H., 82301215 to G.Z.), Science and Technology Commission of Shanghai Municipality (22S11900200 and 23XD1420500 to J.H.), Seed Industry Vitalization Program of Jiangsu Province (JBGS[2021]025 to E.Z.), Jiangsu Provincial Key Research and Development Program (BE2021372 to E.Z.) and the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-SCAB-202301 to T.Y.).Author informationAuthor notesThese authors contributed equally: Guoling Li, Xue Dong, Jiamin Luo, Tanglong Yuan, Tong Li, Guoli Zhao.Authors and AffiliationsHuidaGene Therapeutics Co., Ltd., Shanghai, 200131, ChinaGuoling Li, Xue Dong, Jiamin Luo, Tong Li, Hainan Zhang, Jingxing Zhou, Shuna Cui, Haoqiang Wang, Yin Wang, Yuyang Yu, Yuan Yuan & Yingsi ZhouShenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, ChinaTanglong Yuan & Erwei ZuoEye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, ChinaGuoli Zhao, Zhenhai Zeng & Jinhai HuangShanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, ChinaGuoli Zhao, Zhenhai Zeng & Jinhai HuangLingang Laboratory, Shanghai, ChinaChunlong XuAuthorsGuoling LiView author publicationsYou can also search for this author in.

下载参考文献致谢这项工作得到了惠达基因治疗有限公司,国家自然科学基金项目(82271048至J.H.,82301215至G.Z.),上海市科学技术委员会(22S11900200和23XD1420500至J.H.),江苏省种业振兴计划(JBGS[2021]025至E.Z.),江苏省重点研究与发展计划(BE2021372至E.Z.)和中国农业科学院创新计划(CAAS-SCAB-202301至T.Y.)的支持。作者信息作者注意到这些作者做出了同样的贡献:李国玲,薛东,罗家民,袁唐龙,李彤,赵国丽。作者和所属单位上海水大基因治疗有限公司,200131,中国李国玲,薛东,罗家民,童丽,海南张,周景兴,崔淑娜,王浩强,尹旺,余阳宇,袁元和周英思深圳分院,广东岭南现代农业实验室,农业和农村事务部合成生物学重点实验室,中国农业科学院深圳农业基因组研究所,深圳,中国唐龙园和二卫左业研究所,复旦大学眼科和耳鼻喉科医院眼科,中国医学科学院近视重点实验室,上海,200030,赵国力,曾振海&JinhaiHuangshanghai眼科和验光研究中心,上海,200030,中国赵国力,曾振海&JinhaiHuanglingang实验室,上海,中国徐春龙作者郭玲LiView作者出版物您也可以在中搜索该作者。

PubMed Google ScholarXue DongView author publicationsYou can also search for this author in

PubMed Google ScholarXue DongView作者出版物您也可以在

PubMed Google ScholarJiamin LuoView author publicationsYou can also search for this author in

PubMed Google ScholarJiamin LuoView作者出版物您也可以在

PubMed Google ScholarTanglong YuanView author publicationsYou can also search for this author in

PubMed Google ScholarTong LiView author publicationsYou can also search for this author in

PubMed Google ScholarTong LiView作者出版物您也可以在

PubMed Google ScholarGuoli ZhaoView author publicationsYou can also search for this author in

PubMed Google Scholargouoli ZhaoView作者出版物您也可以在

PubMed Google ScholarHainan ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarHainan ZhangView作者出版物您也可以在

PubMed Google ScholarJingxing ZhouView author publicationsYou can also search for this author in

PubMed谷歌学者Jingxing Zhou查看作者出版物您也可以在

PubMed Google ScholarZhenhai ZengView author publicationsYou can also search for this author in

PubMed谷歌学者Zhenhai ZengView作者出版物您也可以在

PubMed Google ScholarShuna CuiView author publicationsYou can also search for this author in

PubMed Google ScholarShuna CuiView作者出版物您也可以在

PubMed Google ScholarHaoqiang WangView author publicationsYou can also search for this author in

PubMed Google ScholarHaoqiang WangView作者出版物您也可以在

PubMed Google ScholarYin WangView author publicationsYou can also search for this author in

