EN
登录

慢性肾脏病炎症和纤维化交叉路口的代谢

Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease

Nature 等信源发布 2024-09-17 01:16

可切换为仅中文


AbstractChronic kidney disease (CKD), defined as persistent (>3 months) kidney functional loss, has a growing prevalence (>10% worldwide population) and limited treatment options. Fibrosis driven by the aberrant accumulation of extracellular matrix is the final common pathway of nearly all types of chronic repetitive injury in the kidney and is considered a hallmark of CKD.

摘要慢性肾病(CKD)定义为持续性(>3个月)肾功能丧失,其患病率越来越高(>10%的全球人口),治疗选择有限。由细胞外基质异常积累驱动的纤维化是几乎所有类型的肾脏慢性重复性损伤的最终共同途径,被认为是CKD的标志。

Myofibroblasts are key extracellular matrix-producing cells that are activated by crosstalk between damaged tubules and immune cells. Emerging evidence indicates that metabolic alterations are crucial contributors to the pathogenesis of kidney fibrosis by affecting cellular bioenergetics and metabolite signalling.

肌成纤维细胞是产生细胞外基质的关键细胞,其被受损小管和免疫细胞之间的串扰激活。新出现的证据表明,代谢改变通过影响细胞生物能学和代谢物信号传导而成为肾纤维化发病机制的关键因素。

Immune cell functions are intricately connected to their metabolic characteristics, and kidney cells seem to undergo cell-type-specific metabolic shifts in response to damage, all of which can determine injury and repair responses in CKD. A detailed understanding of the heterogeneity in metabolic reprogramming of different kidney cellular subsets is essential to elucidating communication processes between cell types and to enabling the development of metabolism-based innovative therapeutic strategies against CKD.Key points.

免疫细胞的功能与其代谢特征密切相关,肾细胞似乎会因损伤而发生细胞类型特异性代谢变化,所有这些都可以确定CKD的损伤和修复反应。详细了解不同肾脏细胞亚群代谢重编程的异质性对于阐明细胞类型之间的通讯过程以及开发基于代谢的针对CKD的创新治疗策略至关重要。关键点。

The kidney has distinctive anatomical and physiological characteristics, and kidney cell types have specialized metabolic traits tailored to their specific functions and location.

肾脏具有独特的解剖学和生理学特征,肾细胞类型具有针对其特定功能和位置量身定制的特殊代谢特征。

In general, all kidney cells — including epithelial, endothelial, stromal and immune cells — can have an impact on fibrosis, and their roles are determined by spatiotemporal metabolic reprogramming that coordinates their effector functions and interactions.

一般来说,所有肾细胞-包括上皮细胞,内皮细胞,基质细胞和免疫细胞-都可以对纤维化产生影响,它们的作用是通过时空代谢重编程来确定的,这些重编程可以协调它们的效应功能和相互作用。

Identification of cell-type-specific metabolic shifts could enable the recognition of novel cell subpopulations with distinctive roles in adaptive or fibrotic kidney regeneration.

鉴定细胞类型特异性代谢变化可以识别在适应性或纤维化肾再生中具有独特作用的新细胞亚群。

Targeting metabolic routes and energy-sensing molecules to promote an immune anti-inflammatory or quiescent state might avoid chronic inflammation and subsequent development of kidney fibrosis.

靶向代谢途径和能量感应分子以促进免疫抗炎或静止状态可能会避免慢性炎症和随后的肾纤维化发展。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Cellular crosstalk in the pathological progression of kidney fibrosis.Fig. 2: Main pathways of cellular metabolism involved in kidney fibrogenesis.Fig. 3: Metabolic alterations in tubular epithelial cells contributing to kidney fibrogenesis.Fig. 4: Metabolomic reprogramming of endothelial cells, podocytes and myofibroblasts..

图1:肾纤维化病理进展中的细胞串扰。图2:参与肾纤维化的细胞代谢的主要途径。。图4:内皮细胞,足细胞和肌成纤维细胞的代谢组学重编程。。

ReferencesWang, Z. et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92, 1369–1377 (2010).CAS

参考文献Wang,Z。等人。成年期主要器官和组织的特定代谢率:通过静息能量消耗的机制模型进行评估。美国J.克林。营养。921369-1377(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cargill, K. & Sims-Lucas, S. Metabolic requirements of the nephron. Pediatr. Nephrol. 35, 1–8 (2020).PubMed

Cargill,K。&Sims-Lucas,S。肾单位的代谢需求。儿科。肾。35,1-8(2020)。PubMed出版社

Google Scholar

谷歌学者

Soltoff, S. P. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48, 9–31 (1986).CAS

Soltoff,S.P.ATP和肾细胞功能的调节。年。生理学评论。48,9-31(1986)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L. & Perkovic, V. Chronic kidney disease. Lancet 398, 786–802 (2021).CAS

Kalantar Zadeh,K.,Jafar,T.H.,Nitsch,D.,Neuen,B.L。和Perkovic,V。慢性肾病。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).CAS

Humphreys,B.D。肾纤维化的机制。年。生理学评论。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yu, S. M. & Bonventre, J. V. Acute kidney injury and maladaptive tubular repair leading to renal fibrosis. Curr. Opin. Nephrol. Hypertens. 29, 310–318 (2020).CAS

Yu,S.M。&Bonventre,J.V。急性肾损伤和适应不良的肾小管修复导致肾纤维化。货币。奥平。肾。高血压。29310-318(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).CAS

Kuppe,C.等人。解码人肾纤维化中的肌成纤维细胞起源。自然589281-286(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yuan, Q., Tang, B. & Zhang, C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal. Transduct. Target. Ther. 7, 182 (2022).CAS

Yuan,Q.,Tang,B。&Zhang,C。慢性肾脏疾病的信号通路,对治疗的意义。信号。Transduct公司。目标。他们。7182(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abedini, A. et al. Spatially resolved human kidney multi-omics single cell atlas highlights the key role of the fibrotic microenvironment in kidney disease progression. Nat. Genet. 56, 1712–1724 (2024).CAS

Abedini,A。等人,《空间分辨的人类肾脏多组学单细胞图谱》强调了纤维化微环境在肾脏疾病进展中的关键作用。纳特·吉内特。561712-1724(2024)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lake, B. B. et al. An atlas of healthy and injured cell states and niches in the human kidney. Nature 619, 585–594 (2023).CAS

Lake,B.B.等人。人类肾脏健康和受损细胞状态和生态位的图谱。自然619585-594(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, G. et al. Analyzing cell-type-specific dynamics of metabolism in kidney repair. Nat. Metab. 4, 1109–1118 (2022).CAS

Wang,G.等人。分析肾脏修复中细胞类型特异性代谢动力学。自然代谢。41109-1118(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).CAS

Yoo,H.C.,Yu,Y.C.,Sung,Y。&Han,J.M。谷氨酰胺在细胞代谢中的依赖性。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Houten, S. M. & Wanders, R. J. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 33, 469–477 (2010).CAS

Houten,S.M。&Wanders,R.J。线粒体脂肪酸β-氧化生物化学概述。J、 继承.Metab。Dis。33469-477(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).CAS

Liu,G.Y.&Sabatini,D.M.mTOR研究营养,生长,衰老和疾病的关系。Nat。Rev。Mol。Cell Biol。21183-203(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13, 1016–1023 (2011).CAS

Mihaylova,M.M。&Shaw,R.J。AMPK信号通路协调细胞生长,自噬和代谢。自然细胞生物学。131016-1023(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Clark, J. Z. et al. Representation and relative abundance of cell-type selective markers in whole-kidney RNA-Seq data. Kidney Int. 95, 787–796 (2019).CAS

Clark,J.Z.等人。全肾RNA-Seq数据中细胞类型选择性标记的表示和相对丰度。肾脏国际95787-796(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hansen, J. et al. A reference tissue atlas for the human kidney. Sci. Adv. 8, eabn4965 (2022).CAS

。科学。Adv.8,eabn4965(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, W. et al. Kidney glycolysis serves as a mammalian phosphate sensor that maintains phosphate homeostasis. J. Clin. Invest. 133, e164610 (2023).CAS

周,W。等人。肾糖酵解作为维持磷酸盐稳态的哺乳动物磷酸盐传感器。J、 临床。投资。133,e164610(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Legouis, D., Faivre, A., Cippa, P. E. & de Seigneux, S. Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. Nephrol. Dial. Transpl. 37, 1417–1425 (2022).CAS

Legouis,D.,Faivre,A.,Cippa,P.E。&de Seigneux,S。肾脏糖异生:肾脏在全身葡萄糖代谢中的作用被低估。肾。拨号。运输。371417-1425(2022)。中科院

