EN
登录

通过计算流体动力学(CFD)分析评估巨大动脉瘤治疗的颅内旁路术

Intracranial bypass for giant aneurysms treatment assessed by computational fluid dynamics (CFD) analysis

Nature 等信源发布 2024-09-16 17:55

可切换为仅中文


AbstractUnruptured giant intracranial aneurysms (GIA) are those with diameters of 25 mm or greater. As aneurysm size is correlated with rupture risk, GIA natural history is poor. Parent artery occlusion or trapping plus bypass revascularization should be considered to encourage intra-aneurysmal thrombosis when other treatment options are contraindicated.

。由于动脉瘤大小与破裂风险相关,GIA自然史较差。当其他治疗选择禁忌时,应考虑父母动脉闭塞或诱捕加旁路血运重建以鼓励动脉瘤内血栓形成。

The mechanistic background of these methods is poorly studied. Thus, we assessed the potential of computational fluid dynamics (CFD) and fluid–structure interaction (FSI) analyses for clinical use in the preoperative stage. A CFD investigation in three patient-specific flexible models of whole arterial brain circulation was performed.

这些方法的机理背景研究很少。因此,我们评估了计算流体动力学(CFD)和流体-结构相互作用(FSI)分析在术前阶段临床应用的潜力。对三种患者特定的全动脉脑循环柔性模型进行了CFD研究。

A C6 ICA segment GIA model was created based on CT angiography. Two models were then constructed that simulated a virtual bypass in combination with proximal GIA occlusion, but with differing middle cerebral artery (MCA) recipient vessels for the anastomosis. FSI and CFD investigations were performed in three models to assess changes in flow pattern and haemodynamic parameters alternations (wall shear stress (WSS), oscillatory shear index (OSI), maximal time averaged WSS (TAWSS), and pressure).

基于CT血管造影创建C6 ICA段GIA模型。然后构建两个模型,模拟虚拟旁路与近端GIA闭塞相结合,但具有不同的大脑中动脉(MCA)受体血管进行吻合。在三个模型中进行了FSI和CFD研究,以评估流动模式和血流动力学参数变化(壁切应力(WSS),振荡剪切指数(OSI),最大时间平均WSS(TAWSS)和压力)。

General flow splitting across the entire domain was affected by virtual bypass procedures, and any deficiency was partially compensated by a specific configuration of the circle of Willis. Following the implementation of bypass procedures, a reduction in haemodynamic parameters was observed within the aneurysm in both cases under analysis.

跨越整个域的一般流分裂受到虚拟旁路程序的影响,任何缺陷都可以通过Willis环的特定配置得到部分补偿。实施旁路手术后,在分析的两种情况下,动脉瘤内的血流动力学参数均降低。

In the case of the temporal MCA branch bypass, the decreases in the studied parameters were slightly greater than in the frontal MCA branch bypass. The reduction in the magnitude of the chosen area-averaged parameters (averaged over the aneurysm wall surface) was .

在颞侧MCA分支旁路的情况下,所研究参数的降低略大于额侧MCA分支旁路。所选面积平均参数(在动脉瘤壁表面上平均)的幅度减小。

IntroductionAneurysm size is one of the most important risk factors for rupture risk1. Giant intracranial aneurysms (GIA), which constitute only 5% of all unruptured intracranial aneurysms2, are those with diameters 25 mm or greater and therefore carry a high risk of rupture1,3. The management of GIA continues to be debated, since the data concerning their treatment and long-term outcome is limited.GIA of irregular shape or with perforator involvement may not be excluded from the circulation with endovascular techniques or surgical clipping.

引言动脉瘤大小是破裂风险最重要的危险因素之一1。巨大颅内动脉瘤(GIA)仅占所有未破裂颅内动脉瘤的5%2,是直径25 mm或更大的动脉瘤,因此具有破裂的高风险1,3。GIA的管理仍然存在争议,因为有关其治疗和长期结果的数据有限。不规则形状或穿支受累的GIA不能通过血管内技术或手术夹闭排除在循环之外。

If so, bypass techniques leading to flow alteration may be the most appropriate treatment option. Bypass techniques may also be useful for temporary perfusion after a preoperative positive balloon occlusion test or when the parent artery or aneurysmal neck is injured during surgery4. The induced flow alteration is assumed to induce intra-aneurysmal thrombus formation to prevent further growth or rupture.

如果是这样,导致流量改变的旁路技术可能是最合适的治疗选择。旁路技术也可用于术前阳性球囊闭塞试验后的临时灌注,或在手术过程中损伤载瘤动脉或动脉瘤颈部4。假设诱导的血流改变诱导动脉瘤内血栓形成以防止进一步生长或破裂。

Flow alteration is achieved via high-flow external carotid artery (ECA) to internal carotid artery (ICA) bypass with ICA proximal ligation or distal occlusion, or aneurysm trapping combined with high-flow bypass/revascularization of all distal ICA branches. The concept of bypass revascularization and flow reversal is presented in Fig. 1.

通过ICA近端结扎或远端闭塞的高流量颈外动脉(ECA)至颈内动脉(ICA)旁路,或动脉瘤夹闭结合所有远端ICA分支的高流量旁路/血运重建,可以实现血流改变。旁路血运重建和血流逆转的概念如图1所示。

This strategy carries a risk of regrowth and rupture as the mechanistic effects of flow reversal have not been studied. Trapping combined with bypass to maintain blood flow distal to the aneurysm is curative but may be difficult to implement, particularly if perforating arteries arising proximal to or directly from the aneurysm.

这种策略具有再生和破裂的风险,因为尚未研究流动逆转的机理效应。诱捕结合旁路维持动脉瘤远端的血流是治愈性的,但可能难以实施,特别是如果动脉瘤附近或直接从动脉瘤产生穿孔动脉。

In these cases, proximal or distal parent artery occlusion (PAO) with bypass provides an alternative solution5. Since those procedures reduce blood inflow to the aneurysm an.

