商务合作
动脉网APP
可切换为仅中文
AbstractThe glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions.
摘要胰高血糖素样肽-1(GLP-1)受体,称为GLP-1R,是G蛋白偶联受体(GPCR)家族的重要组成部分,主要存在于人体内各种细胞类型的表面。该受体与GLP-1特异性相互作用,GLP-1是一种关键激素,在调节血糖水平,脂质代谢和其他几种关键生物学功能中起着不可或缺的作用。
In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties.
。本文彻底追踪了GLP-1药物的发展里程碑,从最初的发现到临床应用,详细介绍了各种GLP-1药物的演变及其独特的药理学特性。
Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems.
此外,本文探讨了GLP-1受体激动剂(GLP-1RAs)在神经保护,抗感染措施,减少各种炎症和增强心血管功能等领域的潜在应用。它深入评估了GLP-1RAs在多个身体系统(包括神经系统,心血管系统,肌肉骨骼系统和消化系统)中的有效性。
This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer.
这包括整合最新的临床试验数据,并深入研究潜在的信号通路和药理机制。本文的主要目的是强调使用GLP-1RAs治疗广泛疾病的广泛益处,例如肥胖,心血管疾病,非酒精性脂肪肝病(NAFLD),神经退行性疾病,肌肉骨骼炎症和各种形式的癌症。
The ongoing development of new indications for GLP-1 drugs offers promi.
GLP-1药物新适应症的不断开发提供了前景。
IntroductionIn recent years, GLP-1R and its agonists have garnered widespread attention in the medical community. GLP-1R, a core member of the GPCR family, is widely present on the surfaces of various cells in the human body.1,2 By specifically binding to the key hormone GLP-1, it regulates blood glucose levels and lipid metabolism.3,4 This receptor and its agonists hold significant therapeutic potential, reshaping the treatment approaches for multiple diseases, including diabetes, cardiovascular disorders, and neurodegenerative diseases.5,6,7 GLP-1 is a peptide produced by the cleavage of proglucagon, mainly synthesized in the intestinal mucosal L-cells, pancreatic islet α-cells, and neurons in the nucleus of the solitary tract.3,4 GLP-1RAs mimic the action of endogenous GLP-1, activating GLP-1R, thereby enhancing insulin secretion, inhibiting glucagon release, delaying gastric emptying, and reducing food intake through central appetite suppression.8,9,10 These mechanisms make GLP-1RAs powerful tools for controlling blood glucose and improving metabolic syndrome.
引言近年来,GLP-1R及其激动剂在医学界引起了广泛关注。。
Furthermore, their multifaceted mechanisms of action suggest potential applications beyond traditional metabolic disorders. From the discovery of the GLP-1 fragment GLP-1(7-37) to the development of more stable and long-acting GLP-1 analogs, these milestones represent significant breakthroughs in the medical field.11,12 For instance, the success of exenatide has not only spurred the development of potent GLP-1 analogs such as liraglutide and semaglutide but also unveiled the vast potential of GLP-1RAs in treating various systemic diseases.
此外,它们的多方面作用机制表明其在传统代谢紊乱之外的潜在应用。从GLP-1片段GLP-1(7-37)的发现到更稳定和长效的GLP-1类似物的开发,这些里程碑代表了医学领域的重大突破[11,12]。例如,艾塞那肽的成功不仅刺激了利拉鲁肽和semaglutide等强效GLP-1类似物的开发,而且揭示了GLP-1RAs在治疗各种全身性疾病方面的巨大潜力。
These developments underscore the importance of GLP-1RAs in modern therapeutics. The applications of GLP-1RAs extend far beyond diabetes management.5Here we summarized the c.
这些发展强调了GLP-1RAs在现代治疗中的重要性。GLP-1RAs的应用远远超出了糖尿病管理的范围.5在这里,我们总结了c。
Dual agonists
双重激动剂
Dual agonists target both the GLP-1R and another specific receptor.124,129 A common combination is GLP-1 with GIP or insulin-like growth factor.130 For example, a popular dual agonist, tirzepatide (brand name Mounjaro), activates both GLP-1 and GIPR.124 GLP-1, by activating its receptor, increases insulin secretion and reduces glucagon secretion, thereby lowering blood sugar levels.131,132,133 Additionally, GLP-1 helps to delay gastric emptying and suppress appetite, aiding in weight management.121,134 GIP, another insulin secretion agonist, helps release insulin, particularly after eating, enhancing the effects of GLP-1 and thereby improving the overall therapeutic efficacy of the drug.125,130 In 2022, tirzepatide was approved by the FDA for the treatment of T2DM in the United States.135,136 It is considered a significant breakthrough in diabetes treatment and is also being studied for the treatment of obesity due to its significant weight loss effects.135 Tirzepatide is developed by Eli Lilly and has proven to provide superior blood sugar control and significant weight loss, making it particularly valuable in the treatment of T2DM.136,137,138 Research and clinical trials have shown that tirzepatide not only improves blood sugar levels but also has a positive impact on cardiovascular risk factors.139,140,141 Although dual agonists show advantages in efficacy, their safety and tolerability continue to be a focus of ongoing monitoring.141 Common side effects include gastrointestinal reactions, such as nausea and vomiting, which are typically more common during the initial stages of treatment.141,142 The Phase III clinical trials of tirzepatide were conducted in 77 research centers across seven countries, including the United States, Brazil, and Japan.143 The trials recru.