Google Scholar

谷歌学者

Onodera, T. et al. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization. Nat. Commun. 14, 6531 (2023).CAS

Onodera,T。等人。内源性肾脏脂联素通过增强丙酮酸和脂肪酸的利用来驱动糖异生。国家公社。146531(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lyu, Z. et al. PPARγ maintains the metabolic heterogeneity and homeostasis of renal tubules. EBioMedicine 38, 178–190 (2018).CAS

Lyu,Z。等人。PPARγ维持肾小管的代谢异质性和体内平衡。EBioMedicine 38178-190(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brinkkoetter, P. T. et al. Anaerobic glycolysis maintains the glomerular filtration barrier independent of mitochondrial metabolism and dynamics. Cell Rep. 27, 1551–1566.e5 (2019).CAS

Brinkkoetter,P.T。等人。无氧糖酵解维持肾小球滤过屏障,与线粒体代谢和动力学无关。Cell Rep.271551–1566.e5(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779 e720 (2020).CAS

Kalucka,J。等人。小鼠内皮细胞的单细胞转录组图谱。细胞180764-779 e720(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dumas, S. J. et al. Single-cell RNA sequencing reveals renal endothelium heterogeneity and metabolic adaptation to water deprivation. J. Am. Soc. Nephrol. 31, 118–138 (2020).CAS

Dumas,S.J.等人。单细胞RNA测序揭示了肾内皮异质性和代谢对缺水的适应。J、 美国社会肾脏病学会。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kalucka, J. et al. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 28, 881–894.e13 (2018).CAS

Kalucka,J。等人。静止内皮细胞通过氧化还原稳态上调脂肪酸β-氧化以进行血管保护。。28881-894.e13(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Setten, E. et al. Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context. Nat. Commun. 13, 6499 (2022).CAS

Setten,E.等人。通过在免疫代谢背景下模拟巨噬细胞-成纤维细胞相互作用来了解纤维化发病机制。国家公社。136499(2022年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kang, H. M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 21, 37–46 (2015).CAS

Kang,H.M.等人。肾小管上皮细胞中脂肪酸氧化缺陷在肾纤维化发展中起关键作用。《自然医学》21,37-46(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Muto, Y. et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12, 2190 (2021).CAS

Muto,Y.等人,《单细胞转录和染色质可及性分析》重新定义了成人肾脏中的细胞异质性。国家公社。122190(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, H., Dixon, E. E., Wu, H. & Humphreys, B. D. Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis. Cell Metab. 34, 1977–1998.e9 (2022).CAS

Li,H.,Dixon,E.E.,Wu,H。&Humphreys,B.D。全面的单细胞转录谱分析定义了肾纤维化过程中共享且独特的上皮损伤反应。。341977–1998.e9(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Simon, N. & Hertig, A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front. Med. 2, 52 (2015).

Simon,N。&Hertig,A。肾小管上皮细胞中脂肪酸氧化的改变:从急性肾损伤到肾纤维化。正面。医学杂志2,52(2015)。

Google Scholar

谷歌学者

Miguel, V. et al. Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. J. Clin. Invest. 131, e140695 (2021).CAS

Miguel,V。等人。肾小管Cpt1a过表达通过恢复线粒体稳态来防止肾纤维化。J、 临床。投资。131,e140695(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Afshinnia, F. et al. Impaired β-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. J. Am. Soc. Nephrol. 29, 295–306 (2018).CAS

。J、 美国社会肾脏病学会。29295-306(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dhillon, P. et al. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. Cell Metab. 33, 379–394 e378 (2021).CAS

。。33379-394 e378(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Piret, S. E. et al. Loss of proximal tubular transcription factor Krüppel-like factor 15 exacerbates kidney injury through loss of fatty acid oxidation. Kidney Int. 100, 1250–1267 (2021).CAS

Piret,S.E。等人。近端肾小管转录因子Krüppel样因子15的缺失通过脂肪酸氧化的丧失加剧了肾损伤。肾脏Int.1001250–1267(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Price, N. L. et al. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight 4, e131102 (2019).PubMed

Price,N.L.等人。miR-33的遗传缺陷或药理学抑制可防止肾纤维化。JCI Insight 4,e131102(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miguel, V., Ramos, R., Garcia-Bermejo, L., Rodriguez-Puyol, D. & Lamas, S. The program of renal fibrogenesis is controlled by microRNAs regulating oxidative metabolism. Redox Biol. 40, 101851 (2021).CAS

Miguel,V.,Ramos,R.,Garcia-Bermejo,L.,Rodriguez-Puyol,D。&Lamas,S。肾纤维化的程序受调节氧化代谢的microRNA控制。氧化还原生物。40101851(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hammoud, S. et al. Tubular CPT1A deletion minimally affects aging and chronic kidney injury. JCI Insight 9, e171961 (2024).PubMed

Hammoud,S。等人。管状CPT1A缺失对衰老和慢性肾损伤的影响最小。JCI Insight 9,e171961(2024)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yuan, L. et al. Macrophage-derived exosomal miR-195a-5p impairs tubular epithelial cells mitochondria in acute kidney injury mice. FASEB J. 37, e22691 (2023).CAS

Yuan,L。等人。巨噬细胞衍生的外泌体miR-195a-5p损害急性肾损伤小鼠的肾小管上皮细胞线粒体。FASEB J.37,e22691(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Han, Y. C. et al. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death Dis. 12, 925 (2021).CAS

Han,Y.C.等人,AMPK激动剂通过激活高脂肪和链脲佐菌素诱导的糖尿病小鼠的线粒体自噬来减轻肾小管间质纤维化。细胞死亡Dis。12925(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miguel, V. et al. Enhanced fatty acid oxidation through metformin and baicalin as therapy for COVID-19 and associated inflammatory states in lung and kidney. Redox Biol. 68, 102957 (2023).CAS

Miguel,V。等人通过二甲双胍和黄芩苷增强脂肪酸氧化,作为COVID-19和肺和肾相关炎症状态的治疗。氧化还原生物。68102957(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gui, Y. et al. Calponin 2 harnesses metabolic reprogramming to determine kidney fibrosis. Mol. Metab. 71, 101712 (2023).CAS

Gui,Y.等人,Calponin 2利用代谢重编程来确定肾纤维化。分子代谢。71101712(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ren, L. et al. The role of lipotoxicity in kidney disease: from molecular mechanisms to therapeutic prospects. Biomed. Pharmacother. 161, 114465 (2023).CAS

。生物医学。药剂师。161114465(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yoshioka, K. et al. Lysophosphatidylcholine mediates fast decline in kidney function in diabetic kidney disease. Kidney Int. 101, 510–526 (2022).CAS

Yoshioka,K。等人。溶血磷脂酰胆碱介导糖尿病肾病肾功能的快速下降。肾脏Int.101510–526(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mukhi, D. et al. ACSS2 gene variants determine kidney disease risk by controlling de novo lipogenesis in kidney tubules. J. Clin. Invest. e172963 (2023).Mori, Y. et al. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab.

Mukhi,D。等人。ACSS2基因变异通过控制肾小管中的从头脂肪生成来确定肾脏疾病风险。J、 临床。投资。e172963(2023)。Mori,Y。等人。KIM-1介导肾小管细胞摄取脂肪酸以促进进行性糖尿病肾病。细胞代谢。

33, 1042–1061.e7 (2021).CAS .