在这些情况下,旁路近端或远端亲代动脉闭塞(PAO)提供了另一种解决方案5。由于这些手术减少了动脉瘤的血液流入。

aortic arch with all the major branches,

主动脉弓和所有主要分支,

descending aorta (with the visceral arteries) up to the iliac arteries

降主动脉(内脏动脉)至髂动脉

cerebral vasculature with the distal fragments of the internal carotid artery and the vertebral arteries.

具有颈内动脉和椎动脉远端碎片的脑血管系统。

The idealised arteries of the lower and upper limbs of the human body were also added to the model. A similar model preparation procedure was presented in11 with the difference that the delivery vessels and the cerebral vascular model were adopted from a patient diagnosed with GIA. Figure 2 shows the complete geometric model used in the study.Fig.2Whole model of human arteries used in the study with magnified region of GIA.Full size imageAll these parts of the circulatory system have different levels of complexity and different methods have been used for their reconstruction.

人体下肢和上肢的理想化动脉也被添加到模型中。11年提出了类似的模型制备程序,不同之处在于输送血管和脑血管模型是从诊断为GIA的患者中采用的。图2显示了研究中使用的完整几何模型。图2 GIA放大区域研究中使用的人体动脉整体模型。全尺寸图像循环系统的所有这些部分都有不同程度的复杂性,并且已经使用了不同的方法来重建它们。

Contour extraction from biomedical imaging data and a profile-lofting method in SolidWorks (Dassault Systèmes SE. Vélizy-Villacoublay, France) were used to obtain the geometries of the aortic arch with all major branches and the descending aorta to the iliac arteries. Using a technique known as profile lofting, idealised arteries of the lower and upper limbs were generated in SolidWorks along the predefined midline.

。使用称为轮廓放样的技术,在SolidWorks中沿着预定义的中线生成了理想的下肢和上肢动脉。

A patient-specific model of the intracranial vasculature and all afferent arteries was created using image segmentation techniques, stereolithography (STL) file extraction and volumetric object transformation in ANSYS SpaceClaim (Ansys, Inc. Canonsburg (Pennsylvania), USA).Modelling the bypassSince the main objective of this research was to investigate flow haemodynamics after performing a virtual operation of an innovative bypass procedure, the authors modified the final geometry following recommendations of the neurosurgeon (KW, AA, PV).

使用图像分割技术,立体光刻(STL)文件提取和ANSYS SpaceClaim(ANSYS,Inc.Canonsburg(宾夕法尼亚州),美国)中的体积对象转换,创建了颅内脉管系统和所有传入动脉的患者特定模型。旁路建模由于本研究的主要目的是在进行创新旁路手术的虚拟操作后研究血流动力学,作者根据神经外科医生(KW,AA,PV)的建议修改了最终的几何形状。

Modifications included insertion of an artificial bypass between the right ECA and the chosen M2 MCA branches, blocking the right ICA lumen to exclude the aneurysm from the circulation. The anatomical structure of the bypass mimicked a radial artery, .

修改包括在右侧ECA和所选M2 MCA分支之间插入人工旁路,阻断右侧ICA腔以将动脉瘤从循环中排除。。

Pulsatile blood inflow and pressure,

脉动血流和压力,

Physiological vasomotion, i.e. elastic vessel walls deformed under pressure changes – Fluid Structure Interaction (FSI) methodology,

生理性血管舒缩,即在压力变化下变形的弹性血管壁-流体-结构相互作用(FSI)方法,

Non-Newtonian blood model,

非牛顿血液模型,

Patient-specific model in region of aorta and cerebral circle.

主动脉和脑环区域的患者特异性模型。

FSI simulations are numerical analyses which mimic properties corresponding to a natural, physiological behaviour of the cardiovascular system12. Currently, the use of FSI to calculate patient-specific models of the arterial system is not common. Many papers considering aneurysms or stenotic arteries contain geometric simplifications13 or models that are limited to small sections of the arteries14,15,16,17.

FSI模拟是数值分析,模拟与心血管系统的自然生理行为相对应的特性12。目前,使用FSI计算患者特定的动脉系统模型并不常见。许多考虑动脉瘤或狭窄动脉的论文都包含几何简化13或仅限于动脉小部分的模型14,15,16,17。

By utilizing a two-way coupling algorithm inside the numerical solver, force generated by the fluid results in a displacement of the model wall and vice versa – deformation of the wall affects the flow. In the context of blood flow simulation, this approach allows nature to be mimicked more faithfully than simulations assuming rigid walls.

通过在数值解算器中使用双向耦合算法,流体产生的力会导致模型壁发生位移,反之亦然–壁的变形会影响流动。在血流模拟的背景下,这种方法允许比假设刚性壁的模拟更忠实地模拟自然。

It allows the user to reproduce the vasomotion of the arteries, their pressure attenuation characteristics and their ability to maintain uninterrupted forward blood flow.Due to the extremely high complexity of the FSI analyses, as well as their time-consuming nature, such simulations are limited usually only to a chosen fragment of the arterial system, such as the common carotid artery bifurcation14,15,16,17 or aortic arch18.The main idea to simulate such a large part of the systemic circulation is based on two major advantages.

它允许用户重现动脉的血管运动,它们的压力衰减特性以及它们保持不间断向前血流的能力。由于FSI分析的高度复杂性及其耗时性,此类模拟通常仅限于动脉系统的选定片段,例如颈总动脉分叉14,15,16,17或主动脉弓18。模拟如此大部分体循环的主要思想基于两个主要优点。

The first is that most of the phenomena that occur in the afferent vessels (which influence flow in the efferent vessels) are present in the model during the computational phase. These phenomena include: mixing of flow jets at arterial junctions, specific flow separation at arterial bifurcations, development of specific flow distributions depending on vessel curvature, pressure drops along arteries of specific length, diameter and curvature, and generation of specific flow resistances resulting from vessel .