双重激动剂靶向GLP-1R和另一种特异性受体。124129一种常见的组合是GLP-1与GIP或胰岛素样生长因子。130例如,一种流行的双重激动剂tirzepatide(商标名Mounjaro)激活GLP-1和GIPR.124 GLP-1通过激活其受体,增加胰岛素分泌并减少胰高血糖素分泌,从而降低血糖水平。131132133此外,GLP-1有助于延迟胃排空和抑制食欲,有助于体重管理。121134另一种胰岛素分泌激动剂GIP有助于释放胰岛素,特别是在进食后,增强GLP-1的作用,从而提高药物的整体治疗效果。125130 2022年,替罗西肽被FDA批准用于治疗美国的T2DM。135136它被认为是糖尿病治疗的一个重大突破,由于其显着的减肥作用,也正在研究用于治疗肥胖症。135替罗西肽由礼来公司开发,已被证明可提供优异的血糖控制和显着的体重减轻,使其在T2DM的治疗中特别有价值。136137138研究和临床试验表明,替罗西肽不仅可以改善血糖水平,还可以对心血管危险因素产生积极影响。139140141虽然双激动剂在疗效上显示出优势,但其安全性和耐受性仍然是持续监测的重点。141常见的副作用包括胃肠道反应,如恶心和呕吐,通常在治疗的初始阶段更为常见。141142在七个国家的77个研究中心进行了tirzepatide的III期临床试验,包括美国,巴西和日本.143审判重新开始。
Triple agonist
三重激动剂
Triple agonists go even further.148 These drugs act by simultaneously targeting three different agonists GLP-1R, the GIPR, and the GCGR.149,150,151 These receptors each have independent yet complementary roles in the treatment of diabetes and obesity.150,152,153 Activation of the GLP-1R can enhance insulin secretion, reduce glucagon secretion, delay gastric emptying,154 and suppress appetite.155,156 GIPR activation also promotes insulin release, especially after meals, helping to improve glucose utilization.157,158 Activation of the insulin or Insulin-like Growth Factor 1 (IGF-1) receptor can enhance insulin sensitivity, improve glucose absorption and utilization by cells, and potentially have positive effects on cardiovascular health and long-term energy balance.159 As of now, GLP-1-related triple agonists are primarily still in the development stage and have not been widely approved for use.159 These drugs are not yet widely available on the market but have shown some potential in clinical trials.160,161 For example, HM15211, a triple agonist developed by Hanmi Pharmaceutical in South Korea that activates GLP-1R, GIPR and GCGR has entered early clinical trials for the treatment of obesity and non-alcoholic steatohepatitis (NASH).162,163 Retatrutide (LY-3437943), a novel triple agonist developed by Eli Lilly that targets GLP-1R, GIPR and GCGR, has shown potential in preliminary clinical data for providing excellent blood sugar control and significant weight reduction.158,161,164,165 However, activating multiple receptors may lead to more complex side effects, and in some experiments, dual and triple agonists have indeed shown more severe side effects.165,166 Retatrutide has now entered Phase III clinical trials.161 The results of the Phase II clinical trials of retatru.
三重激动剂走得更远。148这些药物通过同时靶向三种不同的激动剂GLP-1R,GIPR和GCGR起作用。149150151这些受体在治疗糖尿病和肥胖症方面都具有独立但互补的作用。150152153激活GLP-1R可以增强胰岛素分泌,减少胰高血糖素分泌,延迟胃排空,154和抑制食欲。155156 GIPR激活也促进胰岛素释放,特别是饭后,有助于提高葡萄糖利用率。157158激活胰岛素或胰岛素样生长因子1(IGF-1)受体可以增强胰岛素敏感性,改善细胞对葡萄糖的吸收和利用,并可能对心血管健康和长期产生积极影响-term能量平衡.159截至目前,与GLP-1相关的三重激动剂主要仍处于开发阶段,尚未被广泛批准使用。159这些药物尚未在市场上广泛销售,但已在临床试验中显示出一定的潜力。160161例如,HM15211是韩国汉米制药开发的一种三重激动剂,可激活GLP-1R,GIPR和GCGR,已进入治疗肥胖和非酒精性脂肪性肝炎(NASH)的早期临床试验。162163瑞曲肽(LY-3437943)是礼来公司开发的一种新型三重激动剂,靶向GLP-1R,GIPR和GCGR,在初步临床数据中显示出提供优异的潜力血糖控制和显着减肥.158161164165然而,激活多种受体可能会导致更复杂的副作用,在一些实验中,双重和三重激动剂确实显示出更严重的副作用.165166瑞他曲肽现已进入III期临床试验.161瑞他曲II期临床试验的结果。
In summary, dual and triple agonists related to GLP-1 represent significant advances in the field of diabetes treatment,167,168 demonstrating the future trend of enhancing therapeutic effects by targeting multiple biomarkers.136,169,170 With the accumulation of more clinical data and the development of new drugs, these treatment options are expected to provide more effective and comprehensive treatment choices for diabetes patients.161,167.
总之,与GLP-1相关的双重和三重激动剂代表了糖尿病治疗领域的重大进展,167168证明了通过靶向多种生物标志物来增强治疗效果的未来趋势.136169170随着更多临床数据的积累和新药的开发,这些治疗方案有望为糖尿病患者提供更有效和全面的治疗选择.161167。
Small molecule GLP-1RAsCurrently, most GLP-1RAs are based on proteins or peptides, meaning they are large molecules typically administered via injection.37 Small molecule GLP-1RAs are chemically synthesized, and compared to protein-based drugs, they generally have smaller molecular sizes.171 The development of small molecule GLP-1RAs aims to overcome some of the limitations of traditional protein or peptide-based GLP-1RAs, such as the need for injection.