PubMed Google ScholarYin WangView作者出版物您也可以在

PubMed Google ScholarYuyang YuView author publicationsYou can also search for this author in

PubMed Google ScholarYuyang YuView作者出版物您也可以在

PubMed Google ScholarYuan YuanView author publicationsYou can also search for this author in

PubMed Google ScholarYuan YuanView作者出版物您也可以在

PubMed Google ScholarErwei ZuoView author publicationsYou can also search for this author in

PubMed Google ScholarErwei ZuoView作者出版物您也可以在

PubMed Google ScholarChunlong XuView author publicationsYou can also search for this author in

PubMed Google ScholarChunlong XuView作者出版物您也可以在

PubMed Google ScholarJinhai HuangView author publicationsYou can also search for this author in

PubMed谷歌学者黄金海查看作者出版物您也可以在

PubMed Google ScholarYingsi ZhouView author publicationsYou can also search for this author in

PubMed Google ScholarYingsi Zhou查看作者出版物您也可以在

PubMed Google ScholarContributionsY.Z. conceived the project. G.L., X.D., J.L., J.H. and G.Z. designed experiments. X.D., J.L. and G.L. performed protein engineering and endogenous sites base editing assay. T.L. and G.Z. performed the off-target assay. Y.Z. performed bioinformatics analysis.

PubMed谷歌学术贡献。Z、 构思了这个项目。G、 L.,X.D.,J.L.,J.H.和G.Z.设计了实验。十、 D.,J.L.和G.L.进行了蛋白质工程和内源性位点碱基编辑测定。T、 L.和G.Z.进行了脱靶测定。Y、 Z.进行了生物信息学分析。

E.Z. and T.Y. performed the high-throughput library experiments. G.L., Y.Yu., and Y.W. performed in vivo virus injection, tissue dissection, histological immunostaining and muscle function experiments. H.Z., J.Z., Z.Z., H.W., S.C., and Y.Yu. assisted with experiments. Y.Z., J.H., and C.X. supervised the whole project.

E、 Z.和T.Y.进行了高通量文库实验。G、 L.,Y.Yu。,和Y.W.进行了体内病毒注射,组织解剖,组织学免疫染色和肌肉功能实验。H、 Z.,J.Z.,Z.Z.,H.W.,S.C。和Y.Yu。协助实验。Y、 Z.,J.H。和C.X.监督了整个项目。

Y.Z., C.X., G.L. and Y.Yuan. wrote the manuscript with data contributed by all authors who participated in the project.Corresponding authorsCorrespondence to.

Y、 Z.,C.X.,G.L.和Y.Yuan。用参与该项目的所有作者提供的数据撰写了手稿。通讯作者通讯。

Erwei Zuo, Chunlong Xu, Jinhai Huang or Yingsi Zhou.Ethics declarations

左尔伟、徐春龙、黄金海或周英思。道德宣言

Competing interests

相互竞争的利益

X.D, G.L. and Y.Z. have submitted a patent application to the China National Intellectual Property Administration pertaining to the deaminase engineering aspect of this work (application number PCT/CN2024/078613). The remaining authors declare no competing interests.

十、 D,G.L.和Y.Z.已经向中国国家知识产权局提交了一份关于这项工作的脱氨酶工程方面的专利申请(申请号PCT/CN2024/078613)。其余作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Reporting SummarySource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3补充数据4报告摘要源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleLi, G., Dong, X., Luo, J. et al. Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation.

转载和许可本文引用本文Li,G.,Dong,X.,Luo,J。等人。工程TadA直系同源物衍生的胞嘧啶碱基编辑器,无基序偏好和腺苷活性限制。

Nat Commun 15, 8090 (2024). https://doi.org/10.1038/s41467-024-52485-1Download citationReceived: 08 February 2024Accepted: 10 September 2024Published: 16 September 2024DOI: https://doi.org/10.1038/s41467-024-52485-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》158090(2024)。https://doi.org/10.1038/s41467-024-52485-1Download引文接收日期:2024年2月8日接受日期:2024年9月10日发布日期:2024年9月16日OI:https://doi.org/10.1038/s41467-024-52485-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。