331042-1061.e7(2021)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Y. et al. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis. 11, 994 (2020).CAS

Chen,Y.等人。FATP2介导的肾小管脂质代谢重编程参与肾纤维化。细胞死亡Dis。11994(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rojas-Morales, P., Pedraza-Chaverri, J. & Tapia, E. Ketone bodies for kidney injury and disease. Adv. Redox Res. 2, 100009 (2021).CAS

Rojas-Morales,P.,Pedraza-Chaverri,J。&Tapia,E。用于肾损伤和疾病的酮体。高级氧化还原决议210009(2021)。中科院

Google Scholar

谷歌学者

Perry, R. J. & Shulman, G. I. Sodium-glucose cotransporter-2 inhibitors: understanding the mechanisms for therapeutic promise and persisting risks. J. Biol. Chem. 295, 14379–14390 (2020).CAS

Perry,R.J。&Shulman,G.I。钠-葡萄糖协同转运蛋白-2抑制剂:了解治疗前景和持续风险的机制。J、 生物。化学。29514379–14390(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, S. et al. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free. Radic. Biol. Med. 152, 632–649 (2020).CAS

Li,S。等人。Drp1调节的PARK2依赖性线粒体自噬可预防单侧输尿管梗阻的肾纤维化。。辐射。《生物医学》152632-649(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tang, C. et al. Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol. 17, 299–318 (2021).CAS

Tang,C.等人。肾损伤和修复中的线粒体质量控制。自然修订版Nephrol。17299-318(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Perry, H. M. et al. Dynamin-related protein 1 deficiency promotes recovery from AKI. J. Am. Soc. Nephrol. 29, 194–206 (2018).CAS

Perry,H.M.等人。动力蛋白相关蛋白1缺乏促进AKI的恢复。J、 美国社会肾脏病学会。29194-206(2018)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gall, J. M. et al. Conditional knockout of proximal tubule mitofusin 2 accelerates recovery and improves survival after renal ischemia. J. Am. Soc. Nephrol. 26, 1092–1102 (2015).CAS

Gall,J.M.等人。近端小管线粒体融合蛋白2的条件性敲除可加速肾缺血后的恢复并提高存活率。J、 美国社会肾脏病学会。261092-1102(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vringer, E. & Tait, S. W. G. Mitochondria and cell death-associated inflammation. Cell Death Differ. 30, 304–312 (2023).CAS

Vringer,E。&Tait,S.W.G。线粒体和细胞死亡相关的炎症。细胞死亡不同。30304-312(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chung, K. W. et al. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab. 30, 784–799.e5 (2019).CAS

Chung,K.W。等人。线粒体损伤和STING途径的激活导致肾脏炎症和纤维化。。30784-799.e5(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Komada, T. et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J. Am. Soc. Nephrol. 29, 1165–1181 (2018).CAS

Komada,T。等人。巨噬细胞摄取坏死细胞DNA激活AIM2炎性体以调节CKD中的促炎表型。J、 美国社会肾脏病学会。291165-1181(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quinn, G. Z., Dhillon, P. & Susztak, K. It takes two to tango: the role of dysregulated metabolism and inflammation in kidney disease development. Semin. Nephrol. 40, 199–205 (2020).CAS

Quinn,G.Z.,Dhillon,P。&Susztak,K。探戈需要两个:代谢失调和炎症在肾脏疾病发展中的作用。塞米。肾。40199-205(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, S. et al. Inhibition of PFKP in renal tubular epithelial cell restrains TGF-β induced glycolysis and renal fibrosis. Cell Death Dis. 14, 816 (2023).CAS

Yang,S。等人。抑制肾小管上皮细胞中的PFKP抑制TGF-β诱导的糖酵解和肾纤维化。细胞死亡Dis。14816(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ahmadi, A. et al. Chronic kidney disease is associated with attenuated plasma metabolome response to oral glucose tolerance testing. J. Ren. Nutr. 33, 316–325 (2023).CAS

Ahmadi,A。等人。慢性肾病与口服葡萄糖耐量试验的血浆代谢组反应减弱有关。J、 任。营养。33316–325(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wei, Q. et al. Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am. J. Physiol. Renal Physiol. 316, F1162–F1172 (2019).CAS

Wei,Q。等人。糖酵解抑制剂通过对成纤维细胞和肾小管细胞的不同作用抑制肾间质纤维化。Am.J.Physiol。肾脏生理学。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Verissimo, T. et al. Decreased renal gluconeogenesis is a hallmark of chronic kidney disease. J. Am. Soc. Nephrol. 33, 810–827 (2022).CAS

Verissimo,T。等人。肾脏糖异生减少是慢性肾脏疾病的标志。J、 美国社会肾脏病学会。33810-827(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Renal Physiol. 313, F561–F575 (2017).CAS

丁,H。等人。抑制有氧糖酵解抑制肾间质成纤维细胞活化和肾纤维化。Am.J.Physiol。肾脏生理学。313,F561–F575(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, D. et al. TSLP/TSLPR promotes renal fibrosis by activating STAT3 in renal fibroblasts. Int. Immunopharmacol. 121, 110430 (2023).CAS

Wang,D。等人。TSLP/TSLPR通过激活肾成纤维细胞中的STAT3来促进肾纤维化。国际免疫药理学。121110430(2023)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Garibotto, G. et al. Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clin. Nutr. 29, 424–433 (2010).CAS

Garibotto,G。等人。人类肾脏和慢性肾脏病患者的氨基酸和蛋白质代谢。临床。营养。29424-433(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Scantlebery, A. M. et al. The dysregulation of metabolic pathways and induction of the pentose phosphate pathway in renal ischaemia-reperfusion injury. J. Pathol. 253, 404–414 (2021).CAS

Scantlebery,A.M.等人。肾缺血再灌注损伤中代谢途径的失调和磷酸戊糖途径的诱导。J、 病理学。253404-414(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, H. L. et al. Metabolic reprogramming by the S-nitroso-CoA reductase system protects against kidney injury. Nature 565, 96–100 (2019).CAS

Zhou,H.L.等人。S-亚硝基辅酶A还原酶系统的代谢重编程可防止肾损伤。自然565,96-100(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Beld, J., Lee, D. J. & Burkart, M. D. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. Mol. Biosyst. 11, 38–59 (2015).CAS

Beld,J.,Lee,D。J。和Burkart,M。D。重温脂肪酸生物合成:结构阐明和代谢工程。Mol。Biosyst。11,38-59(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, M. et al. Phosphorylation of acetyl-CoA carboxylase by AMPK reduces renal fibrosis and is essential for the anti-fibrotic effect of metformin. J. Am. Soc. Nephrol. 29, 2326–2336 (2018).CAS

AMPK对乙酰辅酶A羧化酶的磷酸化可减少肾纤维化,对二甲双胍的抗纤维化作用至关重要。J、 美国社会肾脏病学会。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kikuchi, H. et al. Failure to sense energy depletion may be a novel therapeutic target in chronic kidney disease. Kidney Int. 95, 123–137 (2019).CAS

Kikuchi,H。等人。无法感知能量消耗可能是慢性肾脏疾病的一个新的治疗靶点。肾脏Int.95123-137(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cao, H. et al. Tuberous sclerosis 1 (Tsc1) mediated mTORC1 activation promotes glycolysis in tubular epithelial cells in kidney fibrosis. Kidney Int. 98, 686–698 (2020).CAS

Cao,H。等人。结节性硬化症1(Tsc1)介导的mTORC1激活促进肾纤维化中肾小管上皮细胞的糖酵解。肾脏国际98686-698(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schaub, J. A. et al. SGLT2 inhibitors mitigate kidney tubular metabolic and mTORC1 perturbations in youth-onset type 2 diabetes. J. Clin. Invest. 133, e164486 (2023).CAS

Schaub,J.A。等人,SGLT2抑制剂可减轻年轻2型糖尿病患者的肾小管代谢和mTORC1扰动。J、 临床。投资。133,e164486(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hiatt, M. J., Ivanova, L., Trnka, P., Solomon, M. & Matsell, D. G. Urinary tract obstruction in the mouse: the kinetics of distal nephron injury. Lab. Invest. 93, 1012–1023 (2013).PubMed

Hiatt,M.J.,Ivanova,L.,Trnka,P.,Solomon,M。&Matsell,D.G。小鼠尿路梗阻:远端肾单位损伤的动力学。实验室投资。。PubMed出版社

Google Scholar

谷歌学者

Nam, S. A. et al. Autophagy attenuates tubulointerstitial fibrosis through regulating transforming growth factor-β and NLRP3 inflammasome signaling pathway. Cell Death Dis. 10, 78 (2019).PubMed

Nam,S.A.等人。自噬通过调节转化生长因子-β和NLRP3炎性体信号通路来减轻肾小管间质纤维化。细胞死亡Dis。10,78(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, S. H. et al. Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J. Am. Soc. Nephrol. 27, 439–453 (2016).CAS

Han,S.H.等人。肾小管上皮细胞中Lkb1的缺失通过改变代谢导致CKD。J、 美国社会肾脏病学会。27439-453(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gu, M. et al. Palmitoyltransferase DHHC9 and acyl protein thioesterase APT1 modulate renal fibrosis through regulating β-catenin palmitoylation. Nat. Commun. 14, 6682 (2023).CAS

Gu,M。等人。棕榈酰转移酶DHHC9和酰基蛋白硫酯酶APT1通过调节β-连环蛋白棕榈酰化来调节肾纤维化。国家公社。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Singh, N., Singh, H., Jagavelu, K., Wahajuddin, M. & Hanif, K. Fatty acid synthase modulates proliferation, metabolic functions and angiogenesis in hypoxic pulmonary artery endothelial cells. Eur. J. Pharmacol. 815, 462–469 (2017).CAS

Singh,N.,Singh,H.,Jagavelu,K.,Wahajuddin,M。&Hanif,K。脂肪酸合酶调节缺氧肺动脉内皮细胞的增殖,代谢功能和血管生成。欧洲药理学杂志。815462-469(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tiwari, R. et al. Post-ischemic inactivation of HIF prolyl hydroxylases in endothelium promotes maladaptive kidney repair by inducing glycolysis. Preprint at bioRxiv https://doi.org/10.1101/2023.10.03.560700 (2023).Janaszak-Jasiecka, A., Siekierzycka, A., Ploska, A., Dobrucki, I. T. & Kalinowski, L.