小分子GLP-1目前,大多数GLP-1RAs基于蛋白质或肽,这意味着它们是通常通过注射给药的大分子.37小分子GLP-1RAs是化学合成的,与基于蛋白质的药物相比,它们通常具有较小的分子大小.171小分子GLP-1RAs的开发旨在克服传统蛋白质或基于肽的GLP-1RAs的一些局限性,例如需要注射。
Small molecule drugs may offer the possibility of oral administration, which is more convenient and acceptable for patients.171 Additionally, small molecule drugs may have better tissue permeability, longer half-lives in the body, and lower production costs. As of now, research on small molecule GLP-1RAs is still mainly in the laboratory and early clinical trial stages.172 The challenges in developing these drugs include ensuring that they can effectively mimic the biological activity of large molecule GLP-1RAs while maintaining efficacy and selectivity.
小分子药物可能提供口服给药的可能性,这对患者来说更方便和可接受.171此外,小分子药物可能具有更好的组织渗透性,更长的半衰期和更低的生产成本。到目前为止,对小分子GLP-1RAs的研究仍主要处于实验室和早期临床试验阶段.172开发这些药物的挑战包括确保它们能够有效模拟大分子GLP-1RAs的生物活性,同时保持功效和选择性。
This review article will introduce some of the small molecule drugs that are currently receiving significant attention:.
这篇综述文章将介绍一些目前备受关注的小分子药物:。
Orforglipron
奥尔福格里普龙
Orforglipron is an oral small molecule GLP-1RA developed jointly by Eli Lilly and Chia Tai Tianqing Pharmaceutical Group.173 Its research findings were recently presented orally at the 83rd Scientific Sessions of the American Diabetes Association and published in the New England Journal of Medicine.
Orforglipron是礼来公司和正大天青制药集团联合开发的一种口服小分子GLP-1RA。173其研究结果最近在美国糖尿病协会第83届科学会议上口头发表,并发表在《新英格兰医学杂志》上。
In a 26-week study, orforglipron demonstrated a significant dose-dependent effect on weight loss, with weight reduction ranging from 8.6% to 12.6% across various dosages, compared to only 2.0% in the placebo group. By week 36, this weight loss effect was even more pronounced, increasing from 9.4% to 14.7%, while the placebo group saw a reduction of only 2.3%.
在一项为期26周的研究中,orforglipron对体重减轻具有显着的剂量依赖性作用,不同剂量的体重减轻范围为8.6%至12.6%,而安慰剂组仅为2.0%。。
Additionally, in another Phase II study targeting patients with T2DM, orforglipron also showed significant effects in reducing A1C and weight, achieving the study’s primary and secondary endpoints. In this study, participants taking orforglipron experienced an average A1C reduction of 2.1% and an average weight loss of 10.1 kilograms at 26 weeks, which was significantly greater than those in the placebo and dulaglutide groups.
此外,在另一项针对T2DM患者的II期研究中,orforglipron在降低A1C和体重方面也显示出显着效果,达到了研究的主要和次要终点。在这项研究中,服用orforglipron的参与者在26周时平均A1C降低了2.1%,平均体重减轻了10.1公斤,这明显高于安慰剂组和杜拉鲁肽组。
Between 65% and 96% of participants taking orforglipron achieved an A1C level below 7.0% at 26 weeks.174 Currently, Eli Lilly has initiated a Phase III development program to further investigate the efficacy and safety of orforglipron in treating obesity, overweight, and T2DM..
服用orforglipron的参与者中有65%至96%在26周时A1C水平低于7.0%.174目前,礼来公司已经启动了一项III期开发计划,以进一步研究orforglipron治疗肥胖,超重和T2DM的疗效和安全性。。
Danuglipron
Danuglipron
Danuglipron is an oral GLP-1RA developed by Pfizer. In May 2023, Pfizer released the results of a Phase 2b clinical trial of the drug. The study involved 411 adult patients with T2DM and was designed as a randomized, double-blind, placebo-controlled trial where patients received varying doses of danuglipron or a placebo.
Danuglipron是辉瑞公司开发的口服GLP-1RA。2023年5月,辉瑞公司公布了该药物2b期临床试验的结果。这项研究涉及411名成年T2DM患者,设计为一项随机,双盲,安慰剂对照试验,患者接受不同剂量的达努格列隆或安慰剂。
The results showed that during the 16-week treatment period, patients who received the highest dosage (120 mg twice daily) of danuglipron experienced an average reduction in HbA1c of 1.16 percentage points and a weight loss of 4.17 kilograms. All dosages of danuglipron significantly reduced patients’ HbA1c and fasting blood glucose levels, with more pronounced weight loss effects observed in the 80 mg and 120 mg doses compared to the placebo group.
结果显示,在16周的治疗期间,接受最高剂量(120 mg,每日两次)达努格列隆的患者HbA1c平均降低1.16个百分点,体重减轻4.17公斤。与安慰剂组相比,所有剂量的达努格列隆均显着降低患者的HbA1c和空腹血糖水平,在80mg和120mg剂量下观察到更明显的减肥效果。
Common adverse reactions included nausea, diarrhea, and vomiting.172.