首先,在计算阶段,传入血管中发生的大多数现象(影响传出血管中的流动)都存在于模型中。这些现象包括:动脉连接处的射流混合,动脉分叉处的特定流动分离,取决于血管曲率的特定流动分布的发展,沿着特定长度,直径和曲率的动脉的压降,以及由血管产生的特定流动阻力。

(1)

(1)

where: \({\eta }_{0}\) = 0.035 kg∙m-1∙s-1.4; \(n\) = 0.6; while \(\eta\) = 0.00345 Pa·s is a reference viscosity of Newtonian blood.At the inlet cross-section to the ascending aorta, a time-varying boundary condition was set by Prandtl profile distribution formula – see Eq. 2. Specific user-defined function (UDF) file was developed and imported into Ansys Fluent to correctly assign the time-dependent velocity function together with profile distribution constrains (oriented normally to the inlet surface).

式中:\({\ eta}}u0}\)=0.035 kg∙m-1∙s-1.4\(n\)=0.6;而\(\ eta \)=0.00345 Pa·s是牛顿血液的参考粘度。在升主动脉的入口横截面处,通过普朗特轮廓分布公式设置了时变边界条件-见等式2。开发了特定的用户定义函数(UDF)文件,并将其导入到Ansys Fluent中,以正确分配随时间变化的速度函数以及轮廓分布约束(通常朝向入口表面)。

Figure 4 depicts the time-dependent function of the maximal velocity (Vmax) at the inlet cross section, limited to eight cardiac cycles for visualization purposes.$${V}_{p}={V}_{max}\cdot {\left(1-\frac{r}{{R}_{max}}\right)}^{0.8}$$.

图4描绘了入口横截面处最大速度(Vmax)的时间依赖函数,出于可视化目的,限于八个心动周期$${V}_{p}={V}_{max}\cdot{\ left(1-\ frac{r}{{R}_{最大值}}\右)}^{0.8}$$。

(2)

(2)

where: \({V}_{p}\) is veolocity at inlet cross-section at location of r – radius, \({V}_{max}\) – maximum velocity and \({R}_{max}\) – maximum radius of the inlet cross-section.Fig.4Blood mass flux function over time used to define inlet boundary condition.Full size imageIn computational fluid dynamics (CFD) analyses of blood flow, pressure gradients between inlet and outlet cross-sections result in alterations to the flow direction.

其中:\({V}_{p} \)是r半径位置处入口横截面的孔隙率\({V}_{max}\)–最大速度和\({R}_{max}\)–入口横截面的最大半径。图4用于定义入口边界条件的随时间变化的血液质量通量函数。全尺寸图像在血流的计算流体动力学(CFD)分析中,入口和出口横截面之间的压力梯度导致流动方向的改变。

Flow resistances give rise to pressure drops. When pressure increases at an outlet cross-section, the volume of fluid reaching that area is reduced, while the volume of fluid passing through channels with lower resistances is increased. To control the distribution of flow across the entire systemic circuit, hybrid boundary conditions have been introduced at the outlet cross-section.

流动阻力会引起压降。当出口横截面处的压力增加时,到达该区域的流体体积减少,而通过阻力较低的通道的流体体积增加。为了控制整个系统回路中的流量分布,在出口横截面处引入了混合边界条件。

At the end of each artery there was an additional porous cylinder with a length corresponding to the circumference of the respective vessel. The resistances in the porous cylinders were determined by the viscosity and inertia of the fluid according to the Ergun's equation (Eq. 3). A constant pressure of 6 kPa was set at the outlet surface as a boundary condition.

在每条动脉的末端有一个额外的多孔圆柱体,其长度对应于相应血管的周长。根据埃尔根方程(方程3),多孔圆柱体中的阻力由流体的粘度和惯性决定。在出口表面设置6 kPa的恒定压力作为边界条件。

The settings of resistance factors derived from viscosity and inertia for the different areas of the circulatory system were determined by tuning the numerical model and are detailed in11.$$\frac{\Delta p}{L}=\overrightarrow{U}\left(\frac{150\mu }{{D}_{p}^{2}}\cdot \frac{{(1-\varepsilon )}^{2}}{{\varphi }^{2}{\varepsilon }^{3}}\right)+{\overrightarrow{U}}^{2}\left(\frac{1.75\rho }{{D}_{p}}\cdot \frac{\left(1-\varepsilon \right)}{{\varphi \varepsilon }^{3}}\right)$$.

通过调整数值模型,确定了循环系统不同区域的粘度和惯性阻力因子的设置,详见11。$$$\ frac{\ Delta p}{L}=\ overrightarrow{U}\ left(\ frac{150 \ mu}{{D}_{p} ^{2}}\cdot\frac{{(1-\varepsilon)}}{2}}{\varphi}}{2}{\varepsilon}^{3}}\right)+{\overrightarrow{U}}^{2}\left(\frac{1.75\rho}{{D}_{p} }\cdot\frac{\左(1-\varepsilon \右)}{{\ varphi \ varepsilon}^{3}}\右)$$。

(3)

(3)

where \(\Delta p\) – pressure drop, \(L\) – porous body length, \(\overrightarrow{U}\) – fluid velocity, \(\mu\) – fluid dynamic viscosity, \({D}_{p}\) – spherical diameter of particles ‘forming’ the porous body), \(\varepsilon\) – porosity of the body, \(\varphi\) – sphericity, \(\rho\) – fluid density.ResultsCFD investigations were performed on the reference case study CT angiography and two case studies after virtual surgical operation where the bypass was sutured to the chosen branch of the MCA and the ICA was ligated, thus preventing intensive blood supply to the GIA dome.

其中\(\ Delta p \)-压降\(L \)-多孔体长度\(\ overrightarrow{U}\)-流体速度\(\ mu \)-流体动力粘度\({D}_{p} \)-形成多孔体的颗粒的球形直径),\(\ varepsilon\)-多孔体的孔隙率,\(\ varphi\)-球形度,\(\ rho\)-流体密度。结果在参考病例研究CT血管造影和虚拟手术后的两个病例研究中进行了FD研究,其中将旁路缝合到MCA的选定分支并结扎ICA,从而防止了GIA穹窿的密集血液供应。

Dozens of varied quantitative and qualitative data were gathered and the flow haemodynamics were assessed in pre- and post-operative geometries.Firstly, the correctness of our numerical results for the reference geometry was verified. Data on the volume stroke that is distributed to the brain were compared with reports from the literature24,25,26,27 and presented in Table 1.