Tiwari,R。等人。内皮中HIF脯氨酰羟化酶的缺血后失活通过诱导糖酵解促进适应不良的肾脏修复。bioRxiv预印本https://doi.org/10.1101/2023.10.03.560700(2023年)。Janaszak Jasiecka,A.,Siekierzycka,A.,Ploska,A.,Dobrucki,I.T.&Kalinowski,L。

Endothelial dysfunction driven by hypoxia-the influence of oxygen deficiency on NO bioavailability. Biomolecules 11, 982 (2021).CAS .

缺氧引起的内皮功能障碍缺氧对NO生物利用度的影响。生物分子11982(2021)。CAS。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014).CAS

Daehn,I。等人。内皮线粒体氧化应激决定节段性肾小球硬化的足细胞耗竭。J、 临床。投资。1241608-1621(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tseng, A. H., Wu, L. H., Shieh, S. S. & Wang, D. L. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. Biochem. J. 464, 157–168 (2014).CAS

Tseng,A.H.,Wu,L.H.,Shieh,S.S。&Wang,D.L。SIRT3与FOXO3乙酰化,磷酸化和泛素化的相互作用介导内皮细胞对缺氧的反应。生物化学。J、 464157-168(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Srivastava, S. P. et al. Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys. iScience 24, 102390 (2021).CAS

Srivastava,S.P.等。内皮SIRT3调节糖尿病肾脏中肌成纤维细胞的代谢变化。iScience 24102390(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Doddaballapur, A. et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler. Thromb. Vasc. Biol. 35, 137–145 (2015).CAS

Doddaballapur,A。等人。层流剪切应力通过KLF2介导的PFKFB3抑制来抑制内皮细胞代谢。动脉硬化。血栓。Vasc。生物学35137-145(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, G. et al. Shear stress regulation of endothelial glycocalyx structure is determined by glucobiosynthesis. Arterioscler. Thromb. Vasc. Biol. 40, 350–364 (2020).PubMed

Wang,G。等人。内皮糖萼结构的剪切应力调节由葡萄糖生物合成决定。动脉硬化。血栓。Vasc。生物学杂志40350-364(2020)。PubMed出版社

Google Scholar

谷歌学者

Kim, J. S. et al. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 309, H425–433, (2015).CAS

Kim,J.S.等人。剪切应力诱导的线粒体生物发生减少了内皮细胞微粒的释放。Am.J.Physiol。心脏循环。生理学。309,H425–433,(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Y. et al. Glutaredoxin 1 mediates the protective effect of steady laminar flow on endothelial cells against oxidative stress-induced apoptosis via inhibiting Bim. Sci. Rep. 7, 15539 (2017).PubMed

Li,Y。等人。谷氧还蛋白1通过抑制Bim介导稳定层流对内皮细胞对氧化应激诱导的细胞凋亡的保护作用。科学。代表715539(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fang, Y. & Davies, P. F. Site-specific microRNA-92a regulation of Krüppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler. Thromb. Vasc. Biol. 32, 979–987 (2012).CAS

Fang,Y。&Davies,P。F。位点特异性microRNA-92a对动脉粥样硬化内皮中Krüppel样因子4和2的调节。动脉硬化。血栓。Vasc。生物学32979-987(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiao, H. et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation 128, 632–642 (2013).CAS

Xiao,H。等人。固醇调节元件结合蛋白2激活内皮中NLRP3炎性体介导血流动力学诱导的动脉粥样硬化易感性。发行量128632–642(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dumas, S. J. et al. Phenotypic diversity and metabolic specialization of renal endothelial cells. Nat. Rev. Nephrol. 17, 441–464 (2021).CAS

Dumas,S.J.等人。肾内皮细胞的表型多样性和代谢特化。自然修订版Nephrol。17441-464(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rohlenova, K. et al. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab. 31, 862–877 e814 (2020).CAS

Rohlenova,K。等人。单细胞RNA测序绘制病理性血管生成中的内皮代谢可塑性。。31862–877 e814(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Huang, H. et al. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J. 36, 2334–2352 (2017).CAS

Huang,H.等人。谷氨酰胺和相互关联的天冬酰胺代谢在血管形成中的作用。EMBO J.362334–2352(2017)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schoors, S. et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature 520, 192–197 (2015).CAS

Schoors,S.等人。脂肪酸碳对于内皮细胞中dNTP的合成至关重要。自然520192-197(2015)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

West, X. Z. et al. Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467, 972–976 (2010).CAS

West,X.Z.等人。氧化应激通过用新型内源性配体激活TLR2来诱导血管生成。《自然》467972–976(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reynolds, P. A. The mechanobiology of kidney podocytes in health and disease. Clin. Sci. 134, 1245–1253 (2020).CAS

Reynolds,P.A。肾足细胞在健康和疾病中的机械生物学。临床。科学。1341245-1253(2020)。中科院

Google Scholar

谷歌学者

Miyake, Y. et al. Upregulation of OASIS/CREB3L1 in podocytes contributes to the disturbance of kidney homeostasis. Commun. Biol. 5, 734 (2022).CAS

Miyake,Y。等人。足细胞中OASIS/CREB3L1的上调有助于肾脏稳态的紊乱。Commun公司。生物学5734(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Z. et al. Reduction of anaerobic glycolysis contributes to angiotensin II-induced podocyte injury with foot process effacement. Kidney Int. 103, 735–748 (2023).CAS

Chen,Z。等人。无氧糖酵解的减少有助于血管紧张素II诱导的足细胞损伤,并伴有足突消失。。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Langer, S., Kreutz, R. & Eisenreich, A. Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions. J. Nephrol. 29, 765–773 (2016).CAS

Langer,S.,Kreutz,R。&Eisenreich,A。二甲双胍在高糖条件下调节人足细胞的凋亡和细胞信号传导。J、 肾。29765-773(2016)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fu, J. et al. Regeneration of glomerular metabolism and function by podocyte pyruvate kinase M2 in diabetic nephropathy. JCI Insight 7, e155260 (2022).PubMed

Fu,J.等人。糖尿病肾病足细胞丙酮酸激酶M2对肾小球代谢和功能的再生。JCI Insight 7,e155260(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Horne, S. J. et al. Podocyte-specific loss of Krüppel-like factor 6 increases mitochondrial injury in diabetic kidney disease. Diabetes 67, 2420–2433 (2018).CAS

Horne,S.J.等人。Krüppel样因子6的足细胞特异性丢失会增加糖尿病肾病中的线粒体损伤。糖尿病672420-2433(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Galvan, D. L. et al. Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice. J. Clin. Invest. 129, 2807–2823 (2019).PubMed

Galvan,D.L.等人,Drp1S600磷酸化调节糖尿病小鼠的线粒体分裂和肾病进展。J、 临床。投资。1292807-2823(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, S. Y. et al. Increasing the level of peroxisome proliferator-activated receptor γ coactivator-1α in podocytes results in collapsing glomerulopathy. JCI Insight 2, e92930 (2017).PubMed

Li,S.Y.等人。足细胞中过氧化物酶体增殖物激活受体γ共激活因子-1α水平的升高会导致肾小球疾病的塌陷。JCI Insight 2,e92930(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, J. J., Wilbon, S. S. & Fornoni, A. Podocyte lipotoxicity in CKD. Kidney360 2, 755–762 (2021).PubMed

Kim,J.J.,Wilbon,S.S。和Fornoni,A。CKD中的足细胞脂毒性。肾脏360 2755-762(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lv, F. et al. CD36 aggravates podocyte injury by activating NLRP3 inflammasome and inhibiting autophagy in lupus nephritis. Cell Death Dis. 13, 729 (2022).CAS

Lv,F。等人CD36通过激活NLRP3炎性体和抑制狼疮性肾炎中的自噬来加重足细胞损伤。细胞死亡Dis。13729(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, J. J. et al. Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine 63, 103162 (2021).CAS