常见的不良反应包括恶心,腹泻和呕吐。
GSBR-1290
GSBR-1290
GSBR-1290 is an oral small molecule GLP-1RA developed by Structure Therapeutics, aimed at treating T2DM and obesity. On December 18, 2023, Structure Therapeutics published the latest clinical data for GSBR-1290 on its official website.175 Currently, GSBR-1290 is undergoing a 12-week Phase 2a randomized, double-blind, placebo-controlled clinical trial to assess its effectiveness in treating patients with T2DM and obesity.
GSBR-1290是由Structure Therapeutics开发的口服小分子GLP-1RA,旨在治疗T2DM和肥胖症。2023年12月18日,Structure Therapeutics在其官方网站上发布了GSBR-1290的最新临床数据。目前,GSBR-1290正在进行为期12周的2a期随机,双盲,安慰剂对照临床试验,以评估其治疗T2DM和肥胖患者的有效性。
To date, the trial has enrolled 94 participants, with 54 in the T2DM group and 40 in the obesity group. Regarding safety, the majority of reported adverse events were mild to moderate, ranging from 88% to 96%, depending on the specific study group. Among the 60 participants treated with GSBR-1290, only one (2.8%, from the T2DM group) discontinued the study due to drug-related adverse events (AEs).
迄今为止,该试验已招募了94名参与者,其中T2DM组54名,肥胖组40名。关于安全性,根据具体的研究组,大多数报告的不良事件是轻度至中度的,范围从88%到96%。在接受GSBR-1290治疗的60名参与者中,只有一名(2.8%,来自T2DM组)由于药物相关不良事件(AE)停止了研究。
As for clinical outcomes, in the T2DM group, there was a significant reduction in HbA1c (decreased by 1.01% to 1.02%, placebo-adjusted) and a clinically meaningful decrease in body weight of 3.26% to 3.51% after 12 weeks of treatment. In the obesity group, there was a significant and clinically meaningful reduction in body weight of 4.74% at week 8, with weight continuously decreasing during the 8-week treatment period.175.
至于临床结果,在T2DM组中,治疗12周后HbA1c显着降低(降低1.01%至1.02%,安慰剂调整),临床上有意义的体重下降3.26%至3.51%。在肥胖组中,第8周体重显着降低4.74%,在8周治疗期间体重持续下降。
Classical pathophysiological mechanisms of GLP-1GLP-1 signaling pathwayGLP-1 initiates signaling by binding to its receptor, GLP-1R, which is a G-protein-coupled receptor.176,177 When GLP-1 binds to GLP-1R, it triggers the activation of G-proteins, leading to an increase in the intracellular second messenger cAMP.34,39,177 The rise in cAMP activates protein kinase A (PKA), which then promotes the synthesis and secretion of insulin and inhibits the release of glucagon.178,179 Additionally, cAMP can activate Rap1 through EPAC (Exchange Protein directly Activated by cAMP),180,181,182 which is involved in regulating insulin secretion.180,181,183 GLP-1 also activates the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, which is crucial for maintaining the survival and function of pancreatic β-cells.184,185,186,187Interactions with other pathwaysGLP-1 not only promotes the release of insulin but also enhances the response of pancreatic β-cells to insulin through the PI3K/Akt pathway, thereby improving insulin signal transduction and increasing the sensitivity of peripheral tissues to insulin.1,188 GLP-1 reduces hepatic glucose production, partly by inhibiting the expression and activity of key gluconeogenic enzymes.189,190,191 Activation of GLP-1R leads to the production of cAMP (cyclic Adenosine Monophosphate), which is achieved by activating Adenylyl Cyclase (AC).191,192 Following the activation of GLP-1R, the βγ subunits of GPCRs can directly activate Class I PI3Ks.1 These PI3Ks typically include the PI3Kα and PI3Kβ isoforms, which are composed of regulatory subunits containing SH2 domains and catalytic subunits.193 These subunits can directly interact with the activated GPCR or do so via intermediary proteins such as insulin receptor substrate.194,195 The .
GLP-1GLP-1信号通路的经典病理生理机制GLP-1通过与其受体GLP-1R结合来启动信号传导,GLP-1R是一种G蛋白偶联受体.176177当GLP-1与GLP-1R结合时,它触发G蛋白的激活,导致细胞内第二信使cAMP的增加[34,39177]。cAMP的升高激活蛋白激酶a(PKA),然后促进胰岛素的合成和分泌,抑制胰高血糖素的释放[178179]。此外,cAMP可以通过EPAC(由cAMP直接激活的交换蛋白)激活Rap1,180181182参与调节胰岛素分泌。180181183 GLP-1还激活磷酸肌醇3-激酶(PI3K)/蛋白激酶B(Akt)途径,这对于维持胰腺β-cells的存活和功能至关重要。184185186187与其他途径的相互作用GLP-1不仅促进胰岛素的释放,而且通过PI3K/Akt途径增强胰腺β细胞对胰岛素的反应,从而改善胰岛素信号转导并提高外周组织对胰岛素的敏感性。1188 GLP-1减少了肝脏葡萄糖的产生,部分是通过抑制关键糖异生酶的表达和活性。189190191 GLP-1R的激活导致产生cAMP(环磷酸腺苷),这是通过激活腺苷酸环化酶(AC)实现的。191192在GLP-1R激活后,GPCR的βγ亚基可以直接激活I类PI3K。这些PI3K通常包括PI3Kα和PI3Kβ亚型,它们由含有SH2结构域和催化亚基的调节亚基组成。193这些亚基可以直接与活化的GPCR相互作用,也可以通过胰岛素受体底物等中间蛋白相互作用。
GLP-1RAs in OA
骨关节炎中的GLP-1RA
GLP-1R expression was detected via immunohistochemistry in articular chondrocytes from both normal and osteoarthritic individuals.273 The primary outcome of GLP-1R expression involves suppressing the release of cytokines into the synovial fluid, leading to a reduction in inflammation.274,275 This, in turn, diminishes additional downstream effects, including oxidative stress, the secretion of pro-degradative substances, modifications to cell phenotype (hypertrophy, M1/M2 macrophage phenotype, fibrosis), and damage or deterioration of joint cells (apoptosis, senescence).15,276.