收集了数十种不同的定量和定性数据,并在术前和术后几何形状中评估了血流动力学。首先,验证了我们对参考几何的数值结果的正确性。将分布到大脑的容积中风数据与文献24,25,26,27的报告进行了比较,并在表1中列出。

For that purpose, an overall flow distribution across the entire body was assessed, with diastolic and systolic pressure at the walls and maximal deformations during the systolic peak.Table 1 Chosen haemodynamic parameters used during verification of the computational fluid dynamic analysis.Full size tableAfter physiological correctness was validated, blood supply to specific regions of the numerical domain was analysed for the last full cardiac cycle.

为此,评估了整个身体的总体流量分布,壁上的舒张压和收缩压以及收缩峰期间的最大变形。表1在验证计算流体动力学分析期间使用的选定血液动力学参数。全尺寸表验证生理正确性后,分析最后一个完整心动周期数值域特定区域的血液供应。

This determined if there is a significant blood volume delivery decrease for the right cerebral hemisphere ipsilateral to the bypass. Additionally, one could observe how the general flow splitting across the entire domain was affected by the virtual bypass procedure. This was achieved by calculating an integral of mass flow rate at each outlet cross section (or .

这确定了旁路同侧的右脑半球是否有明显的血容量减少。此外,可以观察到虚拟旁路过程如何影响整个域中的一般流分裂。这是通过计算每个出口横截面处的质量流量积分(or)来实现的。

Data availability

数据可用性

Due to the use of potentially sensitive patient medical data in the studies presented here, the datasets used and analysed during the current study are available from the correspondent author upon reasonable request.

由于在此处介绍的研究中使用了潜在敏感的患者医疗数据,因此在本研究中使用和分析的数据集可根据合理要求从通讯作者处获得。

ReferencesGreving, J. P. et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: A pooled analysis of six prospective cohort studies. Lancet Neurol. 13, 59–66 (2014).Article

ReferencesGreving,J.P。等人。颅内动脉瘤破裂风险预测阶段评分的发展:六项前瞻性队列研究的汇总分析。柳叶刀神经学。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wiebers, D. O. et al. Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362, 103–110 (2003).Article

。柳叶刀362103-110(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dengler, J. et al. Giant intracranial aneurysm study group. giant intracranial aneurysms: Natural history and 1 year case fatality after endovascular or surgical treatment. J. Neurosurg. 134(1), 49–57. https://doi.org/10.3171/2019.8.JNS183078 (2019) (PMID: 31812141).Article

Dengler,J。等人。巨大颅内动脉瘤研究小组。巨大颅内动脉瘤:血管内或手术治疗后的自然病史和1年病死率。J、 神经外科杂志134(1),49-57。https://doi.org/10.3171/2019.8.JNS183078(2019)(PMID:31812141)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hara, T., Arai, S., Goto, Y., Takizawa, T. & Uchida, T. Bypass surgeries in the treatment of cerebral aneurysms. Acta Neurochir Suppl. 123, 57–64. https://doi.org/10.1007/978-3-319-29887-0_8 (2016) (PMID: 27637629).Article

Hara,T.,Arai,S.,Goto,Y.,Takizawa,T。&Uchida,T。旁路手术治疗脑动脉瘤。神经科学学报增刊123,57-64。https://doi.org/10.1007/978-3-319-29887-0_8(2016)(PMID:27637629)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Shi, X. et al. Management of complex intracranial aneurysms with bypass surgery: A technique application and experience in 93 patients. Neurosurg. Rev. 38, 109–120 (2015).Article

Shi,X.等。通过搭桥手术治疗复杂颅内动脉瘤:93例患者的技术应用和经验。《神经外科杂志》第38109-120版(2015年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sforza, D. M., Putman, C. M. & Cebral, J. R. Computational fluid dynamics in brain aneurysms. Int. J. Numer. Method Biomed. Eng. https://doi.org/10.1002/cnm.1481 (2012).Article

Sforza,D.M.,Putman,C.M。&Cebral,J.R。脑动脉瘤中的计算流体动力学。内景J.数字。方法生物医学。发动机。https://doi.org/10.1002/cnm.1481(2012年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wessels, L. et al. Complete or partial parent artery sacrifice: Effect of vessel-occlusion strategies on complete obliteration of complex aneurysms. World Neurosurg. 147, e282–e292. https://doi.org/10.1016/j.wneu.2020.12.050 (2021).Article

Wessels,L。等人。完全或部分母动脉牺牲:血管闭塞策略对完全闭塞复杂动脉瘤的影响。世界神经外科杂志147,e282–e292。https://doi.org/10.1016/j.wneu.2020.12.050(2021年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Polanczyk, A. et al. Computational fluid dynamic technique for assessment of how changing character of blood flow and different value of hct influence blood hemodynamic in dissected aorta. Diagnostics 11(10), 1866 (2021).Article

Polanczyk,A。等人。计算流体力学技术,用于评估血流特征的变化和hct的不同值如何影响解剖主动脉的血流动力学。诊断11(10),1866(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reorowicz, P. et al. Blood flow through the fusiform aneurysm treated with the flow diverter stent–numerical investigations. Biocybern. Biomed. Eng. 42(1), 375–390 (2022).Article

Reorowicz,P。等人。用分流器支架治疗梭形动脉瘤的血流-数值研究。生物群落。生物医学。工程42(1),375–390(2022)。文章

Google Scholar

谷歌学者

Liu, Y., Jiang, G., Wang, F. & An, X. Quantitative assessment of changes in hemodynamics after obliteration of large intracranial carotid aneurysms using computational fluid dynamics. Front. Neurol. 12, 632066 (2021).Article

Liu,Y.,Jiang,G.,Wang,F。&An,X。使用计算流体动力学定量评估大型颅内颈动脉瘤闭塞后血流动力学的变化。正面。神经病学。12632066(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wiśniewski, K. et al. Numerical flow experiment for assessing predictors for cerebrovascular accidents in patients with PHACES syndrome. Sci. Rep. 14(1), 5161 (2024).Article

Wiśniewski,K.等。数值流动实验,用于评估PHACES综合征患者脑血管意外的预测因子。科学。代表14(1),5161(2024)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jodko, D., Jeckowski, M. & Tyfa, Z. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue. Int. J. Numer. Methods Biomed. Eng. 38(8), e3630 (2022).Article .