Kim,J。J。等人。盘状蛋白结构域受体1激活将Alport综合征中的细胞外基质与足细胞脂毒性联系起来。EBioMedicine 63103162(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jiang, X. S. et al. PINK1/Parkin mediated mitophagy ameliorates palmitic acid-induced apoptosis through reducing mitochondrial ROS production in podocytes. Biochem. Biophys. Res. Commun. 525, 954–961 (2020).CAS

Jiang,X.S.等人。PINK1/Parkin介导的线粒体自噬通过减少足细胞中线粒体ROS的产生来改善棕榈酸诱导的细胞凋亡。生物化学。生物物理。公共资源。525954-961(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ducasa, G. M. et al. ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. J. Clin. Invest. 129, 3387–3400 (2019).PubMed

Ducasa,G.M.等人,ATP结合盒A1缺乏会导致足细胞中心磷脂驱动的线粒体功能障碍。J、 临床。投资。1293387-3400(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shen, Y. et al. VEGF-B antibody and interleukin-22 fusion protein ameliorates diabetic nephropathy through inhibiting lipid accumulation and inflammatory responses. Acta Pharm. Sin. B 11, 127–142 (2021).CAS

Shen,Y。等人。VEGF-B抗体和白细胞介素-22融合蛋白通过抑制脂质积聚和炎症反应来改善糖尿病肾病。药学学报。B 11127-142(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, X. et al. Sterol-O-acyltransferase-1 has a role in kidney disease associated with diabetes and Alport syndrome. Kidney Int. 98, 1275–1285 (2020).CAS

Liu,X。等人。固醇-O-酰基转移酶-1在与糖尿病和Alport综合征相关的肾脏疾病中起作用。肾脏Int.981275–1285(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).CAS

Henderson,N.C.,Rieder,F。&Wynn,T.A。纤维化:从机制到药物。《自然》587555–566(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kottmann, R. M. et al. Lactic acid is elevated in idiopathic pulmonary fibrosis and induces myofibroblast differentiation via pH-dependent activation of transforming growth factor-β. Am. J. Respir. Crit. Care Med. 186, 740–751 (2012).CAS

Kottmann,R.M.等人。乳酸在特发性肺纤维化中升高,并通过pH依赖性激活转化生长因子-β诱导肌成纤维细胞分化。Am.J.Respir。暴击。护理医学186740-751(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, H. et al. WWP2 regulates renal fibrosis and the metabolic reprogramming of profibrotic myofibroblasts. J. Am. Soc. Nephrol. 35, 696–718 (2024).PubMed

Chen,H。等人。WWP2调节肾纤维化和促纤维化肌成纤维细胞的代谢重编程。J、 美国社会肾脏病学会。。PubMed出版社

Google Scholar

谷歌学者

Li, L. et al. Orphan nuclear receptor COUP-TFII enhances myofibroblast glycolysis leading to kidney fibrosis. EMBO Rep. 22, e51169 (2021).CAS

Li,L。等人。孤儿核受体COUP-TFII增强肌成纤维细胞糖酵解,导致肾纤维化。EMBO代表22,e51169(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lemos, D. R. et al. Interleukin-1β activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).CAS

。J、 美国社会肾脏病学会。291690-1705(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hamanaka, R. B. et al. Glutamine metabolism is required for collagen protein synthesis in lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 61, 597–606 (2019).CAS

Hamanaka,R.B。等人。谷氨酰胺代谢是肺成纤维细胞中胶原蛋白合成所必需的。Am.J.Respir。细胞分子生物学。61597-606(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ge, J. et al. Glutaminolysis promotes collagen translation and stability via α-ketoglutarate-mediated mTOR activation and proline hydroxylation. Am. J. Respir. Cell Mol. Biol. 58, 378–390 (2018).CAS

Ge,J。等人。谷氨酰胺酶通过α-酮戊二酸介导的mTOR活化和脯氨酸羟基化促进胶原蛋白的翻译和稳定性。Am.J.Respir。细胞分子生物学。。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Imamura, M. et al. RIPK3 promotes kidney fibrosis via AKT-dependent ATP citrate lyase. JCI Insight 3, e94979 (2018).PubMed

Imamura,M。等人。RIPK3通过依赖AKT的ATP柠檬酸裂解酶促进肾纤维化。JCI Insight 3,e94979(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fukasawa, H. et al. Down-regulation of Smad7 expression by ubiquitin-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc. Natl Acad. Sci. USA 101, 8687–8692 (2004).CAS

Fukasawa,H。等人。通过泛素依赖性降解下调Smad7表达有助于小鼠阻塞性肾病的肾纤维化。程序。国家科学院。科学。美国1018687–8692(2004)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gronroos, E., Hellman, U., Heldin, C. H. & Ericsson, J. Control of Smad7 stability by competition between acetylation and ubiquitination. Mol. Cell 10, 483–493 (2002).CAS

Gronroos,E.,Hellman,U.,Heldin,C.H。&Ericsson,J。通过乙酰化和泛素化之间的竞争来控制Smad7的稳定性。分子细胞10483-493(2002)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, Y. et al. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) drives chronic kidney disease progression in male mice. Nat. Commun. 14, 1334 (2023).CAS

Yang,Y。等人。DNA依赖性蛋白激酶催化亚基(DNA-PKcs)驱动雄性小鼠的慢性肾脏疾病进展。国家公社。141334(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, D. Q. et al. Poricoic acid A activates AMPK to attenuate fibroblast activation and abnormal extracellular matrix remodelling in renal fibrosis. Phytomedicine 72, 153232 (2020).CAS

Chen,D.Q.等人。茯苓酸A激活AMPK以减弱肾纤维化中的成纤维细胞活化和异常细胞外基质重塑。植物医学72153232(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019).CAS

Stewart,B.J.等人。人类肾脏的时空免疫分区。科学3651461-1466(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

do Valle Duraes, F. et al. Immune cell landscaping reveals a protective role for regulatory T cells during kidney injury and fibrosis. JCI Insight 5, e130651 (2020).PubMed

do Valle Duraes,F。等人。免疫细胞景观揭示了调节性T细胞在肾损伤和纤维化过程中的保护作用。JCI Insight 5,e130651(2020)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Basso, P. J., Andrade-Oliveira, V. & Camara, N. O. S. Targeting immune cell metabolism in kidney diseases. Nat. Rev. Nephrol. 17, 465–480 (2021).CAS

Basso,P.J.,Andrade Oliveira,V。和Camara,N.O.S。针对肾脏疾病中的免疫细胞代谢。自然修订版Nephrol。17465-480(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cheung, M. D. et al. Resident macrophage subpopulations occupy distinct microenvironments in the kidney. JCI Insight 7, e161078 (2022).PubMed

Cheung,M.D.等人。常驻巨噬细胞亚群在肾脏中占据不同的微环境。JCI Insight 7,e161078(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, F. et al. Distinct fate, dynamics and niches of renal macrophages of bone marrow or embryonic origins. Nat. Commun. 11, 2280 (2020).CAS

Liu,F.等人。骨髓或胚胎来源的肾巨噬细胞的不同命运,动力学和生态位。国家公社。112280(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).CAS

并行代谢和转录数据的网络整合揭示了调节巨噬细胞极化的代谢模块。豁免42419-430(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jia, Y. et al. Tubular epithelial cell-derived extracellular vesicles induce macrophage glycolysis by stabilizing HIF-1α in diabetic kidney disease. Mol. Med. 28, 95 (2022).CAS

Jia,Y。等人。肾小管上皮细胞衍生的细胞外囊泡通过稳定糖尿病肾病中的HIF-1α诱导巨噬细胞糖酵解。分子医学28,95(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Freemerman, A. J. et al. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. J. Immunol. 202, 1265–1286 (2019).CAS

Freemerman,A.J。等人的骨髓Slc2a1缺陷小鼠模型显示巨噬细胞活化和代谢表型由GLUT1促进。J、 免疫。2021265-1286(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jing, C. et al. Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proc. Natl Acad. Sci. USA 117, 15160–15171 (2020).CAS

Jing,C。等人。巨噬细胞代谢重编程为狼疮性肾炎提供了治疗靶点。程序。国家科学院。科学。美国11715160–15171(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wei, X. et al. Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539, 294–298 (2016).CAS

Wei,X。等人。脂肪酸合成为糖尿病的炎症配置质膜。自然539294-298(2016)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bosch, M. et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 370, eaay8085 (2020).CAS

Bosch,M。等人。哺乳动物脂滴是整合细胞代谢和宿主防御的先天免疫中枢。科学370,eaay8085(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tanaka, S. et al. Sphingosine 1-phosphate signaling in perivascular cells enhances inflammation and fibrosis in the kidney. Sci. Transl. Med. 14, eabj2681 (2022).CAS