GLP-1R表达通过免疫组织化学在正常人和骨关节炎患者的关节软骨细胞中检测到.273 GLP-1R表达的主要结果涉及抑制细胞因子释放到滑液中,导致炎症减少.274275这反过来又减少了额外的下游效应,包括氧化应激,促降解物质的分泌,细胞表型的改变(肥大,M1/M2巨噬细胞表型,纤维化)以及关节细胞的损伤或恶化(细胞凋亡,衰老).15276。
The activation of GLP-1R is linked to decreased NF-κB pathway activity Treatment with GLP-1RAs can effectively mitigate chondrocyte apoptosis caused by endoplasmic reticulum stress and alleviate the associated inflammatory response.277,278,279,280 This effect is accomplished through the inhibition of JNK, NF-κB, and other relevant signaling pathways.273 Moreover, GLP-1RAs could decelerate the progression of OA and mitigate pathological damage in a rat OA model.273 In addition, in a rat model of inflammatory OA induced by monoiodoacetic acid (MIA), researchers have shown that the activation of GLP-1R triggers the PKA/CREB signaling pathway, leading to a reduction in cartilage inflammation.281.
GLP-1R的激活与NF-κB通路活性降低有关。用GLP-1RAs治疗可以有效减轻内质网应激引起的软骨细胞凋亡,减轻相关的炎症反应。277278279280这种作用是通过抑制JNK,NF-κB和其他相关信号通路来实现的。此外,GLP-1RAs可以减缓OA的进展,减轻大鼠OA模型的病理损伤。273此外,在由单碘乙酸(MIA)诱导的炎性OA大鼠模型中,研究人员表明,GLP-1R的激活触发PKA/CREB信号通路,导致减少软骨炎症。
Inflammation in OA is closely related to the activation of macrophages.282,283 These cells accumulate in the synovial membrane and subchondral bone, releasing pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6, which promote the degradation of joint cartilage and the inflammatory response.284,285,286 Macrophages express GLP-1Rs, which are involved in regulating their inflammatory responses.
OA中的炎症与巨噬细胞的活化密切相关[282283]。这些细胞在滑膜和软骨下骨中积累,释放促炎细胞因子,如TNF-α,IL-1β和IL-6,促进关节软骨的降解和炎症反应[284285286]。巨噬细胞表达GLP-1Rs,参与调节其炎症反应。
Binding of GLP-1 or GLP-1RAs to these receptors can activate the cAMP/PKA signaling pathway, affecting key transcription factors like NF-κB.287,288.
GLP-1或GLP-1RAs与这些受体的结合可以激活cAMP/PKA信号通路,影响关键的转录因子,如NF-κB.287288。
This binding initiates typical GPCR signaling, leading to G protein activation and increased intracellular cAMP.289 The rise in cAMP activates PKA, a versatile protein kinase that phosphorylates various target proteins.290,291,292 In macrophages, PKA regulates gene expression by phosphorylating transcription factors like CREB.293 CREB activation can promote the expression of anti-inflammatory genes while inhibiting inflammatory genes.294,295 In inflammation regulation, NF-κB is a key transcription factor.296,297,298 Typically, NF-κB binds to its inhibitor IκB in the cytoplasm.297,299 When IκB is phosphorylated and degraded, NF-κB can move to the nucleus, activating multiple inflammation-related genes.300,301 This not only affects the intracellular signaling of macrophages but also their response to the external environment, including their effects on chondrocytes and other synovial cells.302,303,304,305.
这种结合启动了典型的GPCR信号传导,导致G蛋白活化和细胞内cAMP增加。289 cAMP的升高激活了PKA,PKA是一种多功能蛋白激酶,可磷酸化各种靶蛋白。290291292在巨噬细胞中,PKA通过磷酸化CREB等转录因子来调节基因表达。293 CREB激活可促进抗炎基因的表达,同时抑制炎症基因。294295在炎症调节中,NF-κB是关键的转录因子。296297298通常,NF-κB与细胞质中的抑制剂IκB结合。297299当IκB被磷酸化和降解时,NF-κB可以转移至细胞核,激活多种炎症相关基因.300301这不仅影响巨噬细胞的细胞内信号传导,还影响它们对外部环境的反应,包括它们对软骨细胞和其他滑膜细胞的影响.302303304305。
GLP-1R signaling, through PKA, inhibits this process, possibly by promoting IκB stability or inhibiting its phosphorylation, thus reducing NF-κB activation and nuclear translocation.8,281 Through these mechanisms, GLP-1R signaling influences the production of inflammatory factors in macrophages.306 For example, the reduction in TNF-α, IL-1β, and IL-6 helps regulate local and systemic inflammatory responses.307,308 Additionally, GLP-1R signaling may affect other macrophage functions, such as phagocytosis, migration, and cell survival.281.