Jodko,D.,Jeckowski,M。&Tyfa,Z。症状性狭窄颈动脉研究中的流体-结构相互作用与刚性壁方法:壁顺应性和松散结缔组织弹性的重要性。内景J.数字。方法生物医学。工程38(8),e3630(2022)。文章。

Google Scholar

谷歌学者

Shahzad, H. et al. Fluid structure interaction study of non-Newtonian Casson fluid in a bifurcated channel having stenosis with elastic walls. Sci. Rep. 12(1), 1–13 (2022).Article

Shahzad,H。等人。具有弹性壁狭窄的分叉通道中非牛顿卡森流体的流固相互作用研究。科学。代表12(1),1-13(2022)。文章

Google Scholar

谷歌学者

Carvalho, P. C. & Bazani, M. A. Numerical analysis of a brain artery in ANSYS. J. Braz. Soc. Mech. Sci. Eng. 44(11), 1–14 (2022).Article

Carvalho,P.C。&Bazani,M.A。在ANSYS中对脑动脉进行数值分析。J、 钎焊。Soc机械。科学。工程44(11),1-14(2022)。文章

Google Scholar

谷歌学者

Jahed, M., Ghalichi, F. & Farhoudi, M. Fluid-structure interaction of patient-specific Circle of Willis with aneurysm: Investigation of hemodynamic parameters. Bio-med. Mater. Eng. 29(3), 357–368 (2018).Article

Jahed,M.,Ghalichi,F。&Farhoudi,M。患者特异性Willis环与动脉瘤的流体-结构相互作用:血流动力学参数的研究。生物医学硕士。工程29(3),357–368(2018)。文章

Google Scholar

谷歌学者

Kumar, N., Pai, R., Abdul Khader, S. M., Khan, S. H. & Kyriacou, P. A. Influence of blood pressure and rheology on oscillatory shear index and wall shear stress in the carotid artery. J. Braz. Soc. Mech. Sci. Eng. 44(11), 1–16 (2022).Article

Kumar,N.,Pai,R.,Abdul Khader,S.M.,Khan,S.H。&Kyriacou,P.A。血压和流变学对颈动脉振荡剪切指数和壁切应力的影响。J、 钎焊。Soc机械。科学。工程44(11),1-16(2022)。文章

Google Scholar

谷歌学者

Muraoka, S. et al. Blood flow stagnation after treatment of a giant internal carotid artery aneurysm: A computed fluid dynamics analysis. Sci. Rep. 12(1), 7283 (2022).Article

Muraoka,S.等人。巨大颈内动脉瘤治疗后的血流停滞:计算流体动力学分析。科学。代表12(1),7283(2022)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, Y., Mirsadraee, S., Rosendahl, U., Pepper, J. & Xu, X. Y. Fluid-structure interaction simulations of repaired type A aortic dissection: A comprehensive comparison with rigid wall models. Front. Phys. https://doi.org/10.3389/fphys.2022.913457 (2022).Article

Zhu,Y.,Mirsadraee,S.,Rosendahl,U.,Pepper,J.&Xu,X.Y.修复的A型主动脉夹层的流体-结构相互作用模拟:与刚性壁模型的综合比较。正面。物理。https://doi.org/10.3389/fphys.2022.913457(2022年)。文章

Google Scholar

谷歌学者

V. Carvalho, N. Rodrigues, R. A. Lima and S. Teixeira, “Numerical simulation of blood pulsatile flow in stenotic coronary arteries: The effect of turbulence modeling and non-Newtonian assumptions,” 2020 24th International Conference on Circuits, Systems, Communications and Computers (CSCC), Chania, Greece, pp.

五、 Carvalho,N.Rodrigues,R.A.Lima和S.Teixeira,“狭窄冠状动脉中血液脉动流动的数值模拟:湍流建模和非牛顿假设的影响”,2020年第24届电路,系统,通信和计算机国际会议(CSCC),希腊查尼亚,pp。

112–116, (2020)R. Tabe, F. Ghalichi, S. Hossainpour and K. Ghasemzadeh, “Numerical simulation of transitional blood flow in large arteries,” 2011 18th Iranian Conference of Biomedical Engineering (ICBME), Tehran, Iran, pp. 68-71, (2011).Tyfa, Z., Reorowicz, P., Obidowski, D. & Jóźwik, K. Influence of fluid rheology on blood flow haemodynamics in patient-specific arterial networks of varied complexity–in-silico studies.

112-116,(2020)R.Tabe,F.Ghalichi,S.Hossainpour和K.Ghasemzadeh,“大动脉过渡血流的数值模拟”,2011年第18届伊朗生物医学工程会议(ICBME),伊朗德黑兰,第68-71页,(2011年)。Tyfa,Z.,Reorowicz,P.,Obidowski,D。&Jóźwik,K。流体流变学对不同复杂性患者特定动脉网络血流动力学的影响-计算机研究。

Acta Mech. Automatica https://doi.org/10.2478/ama-2024-0002 (2024).Article .