Tanaka,S。等人。血管周围细胞中的鞘氨醇1-磷酸信号传导增强了肾脏的炎症和纤维化。科学。翻译。医学杂志14,eabj2681(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, J. et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab. 31, 1136–1153.e7 (2020).CAS

Zhang,J。等人。内皮乳酸通过诱导M2样巨噬细胞极化来控制缺血引起的肌肉再生。。311136-1153.e7(2020)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, P. S. et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).CAS

Liu,P。S。等人。α-酮戊二酸通过代谢和表观遗传重编程协调巨噬细胞活化。自然免疫。18985-994(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bhatia, D. et al. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight 4, e132826 (2019).PubMed

Bhatia,D。等人。线粒体自噬依赖性巨噬细胞重编程可预防肾纤维化。JCI Insight 4,e132826(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hwang, I. et al. Peroxiredoxin 3 deficiency accelerates chronic kidney injury in mice through interactions between macrophages and tubular epithelial cells. Free. Radic. Biol. Med. 131, 162–172 (2019).CAS

Hwang,I。等人。过氧化物酶3缺乏症通过巨噬细胞和肾小管上皮细胞之间的相互作用加速小鼠的慢性肾损伤。。辐射。生物医学131162-172(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Galic, S. et al. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J. Clin. Invest. 121, 4903–4915 (2011).CAS

Galic,S。等人。造血AMPKβ1减少肥胖小鼠脂肪组织巨噬细胞炎症和胰岛素抵抗。J、 临床。投资。1214903-4915(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sag, D., Carling, D., Stout, R. D. & Suttles, J. Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641 (2008).CAS

Sag,D.,Carling,D.,Stout,R.D。&Suttles,J。腺苷5'-单磷酸激活的蛋白激酶促进巨噬细胞极化为抗炎功能表型。J、 免疫。1818633–8641(2008)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Covarrubias, A. J. et al. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. Elife 5, e11612 (2016).PubMed

Covarrubias,A.J。等人。Akt-mTORC1信号调节Acly以整合代谢输入以控制巨噬细胞活化。Elife 5,e11612(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kitching, A. R. Dendritic cells in progressive renal disease: some answers, many questions. Nephrol. Dial. Transpl. 29, 2185–2193 (2014).CAS

Kitching,A.R。进行性肾脏疾病中的树突状细胞:一些答案,许多问题。肾。拨号。运输。292185-2193(2014)。中科院

Google Scholar

谷歌学者

Li, N. et al. IRF8-dependent type I conventional dendritic cells (cDC1s) Control post-ischemic inflammation and mildly protect against post-ischemic acute kidney injury and disease. Front. Immunol. 12, 685559 (2021).CAS

Li,N。等人。IRF8依赖性I型常规树突状细胞(cDC1s)控制缺血后炎症,并轻度预防缺血后急性肾损伤和疾病。正面。免疫。12685559(2021年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Snelgrove, S. L. et al. Renal dendritic cells adopt a pro-inflammatory phenotype in obstructive uropathy to activate T cells but do not directly contribute to fibrosis. Am. J. Pathol. 180, 91–103 (2012).CAS

Snelgrove,S.L.等人。肾树突状细胞在梗阻性尿路疾病中采用促炎表型来激活T细胞,但不会直接导致纤维化。美国J.Pathol。180,91-103(2012)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ryan, D. G. & O’Neill, L. A. J. Krebs cycle rewired for macrophage and dendritic cell effector functions. FEBS Lett. 591, 2992–3006 (2017).CAS

Ryan,D.G。&O'Neill,L.A.J.Krebs循环重新连接巨噬细胞和树突状细胞效应子功能。FEBS Lett公司。5912992-3006(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Everts, B. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15, 323–332 (2014).CAS

Everts,B。等人。TLR通过激酶TBK1-IKKvarε驱动的早期糖酵解重编程支持树突状细胞活化的合成代谢需求。自然免疫。15323-332(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Du, X. et al. Hippo/Mst signalling couples metabolic state and immune function of CD8α+ dendritic cells. Nature 558, 141–145 (2018).CAS

Du,X。等人。Hippo/Mst信号传导将CD8α+树突状细胞的代谢状态和免疫功能结合起来。自然558141-145(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kratchmarov, R. et al. Metabolic control of cell fate bifurcations in a hematopoietic progenitor population. Immunol. Cell Biol. 96, 863–871 (2018).CAS

Kratchmarov,R。等人。造血祖细胞群中细胞命运分叉的代谢控制。免疫。细胞生物学。96863-871(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

von Vietinghoff, S. & Kurts, C. Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. Cell Tissue Res. 385, 335–344 (2021).

von Vietinghoff,S。&Kurts,C。CX3CR1及其配体CX3CL1在肾脏疾病中的调节和功能。细胞组织研究385335-344(2021)。

Google Scholar

谷歌学者

Erra Diaz, F. et al. Extracellular acidosis and mTOR inhibition drive the differentiation of human monocyte-derived dendritic cells. Cell Rep. 31, 107613 (2020).CAS

Erra Diaz,F。等人。细胞外酸中毒和mTOR抑制驱动人单核细胞衍生的树突状细胞的分化。Cell Rep.31107613(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, H. et al. IL-23 reshapes kidney resident cell metabolism and promotes local kidney inflammation. J. Clin. Invest. 131, e142428 (2021).CAS

Li,H。等人。IL-23重塑肾脏驻留细胞代谢并促进局部肾脏炎症。J、 临床。投资。131,e142428(2021年)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sena, L. A. et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38, 225–236 (2013).CAS

Sena,L.A。等人。线粒体是通过活性氧类信号传导激活抗原特异性T细胞所必需的。豁免38225-236(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).CAS

Chang,C.H.等人。通过有氧糖酵解对T细胞效应子功能的转录后控制。细胞1531239-1251(2013)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).CAS

Pearce,E.L.等人。通过调节脂肪酸代谢增强CD8 T细胞记忆。自然460103-107(2009)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, K. et al. T cell metabolic reprogramming in acute kidney injury and protection by glutamine blockade. JCI Insight 8, e160345 (2023).PubMed

Lee,K。等。急性肾损伤中的T细胞代谢重编程和谷氨酰胺阻断的保护作用。JCI Insight 8,e160345(2023)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Law, B. M. P. et al. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int. 92, 79–88 (2017).CAS

Law,B.M.P.等人。肾小管间质人CD56bright自然杀伤细胞产生的干扰素-γ有助于肾纤维化和慢性肾脏疾病的进展。肾脏Int.92,79-88(2017)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wee, Y. M. et al. Tissue-resident natural killer cells exacerbate tubulointerstitial fibrosis by activating transglutaminase 2 and syndecan-4 in a model of aristolochic acid-induced nephropathy. BMB Rep. 52, 554–559 (2019).CAS

Wee,Y.M.等人。在马兜铃酸诱导的肾病模型中,组织驻留的自然杀伤细胞通过激活转谷氨酰胺酶2和syndecan-4加剧肾小管间质纤维化。BMB Rep.52554–559(2019)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marcais, A. et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat. Immunol. 15, 749–757 (2014).CAS

Marcais,A。等人。代谢检查点激酶mTOR对于NK细胞发育和活化过程中的IL-15信号传导至关重要。自然免疫。15749-757(2014)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Loftus, R. M. et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun. 9, 2341 (2018).PubMed

Loftus,R.M.等人。氨基酸依赖性cMyc表达对于小鼠NK细胞代谢和功能反应至关重要。国家公社。92341(2018)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oleinika, K., Mauri, C. & Salama, A. D. Effector and regulatory B cells in immune-mediated kidney disease. Nat. Rev. Nephrol. 15, 11–26 (2019).CAS

Oleinika,K.,Mauri,C。&Salama,A.D。免疫介导的肾脏疾病中的效应细胞和调节性B细胞。自然修订版Nephrol。15,11-26(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cippa, P. E. et al. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nat. Commun. 10, 1157 (2019).PubMed

Cippa,P.E.等人。肾损伤和移植后功能失调组织修复中的晚期B淋巴细胞作用。国家公社。101157(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fleig, S. V. et al. Long-term B cell depletion associates with regeneration of kidney function. Immun. Inflamm. Dis. 9, 1479–1488 (2021).CAS

。免疫。发炎。Dis。91479-1488(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, D. H. et al. IL-10 deficiency aggravates renal inflammation, fibrosis and functional failure in high-fat dieted obese mice. Tissue Eng. Regen. Med. 18, 399–410 (2021).CAS

Kim,D.H.等人。IL-10缺乏会加重高脂饮食肥胖小鼠的肾脏炎症,纤维化和功能衰竭。组织工程再生。医学18399-410(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raza, I. G. A. & Clarke, A. J. B cell metabolism and autophagy in autoimmunity. Front. Immunol. 12, 681105 (2021).CAS

Raza,I.G.A.&Clarke,A.J.B细胞代谢和自身免疫中的自噬。正面。免疫。12681105(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Caro-Maldonado, A. et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 192, 3626–3636 (2014).CAS

Caro-Maldonado,A。等人。代谢重编程是抗体产生所必需的,抗体产生在无反应性中被抑制,但在慢性BAFF暴露的B细胞中被夸大。J、 免疫。1923626-3636(2014)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).CAS

Perkovic,V。等人。Canagliflozin与2型糖尿病和肾病的肾脏结局。N、 英语。J、 医学3802295-2306(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).CAS

Heerspink,H.J.L.等人,达格列净治疗慢性肾脏病患者。N、 英语。J、 医学3831436-1446(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

The, E.-K. C. G. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2023).