GLP-1R信号通过PKA抑制这一过程,可能是通过促进IκB的稳定性或抑制其磷酸化,从而减少NF-κB的活化和核易位.8281通过这些机制,GLP-1R信号传导影响巨噬细胞中炎症因子的产生.306例如,TNF-α,IL-1β和IL-6的减少有助于调节局部和全身炎症反应.307308此外,GLP-1R信号传导可能影响其他巨噬细胞功能,如吞噬作用,迁移和细胞存活。
By reducing macrophage-mediated inflammatory responses, GLP-1RAs have the potential to alleviate symptoms of OA, including pain and joint stiffness.281,309 Moreover, reducing inflammation may slow down the degradation of joint cartilage, providing long-term joint protection.310,311 GLP-1RAs also enhance autophagy, a process of cellular clearance of damaged and outdated components.13,312 Regulation of autophagy may help remove harmful proteins and other cellular debris accumulated under inflammatory conditions, which is potentially important for maintaining the health of joint tissues.313,314.
通过减少巨噬细胞介导的炎症反应,GLP-1RAs有可能缓解OA的症状,包括疼痛和关节僵硬.281309此外,减少炎症可能会减缓关节软骨的降解,提供长期的关节保护.310311 GLP-1RAs也增强自噬,这是一种细胞清除受损和过时成分的过程.13312自噬的调节可能有助于去除炎症条件下积累的有害蛋白质和其他细胞碎片,这对于维持关节组织的健康可能很重要.313314。
In one study, OA was induced in rats by injecting MIA into the knee joint, mimicking the pathological changes of human OA.315 Subsequently, rats were treated with liraglutide through subcutaneous injection to observe its therapeutic effect on OA.315 The expression levels of GLP-1R, PKA/CREB signaling pathway components, and inflammation-related proteins (such as TNF-α, IL-1β, and IL-6) in the rat knee cartilage tissue were measured using Western blot and immunoprecipitation techniques.315 The results showed that, in the OA rat model, liraglutide could activate the PKA/CREB signaling pathway and inhibit the inflammatory response through this pathway, thereby alleviating OA symptoms.316 These findings provide scientific evidence for developing new OA treatment strategies, confirming the potential of GLP-1 agonists in treating OA.315,316,317.
在一项研究中,通过向膝关节注射MIA诱导大鼠OA,模拟人类OA的病理变化。随后,通过皮下注射利拉鲁肽治疗大鼠,观察其对OA的治疗效果。315使用蛋白质印迹和免疫沉淀技术测量大鼠膝关节软骨组织中GLP-1R,PKA/CREB信号通路成分和炎症相关蛋白(如TNF-α,IL-1β和IL-6)的表达水平。结果表明,在OA大鼠模型中,利拉鲁肽可以激活PKA/CREB信号通路并通过该通路抑制炎症反应,从而缓解炎症反应OA症状.316这些发现为开发新的OA治疗策略提供了科学证据,证实了GLP-1激动剂治疗OA的潜力.315316317。
GLP-1R is expressed in human monocyte-derived macrophages and the mouse macrophage cell line RAW264.7.279,318 c-Jun N-terminal kinase (JNK) is a mitogen-activated protein kinase (MAPK) involved in regulating cellular stress responses and inflammation.318 Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor involved in cell growth, differentiation, and inflammatory responses.319,320,321 Researchers found that activation of GLP-1R could play a key role in regulating macrophage polarization by adjusting the phosphorylation levels of JNK and STAT3.318,322 Macrophages have two polarization states, M1 typically has pro-inflammatory properties, while M2 has anti-inflammatory properties.323,324,325 Specifically, activation of GLP-1R leads to an increase in cAMP levels, which in turn activates PKA, a widely regulating enzyme of cellular functions, capable of phosphorylating a variety of target proteins, thereby initiating the PKA/CREB signaling pathway.326,327 This not only prevents the phosphorylation of JNK but also promotes the phosphorylation of STAT3, aiding the shift of macrophages to an anti-inflammatory M2 phenotype.327 In the inflammatory environment, the M1 to M2 shift promoted by GLP-1 is crucial for reducing the expression of inflammatory factors such as IL-6, TNF-α, and iNOS.8,15,328.
GLP-1R在人单核细胞衍生的巨噬细胞中表达,小鼠巨噬细胞系RAW264.7.279318 c-Jun N末端激酶(JNK)是一种丝裂原活化蛋白激酶(MAPK),参与调节细胞应激反应和炎症.318信号转导和转录激活因子3(STAT3)是一种参与细胞生长,分化和炎症反应的转录因子.319320321研究人员发现,GLP-1R的激活可能通过调节JNK和STAT3的磷酸化水平在调节巨噬细胞极化中起关键作用.318322巨噬细胞具有两种极化状态,M1通常具有促炎特性,而M2具有323324325具体而言,GLP-1R的激活导致cAMP水平升高,进而激活PKA,PKA是一种广泛调节细胞功能的酶,能够磷酸化多种靶蛋白,从而启动PKA/CREB信号通路[326327]。这不仅可以防止JNK的磷酸化,还可以促进STAT3的磷酸化,有助于巨噬细胞向抗炎M2表型的转变[327]。在炎症环境中,由GLP-1促进的M1向M2的转变对于减少炎症因子如IL-6,TNF-α和iNOS的表达至关重要[8,15328]。
Chondrocytes are the only cell type in joint cartilage, responsible for synthesizing and maintaining the integrity of the cartilage matrix.329,330 In degenerative joint diseases like OA, the metabolic balance of chondrocytes is disrupted, leading to the overproduction of degrading enzymes and inflammatory mediators, including iNOS, MMP-13, and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5), which participate in cartilage degradation and inflammatory processes.331 iNOS (inducible nitric oxide synthase) produces nitric oxide (NO) during inflammation, modulating signal transduction; MMP-13 (matrix metalloproteinase-13) is involved in cartilage degradation;331 ADAMTS5 is closely related to cartilage damage and inflammation.332,333,334 The NO produced by iNOS, as a free radical, can regulate intracellular signal transduction and modulate the inflammatory response.335,336 The expression of iNOS is primarily activated by the NF-κB pathway, which is activated and translocated to the nucleus upon inflammatory stimulation (such as bacterial endotoxins or pro-inflammatory cytokines), thus increasing the transcription and expression of iNOS.337,338,339 GLP-1 can exert its anti-inflammatory effects by activating its receptor, GLP-1R.339 When GLP-1 binds to GLP-1R, it activates the cAMP signaling pathway, leading to increased cAMP levels.1,340 The rise in cAMP further activates PKA, which can inhibit the NF-κB signaling pathway, reducing the production of inflammatory factors such as iNOS and other inflammation-related proteins.12,340,341 The expression of MMP-13 is regulated by IL-1β and TNF-α.