机械学报。自动https://doi.org/10.2478/ama-2024-0002(2024).第条。

Google Scholar

谷歌学者

Jodko, D. M., Obidowski, D. S., Reorowicz, P. & Jóźwik, K. A two-stage model of an arteriovenous fistula maturation process. Acta Bioeng. Biomech. https://doi.org/10.37190/ABB-01571-2020-02 (2020).Article

Jodko,D.M.,Obidowski,D.S.,Reorowicz,P。&Jóźwik,K。动静脉瘘成熟过程的两阶段模型。生物学报。生物技术。https://doi.org/10.37190/ABB-01571-2020-02(2020年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Obidowski, D., Reorowicz, P., Witkowski, D., Sobczak, K. & Jóźwik, K. Methods for determination of stagnation in pneumatic ventricular assist devices. Artif. Organs. 41, 653–663 (2018).Article

Obidowski,D.,Reorowicz,P.,Witkowski,D.,Sobczak,K。&Jóźwik,K。测定气动心室辅助装置停滞的方法。人工制品。器官。41653-663(2018)。文章

Google Scholar

谷歌学者

Xing, C. Y. et al. Distribution of cardiac output to the brain across the adult lifespan. J. Cereb. Blood Flow Metab. 37(8), 2848–2856 (2017).Article

Xing,C.Y.等人。成年期心输出量向大脑的分布。J、 塞雷布。血流代谢。37(8),2848-2856(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Willie, C. K. & Smith, K. J. Fuelling the exercising brain: A regulatory quagmire for lactate metabolism. J. physiol. 589(4), 779 (2011).Article

Willie,C.K.&Smith,K.J.为运动大脑加油:乳酸代谢的调节泥潭。J、 生理学。589(4),779(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lantz, B. M., Foerster, J. M., Link, D. P. & Holcroft, J. W. Regional distribution of cardiac output: normal values in man determined by video dilution technique. Am. J. Roentgenol. 137(5), 903–907 (1981).Article

Lantz,B.M.,Foerster,J.M.,Link,D.P。和Holcroft,J.W。心输出量的区域分布:通过视频稀释技术确定的人体正常值。美国J·伦琴。137(5),903-907(1981)。文章

Google Scholar

谷歌学者

Ovsenik, A., Podbregar, M. & Fabjan, A. Cerebral blood flow impairment and cognitive decline in heart failure. Brain Behav. 11(6), e02176 (2021).Article

Ovsenik,A.,Podbregar,M。&Fabjan,A。心力衰竭的脑血流障碍和认知能力下降。大脑行为。11(6),e02176(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Holland, Watton, and Ventikos, “5.17 - Biological Fluid Mechanics: Integrative and Multiscale Computational Modeling,” in Comprehensive Biotechnology (Second Edition), Second Edi., Moo-Young, Ed. Academic Press, pp. 203–216 (2011)Zuleger, P. Valavanis, and Kollias, “Combining magnetic resonance measurements with numerical simulations—Extracting blood flow physiology information relevant to the investigation of intracranial aneurysms in the circle of Willis”.

Holland,Watton和Ventikos,“5.17-生物流体力学:综合和多尺度计算建模”,综合生物技术(第二版),第二版Edi。,Moo Young,Ed。Academic Press,第203-216页(2011)Zuleger,P。Valavanis和Kollias,“将磁共振测量与数值模拟相结合,提取与威利斯环颅内动脉瘤研究相关的血流生理信息”。

Int. J. Heat Fluid Flow 31(6), 1032–1039 (2010).Article .

Int.J.热流31(6),1032–1039(2010)。文章。

ADS

广告

Google Scholar

谷歌学者

DiCarlo, A. L., Holdsworth, D. W. & Poepping, T. L. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry. Med. Eng. Phys. 65, 8–23 (2019).Article

。医学工程物理。65,8-23(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Moradicheghamahi, J., Sadeghiseraji, J. & Jahangiri, M. Numerical solution of the Pulsatile, non-Newtonian and turbulent blood flow in a patient specific elastic carotid artery. Int. J. Mech. Sci. 150, 393–403 (2019).Article

Moradicheghamahi,J.,Sadeghiseraji,J。&Jahangiri,M。患者特异性弹性颈动脉中脉动,非牛顿和湍流血流的数值解。内景J.机械。科学。150393-403(2019)。文章

Google Scholar

谷歌学者

Wisniewski, T. Tyfa, reorowicz, and bobeff, “porous media computational fluid dynamics and the role of the first coil in the embolization of ruptured intracranial aneurysms”. J. Clin. Med. 10(7), 1348 (2021).Article

Wisniewski,T。Tyfa,reorowicz和bobeff,“多孔介质计算流体力学和第一线圈在破裂颅内动脉瘤栓塞中的作用”。J、 临床。医学杂志10(7),1348(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maldaner, N. et al. Giant intracranial aneurysms treated by surgical strategies other than direct clipping. Acta Neurochir. (Wien). 157(7), 1117–1123. https://doi.org/10.1007/s00701-015-2448-y (2015).Article

Maldaner,N。等人。除直接夹闭外,通过手术策略治疗巨大颅内动脉瘤。神经科学学报。(维也纳)。157(7),1117-1123。https://doi.org/10.1007/s00701-015-2448-y(2015年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dengler, J. et al. Giant intracranial aneurysm study group giant intracranial aneurysms: Natural history and 1 year case fatality after endovascular or surgical treatment. J. Neurosurg. 134(1), 49–57. https://doi.org/10.3171/2019.8.JNS183078 (2019).Article

Dengler,J.等。巨大颅内动脉瘤研究小组巨大颅内动脉瘤:血管内或手术治疗后的自然病史和1年病死率。J、 神经外科杂志134(1),49-57。https://doi.org/10.3171/2019.8.JNS183078(2019年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, J., Liu, J., Zhao, C., Yang, X. & Li, M. Hemodynamics in ruptured intracranial aneurysms with known rupture points. World Neurosurg. 118, e721–e726 (2018).Article

Wang,J.,Liu,J.,Zhao,C.,Yang,X。&Li,M。具有已知破裂点的破裂颅内动脉瘤的血流动力学。《世界神经外科杂志》118,e721–e726(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Xiang, J. et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42, 144–152 (2011).Article