。N、 英语。J、 医学388117-127(2023)。

Google Scholar

谷歌学者

Cannon, C. P. et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N. Engl. J. Med. 383, 1425–1435 (2020).CAS

Cannon,C.P.等人。ertugliflozin治疗2型糖尿病的心血管结局。N、 英语。J、 医学3831425-1435(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yau, K., Dharia, A., Alrowiyti, I. & Cherney, D. Z. I. Prescribing SGLT2 inhibitors in patients with CKD: expanding indications and practical considerations. Kidney Int. Rep. 7, 1463–1476 (2022).PubMed

Yau,K.,Dharia,A.,Alrowiyti,I。&Cherney,D.Z.I.在CKD患者中处方SGLT2抑制剂:扩大适应症和实际考虑。肾脏国际代表71463-1476(2022)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cooper, M. E. et al. Kidney disease end points in a pooled analysis of individual patient-level data from a large clinical trials program of the dipeptidyl peptidase 4 inhibitor linagliptin in type 2 diabetes. Am. J. Kidney Dis. 66, 441–449 (2015).CAS

Cooper,M.E.等人对来自二肽基肽酶4抑制剂利格列汀治疗2型糖尿病的大型临床试验计划的个体患者水平数据进行汇总分析,得出肾脏疾病的终点。美国肾脏病杂志。66441-449(2015)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Serra, A. L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).CAS

Serra,A.L.等人。西罗莫司与常染色体显性多囊肾病的肾脏生长。N、 英语。J、 医学363820-829(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).CAS

Walz,G。等人。常染色体显性多囊肾病患者的依维莫司。N、 英语。J、 医学363830-840(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gragnano, F., De Sio, V. & Calabro, P. FLOW trial stopped early due to evidence of renal protection with semaglutide. Eur. Heart J. Cardiovasc. Pharmacother. 10, 7–9 (2024).PubMed

Gragnano,F.,De Sio,V。&Calabro,P。FLOW试验由于semaglutide具有肾脏保护作用的证据而提前停止。欧洲心脏杂志Cardiovasc。药剂师。10,7-9(2024)。PubMed出版社

Google Scholar

谷歌学者

Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).CAS

Perkovic,V。等人。semaglutide对2型糖尿病患者慢性肾脏疾病的影响。N、 英语。J、 医学391109-121(2024)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Webb, T. J. et al. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses. Pathog. Dis. 74, ftw055 (2016).PubMed

Webb,T.J。等人。细胞代谢的改变调节CD1d介导的NKT细胞反应。Pathog公司。Dis。74,ftw055(2016)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsogbadrakh, B. et al. AICAR, an AMPK activator, protects against cisplatin-induced acute kidney injury through the JAK/STAT/SOCS pathway. Biochem. Biophys. Res. Commun. 509, 680–686 (2019).CAS

AICAR是一种AMPK激活剂,可通过JAK/STAT/SOCS途径预防顺铂诱导的急性肾损伤。生物化学。生物物理。公共资源。509680-686(2019)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/study/NCT02322073 (2021).McFadden, J. M. et al. Application of a flexible synthesis of (5R)-thiolactomycin to develop new inhibitors of type I fatty acid synthase. J. Med. Chem. 48, 946–961 (2005).CAS

ClinicalTrials.gov。美国国家医学图书馆。https://clinicaltrials.gov/study/NCT02322073(2021年)。McFadden,J.M.等。应用(5R)-硫乳霉素的柔性合成开发I型脂肪酸合酶的新抑制剂。J、 医学化学。48946-961(2005)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Robins, S. J. et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 285, 1585–1591, (2001).CAS

。JAMA 2851585-1591,(2001)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Davis, T. M. et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 54, 280–290 (2011).CAS

Davis,T.M.等人。非诺贝特对2型糖尿病患者肾功能的影响:非诺贝特干预和糖尿病事件降低(FIELD)研究。糖尿病学54280-290(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hadjivasilis, A., Kouis, P., Kousios, A. & Panayiotou, A. The effect of fibrates on kidney function and chronic kidney disease progression: a systematic review and meta-analysis of randomised studies. J. Clin. Med. 11, 768 (2022).CAS

Hadjivasilis,A.,Kouis,P.,Kousios,A。&Panayiotou,A。贝特类药物对肾功能和慢性肾脏疾病进展的影响:随机研究的系统评价和荟萃分析。J、 临床。医学杂志11768(2022)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/study/NCT04929379 (2023).Iwasaki, M. et al. Efficacy and safety of pemafibrate in patients with chronic kidney disease: a retrospective study. Medicine 102, e32818 (2023).CAS

ClinicalTrials.gov。美国国家医学图书馆。https://clinicaltrials.gov/study/NCT04929379(2023年)。Iwasaki,M.等人。培马贝特治疗慢性肾脏病患者的疗效和安全性:一项回顾性研究。医学102,e32818(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheng, F. et al. The effects of oral sodium bicarbonate on renal function and cardiovascular risk in patients with chronic kidney disease: a systematic review and meta-analysis. Ther. Clin. Risk Manag. 17, 1321–1331 (2021).PubMed

Cheng,F。等人。口服碳酸氢钠对慢性肾脏病患者肾功能和心血管风险的影响:系统评价和荟萃分析。他们。临床。风险管理。171321-1331(2021)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wesson, D. E. & Simoni, J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 78, 1128–1135 (2010).CAS

Wesson,D.E。&Simoni,J。肾衰竭期间的酸潴留诱导内皮素和醛固酮的产生,导致GFR进行性下降,这种情况通过碱性饮食得到改善。肾脏Int.781128–1135(2010)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mitchell, N. S., Scialla, J. J. & Yancy, W. S. Jr Are low-carbohydrate diets safe in diabetic and nondiabetic chronic kidney disease? Ann. N. Y. Acad. Sci. 1461, 25–36 (2020).CAS

Mitchell,N.S.,Scialla,J.J.&Yancy,W.S.Jr低碳水化合物饮食对糖尿病和非糖尿病慢性肾病安全吗?安·N·Y·阿卡德。科学。1461,25-36(2020)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rojas-Morales, P. et al. A ketogenic diet attenuates acute and chronic ischemic kidney injury and reduces markers of oxidative stress and inflammation. Life Sci. 289, 120227 (2022).CAS

Rojas Morales,P。等人。生酮饮食可减轻急性和慢性缺血性肾损伤,并减少氧化应激和炎症的标志物。生命科学。28912027(2022)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oehm, S. et al. RESET-PKD: a pilot trial on short-term ketogenic interventions in autosomal dominant polycystic kidney disease. Nephrol. Dial. Transpl. 38, 1623–1635 (2023).CAS

Oehm,S.等人,《RESET-PKD:常染色体显性多囊肾病短期生酮干预的初步试验》。肾。拨号。运输。381623-1635(2023)。中科院

Google Scholar

谷歌学者

Zoccali, C. et al. The effect of a ketogenic diet on weight loss in CKD: a randomized controlled trial in obese stage G1–3a CKD patients. Clin. Kidney J. 16, 2309–2313 (2023).CAS

Zoccali,C.等人。生酮饮食对CKD患者体重减轻的影响:肥胖G1-3a期CKD患者的随机对照试验。临床。肾脏杂志162309-2313(2023)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).CAS

Michalek,R.D.等。前沿:不同的糖酵解和脂质氧化代谢程序对于效应和调节性CD4+T细胞亚群至关重要。J、 免疫。1863299-3303(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).CAS

转录因子Myc控制T淋巴细胞活化后的代谢重编程。免疫35871-882(2011)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Finlay, D. K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).CAS