软骨细胞是关节软骨中唯一的细胞类型,负责合成和维持软骨基质的完整性.329330在OA等退行性关节疾病中,软骨细胞的代谢平衡被破坏,导致降解酶和炎症介质的过量产生,包括iNOS,MMP-13和ADAMTS5(一种具有血小板反应蛋白基序5的去整合素和金属蛋白酶),它们参与软骨降解和炎症过程.331 iNOS(诱导型一氧化氮合酶)在炎症过程中产生一氧化氮(NO),调节信号转导;MMP-13(基质金属蛋白酶-13)参与软骨降解;331 ADAMTS5与软骨损伤和炎症密切相关。332333334 iNOS产生的NO作为自由基可以调节细胞内信号转导并调节炎症反应。335336 iNOS的表达主要由NF-κB途径激活,NF-κB途径在炎症刺激(如细菌内毒素或促炎细胞因子)下被激活并转移到细胞核,从而增加iNOS的转录和表达。337338339 GLP-1可以通过激活其受体GLP-1R发挥其抗炎作用。339当GLP-1与GLP-1R结合时,它激活cAMP信号通路,导致增加cAMP水平.1340 cAMP的升高进一步激活PKA,PKA可以抑制NF-κB信号通路,减少炎症因子如iNOS和其他炎症相关蛋白的产生.12340341 MMP-13的表达受IL-1β和TNF-α的调节。
These factors promote the transcription of the MMP-13 gene by activating the MAPK and NF-κB signaling pathways.342,343,344 The GLP-1R signaling pathway may also af.
这些因子通过激活MAPK和NF-κB信号通路促进MMP-13基因的转录。342343344 GLP-1R信号通路也可能是af。
In another study, treatment of primary mouse chondrocytes with liraglutide reduced the mRNA expression levels of iNOS, MMP-13, and ADAMTS5, leading to a decrease in the secretion of inflammatory markers, including NO, prostaglandin E, and IL-6.348 Similarly, in human chondrocytes stimulated by TNF, GLP-1 analogs (such as liraglutide) showed an anti-catabolic effect, reducing the mRNA expression of MMP-3, MMP-13, and ADAMTS5.349,350 At the same time, the levels of two important components of the cartilage matrix, proteoglycans (a large molecule and a major component of the cartilage matrix) and type II collagen (the main structural protein of cartilage), increased.349,350 This change suggests that liraglutide not only inhibits inflammation and cartilage degradation but may also promote the synthesis and accumulation of cartilage matrix, thereby helping to protect and repair joint cartilage.273 Furthermore, a study using the anterior cruciate ligament transection (ACLT) rat model further confirmed that subcutaneous injection of liraglutide at 50 μg/kg/day, whether for 3 weeks or 6 weeks, could reduce OARSI scores, highlighting the potential of liraglutide in treating joint degeneration.273.
在另一项研究中,利拉鲁肽治疗原代小鼠软骨细胞可降低iNOS、MMP-13和ADAMTS5的mRNA表达水平,导致炎症标志物(包括NO、前列腺素E和IL-6.348)的分泌减少。同样,在TNF刺激的人软骨细胞中,GLP-1类似物(如利拉鲁肽)显示出抗分解代谢作用,降低了MMP-3、MMP-13和ADAMTS5.349350的mRNA表达。同时,软骨基质的两个重要成分蛋白多糖(软骨基质的大分子和主要成分)和II型胶原的水平(软骨的主要结构蛋白)增加。349350这一变化表明利拉鲁肽不仅可以抑制炎症和软骨降解,还可以促进软骨基质的合成和积累,从而有助于保护和修复关节软骨。273此外,一项使用前交叉韧带横断术(ACLT)的研究大鼠模型进一步证实,皮下注射利拉鲁肽50μg/kg/天,无论是3周还是6周,都可以降低OARSI评分,突出了利拉鲁肽治疗关节退变的潜力。
GLP-1RAs and RA
GLP-1RAs和RA
The role of GLP-1RA was also investigated in RA, which is characterized by chronic inflammation of the synovium and joint destruction. In fibroblast-like RA synoviocytes, the administration of lixisenatide resulted in a reduction in the inflammatory response.347 This was achieved by decreasing the expression of proinflammatory cytokines such as tumor necrosis factor (TNF), interleukin-6 (IL-6), and interleukin-8 (IL-8).15,351,352 Moreover, lixisenatide has been shown to inhibit matrix metalloproteinase (MMP) activity and effectively block various cell signaling pathways, including the JNK, activator protein-1, and NF-κB pathways.353 These findings confirm that in the synovium, GLP-1R is expressed on two different cell types, macrophages and fibroblast-like synoviocytes, which are specialized cells distributed within the synovial intima and subintima, and these cell types play important roles in hyaluronic acid synthesis, metabolite processing, and clearance of matrix degradation fragments.354.