Xiang,J。等。颅内动脉瘤破裂的血流动力学形态学判别。中风42144-152(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Himburg, H. A. et al. Friedman Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability Am. J. Physiol. Circ. Physiol. 286(5), H1916–H1922 (2004).Article

Himburg,H.A.等人。壁切应力测量与猪动脉内皮通透性之间的Friedman空间比较Am.J.Physiol。。生理学。286(5),H1916–H1922(2004)。文章

Google Scholar

谷歌学者

Liu, Q., Jiang, P., Wu, J., Gao, B. & Wang, S. The morphological and hemodynamic characteristics of the intraoperative ruptured aneurysm. Front. Neurosci. 13, 233. https://doi.org/10.3389/fnins.2019.00233 (2019).Article

Liu,Q.,Jiang,P.,Wu,J.,Gao,B。&Wang,S。术中破裂动脉瘤的形态学和血流动力学特征。正面。神经科学。13233页。https://doi.org/10.3389/fnins.2019.00233(2019年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kelsey, L. J., Powell, J. T., Norman, P. E., Miller, K. & Doyle, B. J. A comparison of hemodynamic metrics and intraluminal thrombus burden in a common iliac artery aneurysm. Int. J. Numer. Method Biomed. Eng. 33, e2821. https://doi.org/10.1002/cnm.2821 (2017).Article

Kelsey,L.J.,Powell,J.T.,Norman,P.E.,Miller,K。&Doyle,B.J。髂总动脉瘤血流动力学指标和腔内血栓负荷的比较。内景J.数字。方法生物医学。工程33,e2821。https://doi.org/10.1002/cnm.2821(2017年)。文章

Google Scholar

谷歌学者

Ong, C. et al. Hemodynamic analysis of a novel stent graft design with slit perforations in thoracic aortic aneurysm. J. Biomech. 85, 210–217. https://doi.org/10.1016/j.jbiomech.2019.01.019 (2019).Article

Ong,C.等人。胸主动脉瘤狭缝穿孔新型支架-移植物设计的血流动力学分析。J、 生物技术。85210-217。https://doi.org/10.1016/j.jbiomech.2019.01.019(2019年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Maldaner, N. et al. Giant intracranial aneurysm study group changes in volume of giant intracranial aneurysms treated by surgical strategies other than direct clipping. Acta Neurochir. (Wien). https://doi.org/10.1007/s00701-015-2448-y (2015).Article

Maldaner,N。等人。颅内巨大动脉瘤研究组通过直接夹闭以外的手术策略治疗的颅内巨大动脉瘤体积的变化。神经科学学报。(维也纳)。https://doi.org/10.1007/s00701-015-2448-y(2015年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Esposito, G. & Regli, L. Surgical decision-making for managing complex intracranial aneurysms. Acta Neurochir. Suppl. 119, 3–11 (2014).Article

Esposito,G。&Regli,L。管理复杂颅内动脉瘤的手术决策。神经科学学报。补充119,3-11(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsKarol Wiśniewski gratefully acknowledges financial support provided by the Polish National Agency for Academic Exchange (the Bekker Programme).FundingThis research was funded by National Centre for Research and Development grant number LIDER/12/0056/L-10/18/NCBR/2019.

下载参考文献致谢Karol Wiśniewski非常感谢波兰国家学术交流局(Bekker计划)提供的财政支持。资助该研究由国家研究与发展中心资助,资助号为LIDER/12/0056/L-10/18/NCBR/2019。

The sponsor had no role in the design or conduct of this research.Author informationAuthors and AffiliationsDepartment of Neurosurgery, Royal Melbourne Hospital, 300 Grattan St, Parkville, 3050, AustraliaKarol Wiśniewski, Benjamin Price, Anne Jian, Andreas Fahlström, Katharine Drummond & Alexios A. AdamidesDepartment of Neurosurgery and Neurooncology, Medical University of Łódź, Kopcińskiego 22, 90-153, Lodz, PolandKarol Wiśniewski & Dariusz J.

赞助商在这项研究的设计或进行中没有任何作用。作者信息作者和附属机构墨尔本皇家医院神经外科,300 Grattan St,Parkville,3050,AustraliaKarol Wiśniewski,Benjamin Price,Anne Jian,Andreas Fahlström,Katharine Drummond&Alexios A.Adamides神经外科和神经肿瘤学系,医科大学科普西斯科伊戈22,90-153,洛兹,PolandKarol Wiśniewski&Dariusz J。

JaskólskiInstitute of Turbomachinery, Lodz University of Technology, 219/223 Wolczanska Str, 90-924, Lodz, PolandKarol Wiśniewski, Piotr Reorowicz, Zbigniew Tyfa, Damian Obidowski & Krzysztof JóźwikDepartment of Medical Sciences, Section of Neurosurgery, Uppsala University, 75185, Uppsala, SwedenAndreas FahlströmDepartment of Surgery, University of Melbourne, 300 Grattan St, Parkville, 3050, AustraliaKatharine Drummond & Alexios A.

洛兹理工大学贾斯科尔斯基涡轮机械研究所,沃尔琴斯卡街219/223号,90-924号,洛兹,波兰卡罗尔·维涅夫斯基,皮奥特·雷罗维茨,兹比涅夫·泰法,达米安·奥比多夫斯基和Krzysztof JóźwikDepartment of Medical Sciences,神经外科,乌普萨拉大学,75185,乌普萨拉,瑞典安德烈斯·法尔斯特罗姆外科,墨尔本大学,300 Grattan St,Parkville,3050,AustraliaKatharine Drummond&亚历克西斯A。

AdamidesDepartment of Neurosurgery and Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, GermanyLars Wessels & Peter VajkoczyAuthorsKarol WiśniewskiView author publicationsYou can also search for this author in.