Finlay,D.K.等人。PDK1对mTOR和缺氧诱导因子1的调节整合了CD8+T细胞的代谢和迁移。J、 实验医学2092441-2453(2012)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, G., Xia, Y. & Ren, W. Glutamine metabolism in Th17/Treg cell fate: applications in Th17 cell-associated diseases. Sci. China Life Sci. 64, 221–233 (2021).CAS

Yang,G.,Xia,Y。&Ren,W。Th17/Treg细胞命运中的谷氨酰胺代谢:在Th17细胞相关疾病中的应用。科学。中国生命科学。64221-233(2021)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ng, H. Y., Chen, H. C., Tsai, Y. C., Yang, Y. K. & Lee, C. T. Activation of intrarenal renin-angiotensin system during metabolic acidosis. Am. J. Nephrol. 34, 55–63 (2011).CAS

Ng,H.Y.,Chen,H.C.,Tsai,Y.C.,Yang,Y.K。&Lee,C.T。代谢性酸中毒期间肾内肾素-血管紧张素系统的激活。Am.J.Nephrol。34,55-63(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kanasaki, K. The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clin. Sci. 132, 489–507 (2018).CAS

Kanasaki,K。肾脏二肽基肽酶-4在肾脏疾病中的作用:二肽基肽酶-4抑制剂的肾脏作用,重点是利格列汀。临床。科学。132489-507(2018)。中科院

Google Scholar

谷歌学者

Lin, F. et al. Rapamycin protects against aristolochic acid nephropathy in mice by potentiating mammalian target of rapamycin-mediated autophagy. Mol. Med. Rep. 24, 495 (2021).CAS

雷帕霉素通过增强雷帕霉素介导的自噬的哺乳动物靶标来预防小鼠马兜铃酸肾病。摩尔医学代表24495(2021)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kezic, A., Thaiss, F., Becker, J. U., Tsui, T. Y. & Bajcetic, M. Effects of everolimus on oxidative stress in kidney model of ischemia/reperfusion injury. Am. J. Nephrol. 37, 291–301 (2013).CAS

Kezic,A.,Thaiss,F.,Becker,J.U.,Tsui,T.Y。&Bajcetic,M。依维莫司对缺血/再灌注损伤肾脏模型中氧化应激的影响。Am.J.Nephrol。37291-301(2013)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schneer, S. et al. Renal function preservation with the mTOR inhibitor, everolimus, after lung transplant. Clin. Transpl. 28, 662–668 (2014).CAS

Schneer,S.等人。肺移植后使用mTOR抑制剂依维莫司保存肾功能。临床。运输。28662-668(2014)。中科院

Google Scholar

谷歌学者

Zhao, Q. et al. Design and discovery of a highly potent ultralong-acting GLP-1 and glucagon co-agonist for attenuating renal fibrosis. Acta Pharm. Sin. B 14, 1283–1301 (2023).PubMed

Zhao,Q。等人。用于减轻肾纤维化的高效超长效GLP-1和胰高血糖素共同激动剂的设计和发现。药学学报。B 141283-1301(2023)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

ClinicalTrials.gov. US National Library of Medicine. https://clinicaltrials.gov/study/NCT03819153 (2024).Silva Barbosa, A. C. et al. Inhibition of estrogen sulfotransferase (SULT1E1/EST) ameliorates ischemic acute kidney injury in mice. J. Am. Soc. Nephrol. 31, 1496–1508 (2020).PubMed .

ClinicalTrials.gov。美国国家医学图书馆。https://clinicaltrials.gov/study/NCT03819153(2024年)。Silva Barbosa,A.C.等人抑制雌激素磺基转移酶(SULT1E1/EST)可改善小鼠缺血性急性肾损伤。J、 美国社会肾脏病学会。311496-1508(2020)。。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weir, M. A. et al. Orlistat and acute kidney injury: an analysis of 953 patients. Arch. Intern. Med. 171, 703–704 (2011).PubMed

Weir,M.A.等人,《奥利司他与急性肾损伤:953例患者的分析》。。实习生。医学171703-704(2011)。PubMed出版社

Google Scholar

谷歌学者

Kanlaya, R. & Thongboonkerd, V. Protective effects of epigallocatechin-3-gallate from green tea in various kidney diseases. Adv. Nutr. 10, 112–121 (2019).PubMed

Kanlaya,R。&Thongboonkerd,V。绿茶中表没食子儿茶素没食子酸酯对各种肾脏疾病的保护作用。高级营养师。10112-121(2019)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by grants from the German Research Foundation (DFG: SFBTRR219) CRU344 4288578857858 and CRU5011 445703531, a grant from the Else Kroener Fresenius Foundation, the Dutch Kidney Foundation TASKFORCE EP1805 and Kolff Grant #113351, the Leducq Foundation, the BMBF eMed Consortia Fibromap and the BMBF Consortia CureFib to R.K.

下载参考文献致谢这项工作得到了德国研究基金会(DFG:SFBTRR219)CRU344 4288578857858和CRU5011 445703531的资助,这是Else Kroener Fresenius基金会,荷兰肾脏基金会特别工作组EP1805和Kolf grant#113351,Leducq基金会,BMBF eMed Consortia Fibromap和BMBF Consortia CureFib授予R.K的资助。

V.M. was supported by a FEBS Long-Term Fellowship. I.W.S. is funded by a Benjamin Hochberg Fellowship from the DFG.Author informationAuthors and AffiliationsDepartment of Medicine 2, Nephrology, Rheumatology and Immunology, RWTH Aachen University, Medical Faculty, Aachen, GermanyVerónica Miguel, Isaac W.

五、 M.得到了FEBS长期奖学金的支持。一、 W.S.由DFG的Benjamin Hochberg奖学金资助。作者信息作者和附属机构亚琛RWTH大学医学院肾脏病,风湿病和免疫学2系,亚琛医学院,GermanyVerónica Miguel,Isaac W。

Shaw & Rafael KramannDepartment of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The NetherlandsRafael KramannAuthorsVerónica MiguelView author publicationsYou can also search for this author in.

Shaw&Rafael KramannDepartment of Internal Medicine,Nephradesrafel KramannAuthorsVerónica MiguelView author Publications鹿特丹伊拉斯姆斯医学中心肾脏病学和移植内科,您也可以在中搜索这位作者。

PubMed Google ScholarIsaac W. ShawView author publicationsYou can also search for this author in

PubMed Google Scholariaac W.ShawView作者出版物您也可以在

PubMed Google ScholarRafael KramannView author publicationsYou can also search for this author in

PubMed Google Scholarafael KramanView作者出版物您也可以在

PubMed Google ScholarContributionsAll authors researched data for the article, made substantial contributions to discussions of the content and wrote, reviewed or edited the manuscript before submission.Corresponding authorCorrespondence to

PubMed谷歌学术贡献所有作者都研究了文章的数据,为内容的讨论做出了重大贡献,并在提交前撰写,审阅或编辑了稿件。对应作者对应

Rafael Kramann.Ethics declarations

拉斐尔·克拉曼。道德宣言

Competing interests

相互竞争的利益

R.K. is founder and shareholder of Sequantrix GmbH, has grants from Travere Therapeutics, Galapagos, Chugai, AskBio and Novo Nordisk, and is a consultant for Bayer, Pfizer, Novo Nordisk, Hybridize Therapeutics and Gruenenthal. The other authors declare no competing interests.

R、 K.是Sequantrix GmbH的创始人和股东,拥有Travere Therapeutics,Galapagos,Chugai,AskBio和Novo Nordisk的资助,是拜耳,辉瑞,Novo Nordisk,Hybridize Therapeutics和Gruenenthal的顾问。其他作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Reviews Nephrology thanks Sandeep Mallipattu, Alessandra Tammaro, Liu Ye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

《自然评论肾脏病学》感谢Sandeep Mallipattu,Alessandra Tammaro,Liu Ye和另一位匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleMiguel, V., Shaw, I.W.

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Miguel,V.,Shaw,I.W。

& Kramann, R. Metabolism at the crossroads of inflammation and fibrosis in chronic kidney disease..

&Kramann,R。慢性肾脏病炎症和纤维化十字路口的代谢。。

Nat Rev Nephrol (2024). https://doi.org/10.1038/s41581-024-00889-zDownload citationAccepted: 15 August 2024Published: 17 September 2024DOI: https://doi.org/10.1038/s41581-024-00889-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Rev Nephrol(2024年)。https://doi.org/10.1038/s41581-024-00889-zDownload引文接受日期:2024年8月15日发布日期:2024年9月17日OI:https://doi.org/10.1038/s41581-024-00889-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供