AdamidesDepartment of Neurosurgery and Center for Stroke Research Berlin(CSB),Charité-Universitätsmedizin Berlin,GermanyLars Wessels&Peter VajkoczyAuthorsKarol WiśniewskiView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarPiotr ReorowiczView author publicationsYou can also search for this author in

PubMed Google ScholarPiotr ReorowiczView作者出版物您也可以在

PubMed Google ScholarZbigniew TyfaView author publicationsYou can also search for this author in

PubMed Google ScholarZbigniew TyfaView作者出版物您也可以在

PubMed Google ScholarBenjamin PriceView author publicationsYou can also search for this author in

PubMed Google ScholarBenjamin PriceView作者出版物您也可以在

PubMed Google ScholarAnne JianView author publicationsYou can also search for this author in

PubMed Google ScholarAnne JianView作者出版物您也可以在

PubMed Google ScholarAndreas FahlströmView author publicationsYou can also search for this author in

PubMed Google ScholarDamian ObidowskiView author publicationsYou can also search for this author in

PubMed Google ScholarDamian ObidowskiView作者出版物您也可以在

PubMed Google ScholarDariusz J. JaskólskiView author publicationsYou can also search for this author in

PubMed Google ScholarDariusz J.JaskólskiView作者出版物您也可以在

PubMed Google ScholarKrzysztof JóźwikView author publicationsYou can also search for this author in

PubMed Google ScholarKatharine DrummondView author publicationsYou can also search for this author in

PubMed Google ScholarKatharine DrummondView作者出版物您也可以在

PubMed Google ScholarLars WesselsView author publicationsYou can also search for this author in

PubMed谷歌学者WesselsView作者出版物您也可以在

PubMed Google ScholarPeter VajkoczyView author publicationsYou can also search for this author in

PubMed Google ScholarPeter VajkoczyView作者出版物您也可以在

PubMed Google ScholarAlexios A. AdamidesView author publicationsYou can also search for this author in

PubMed Google ScholarAlexios A.AdamidesView作者出版物您也可以在

PubMed Google ScholarContributionsKW: Conceptualization, Investigation, Resources, Writing – original draft preparation; PR: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data Curation, Writing – original draft preparation, Funding acquisition; ZT: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data Curation, Writing – original draft preparation, Writing – review and editing; BP: Conceptualization, Writing – review and editing; AJ: Conceptualization, Writing – review and editing; AF: Conceptualization, Writing – review and editing; DO: Conceptualization, Methodology, Validation, Writing – original draft preparation, Writing – review and editing; DJ: Resources, Writing – original draft preparation; KJ: Resources, Writing – original draft preparation, Supervision, Funding acquisition.

PubMed谷歌学术贡献SKW:概念化,调查,资源,写作-原稿准备;PR:概念化,方法论,软件,验证,正式分析,调查,数据管理,写作-原稿准备,资金获取;ZT:概念化,方法论,软件,验证,形式分析,调查,数据管理,写作-原稿准备,写作-审查和编辑;BP:概念化,写作-评论和编辑;AJ:概念化,写作-评论和编辑;;DO:概念化,方法论,验证,写作-原稿准备,写作-审查和编辑;DJ:资源,写作-原稿准备;KJ:资源,写作-原稿准备,监督,资金获取。

KD: Conceptualization, Writing – original draft preparation, LW: Conceptualization, Writing – review and editing; PV: Conceptualization, Writing – original draft preparation, AA: Conceptualization, Resources, Writing – original draft preparation;Corresponding authorsCorrespondence to.

KD:概念化,写作-原稿准备,LW:概念化,写作-评论和编辑;;通讯作者通讯。

Karol Wiśniewski or Damian Obidowski.Ethics declarations

卡罗尔·维希涅夫斯基或达米安·奥比多夫斯基。伦理声明

Competing interests

相互竞争的利益

The authors declare that the article content was composed in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

作者声明,文章内容是在没有任何可能被解释为潜在利益冲突的商业或财务关系的情况下撰写的。

Ethics approval

道德认可

The study was approved by the local Bioethical Committee at the Medical University of Lodz, application number RNN/119/15/KE. All experiments were performed in accordance with relevant guidelines and regulations. The study was designed in accordance with the Good Clinical Practice (GCP) guidelines and was conducted according to the principles of the Declaration of Helsinki.

该研究得到了洛兹医科大学当地生物伦理委员会的批准,申请号为RNN/119/15/KE。所有实验均按照相关指南和法规进行。该研究是根据良好临床实践(GCP)指南设计的,并根据赫尔辛基宣言的原则进行。

Informed consent was obtained from the participant prior to inclusion..

在纳入之前,已获得参与者的知情同意。。

Additional informationPublisher's noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Video 1.Supplementary Video 2.Supplementary Video 3.Supplementary Video 4.Supplementary Video 5.Supplementary Video 6.Supplementary Video 7.Supplementary Video 8.Rights and permissions.

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充视频1。补充视频2。补充视频3。补充视频4。补充视频5。补充视频6。补充视频7。补充视频8。权利和权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleWiśniewski, K., Reorowicz, P., Tyfa, Z. et al. Intracranial bypass for giant aneurysms treatment assessed by computational fluid dynamics (CFD) analysis.

转载和许可本文引用本文Wiśniewski,K.,Reorowicz,P.,Tyfa,Z。等人。通过计算流体动力学(CFD)分析评估巨大动脉瘤治疗的颅内旁路术。

Sci Rep 14, 21548 (2024). https://doi.org/10.1038/s41598-024-72591-wDownload citationReceived: 18 April 2024Accepted: 09 September 2024Published: 16 September 2024DOI: https://doi.org/10.1038/s41598-024-72591-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1421548(2024)。https://doi.org/10.1038/s41598-024-72591-wDownload引文接收日期:2024年4月18日接受日期:2024年9月9日发布日期:2024年9月16日OI:https://doi.org/10.1038/s41598-024-72591-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsComputational fluid dynamicsIntracranial bypassGiant aneurysmsThrombosisCerebral blood flow hemodynamics

关键词计算流体动力学颈内动脉旁路巨大动脉瘤血栓形成脑血流动力学

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。