还研究了GLP-1RA在RA中的作用,其特征在于滑膜的慢性炎症和关节破坏。在成纤维细胞样RA滑膜细胞中,利西那肽的给药导致炎症反应的减少。347这是通过降低促炎细胞因子如肿瘤坏死因子(TNF),白细胞介素-6(IL-6)和白细胞介素-8(IL-8)的表达来实现的。15351352此外,利西那肽已被证明可抑制基质金属蛋白酶(MMP)活性,并有效阻断各种细胞信号通路,包括JNK,激活蛋白-1和NF-κB通路。353这些发现证实,在滑膜中,GLP-1R在两种不同的细胞类型上表达,巨噬细胞和成纤维细胞样滑膜细胞是特化细胞分布在滑膜内膜和内膜下,这些细胞类型在透明质酸合成,代谢物加工和基质降解片段清除中起重要作用。
GLP-1RAs and musculoskeletal health
GLP-1RAs与肌肉骨骼健康
GLP-1RAs and bone
GLP-1RAs和骨骼
The quality of bone depends on bone metabolism, and the main factors affecting bone metabolism include osteoclasts, osteoblasts, and calcitonin.355,356,357 According to most related studies, osteoclasts and osteoblasts are indispensable for bone remodeling, and bone resorption and bone formation are mediated by osteoclasts and osteoblasts, respectively.358 GLP-1R is present in bone marrow stem cells (BMSCs),15,359 osteoblasts,15 osteocytes,360 and osteoclasts,361 and GLP-1RAs have the potential to impact these cells..
骨的质量取决于骨代谢,影响骨代谢的主要因素包括破骨细胞,成骨细胞和降钙素.355356357根据大多数相关研究,破骨细胞和成骨细胞对于骨重塑是必不可少的,骨吸收和骨形成分别由破骨细胞和成骨细胞介导.358 GLP-1R存在于骨髓干细胞(BMSCs),15359个成骨细胞,15个骨细胞,360和破骨细胞中,361和GLP-1RAs有可能影响这些细胞。。
GLP-1RAs and osteoclasts The greater degree of bone degradation observed in mice lacking GLP-1R indicates that GLP-1R signaling suppresses osteoclast differentiation and bone resorption.362 In an experimental study in which osteoclast formation and bone resorption were induced in mice through lipopolysaccharide (LPS) administration, researchers discovered that simultaneous treatment with exendin-4 resulted in a significant decrease in the number of osteoclasts, the proportion of bone resorption pits, and the levels of the bone resorption marker CTX compared to injection with LPS alone.363 According to previous reports, exendin-4, a GLP-1RA, has the potential to inhibit LPS-induced osteoclast formation and bone resorption in vivo.363,364 This inhibition is believed to occur through the suppression of LPS-induced TNF-α production in macrophages.15 Studies have indicated that GLP-1R KO mice exhibit greater numbers of osteoclasts and greater bone resorption than wild-type controls.364 Additionally, µCT analysis revealed that, compared with their wild-type counterparts, hyperlipidemic rats treated with subcutaneous GLP-1 for 3 days exhibited increased bone mass in the femur and vertebrae.365.
GLP-1RAs和破骨细胞在缺乏GLP-1R的小鼠中观察到的更大程度的骨降解表明GLP-1R信号传导抑制破骨细胞分化和骨吸收。362在一项实验研究中,通过脂多糖(LPS)给药诱导小鼠破骨细胞形成和骨吸收,研究人员发现,与单独注射LPS相比,同时用exendin-4治疗导致破骨细胞数量,骨吸收坑比例和骨吸收标志物CTX水平显着降低。363根据以前的报道,exendin-4(一种GLP-1RA)有可能抑制LPS诱导的破骨细胞形成和体内骨吸收。363364这种抑制作用被认为是通过抑制LPS诱导的巨噬细胞中TNF-α的产生而发生的。研究表明,GLP-1R KO小鼠表现出比野生型对照更多的破骨细胞数量和更大的骨吸收,μCT分析显示,与野生型相比,皮下GLP-1治疗3天的高脂血症大鼠股骨和椎骨骨量增加。
Diabetic patients have a higher risk of fractures than does the general population.366 Mice with type 1 diabetes (T1D) exhibit a reduction in bone mineral density (BMD) and compromised microstructural integrity.367 The administration of liraglutide also impeded osteoclastic bone formation, thereby inhibiting bone resorption and exerting protective effects on bone health in T1D mice.367 Specifically, liraglutide, both alone and in combination with insulin, effectively suppressed the formation of osteoclasts.
糖尿病患者的骨折风险高于普通人群.366患有1型糖尿病(T1D)的小鼠表现出骨密度(BMD)降低和微结构完整性受损.367利拉鲁肽的给药也阻碍了破骨细胞骨形成,从而抑制骨吸收并对T1D小鼠的骨健康产生保护作用.367具体而言,利拉鲁肽单独或与胰岛素联合使用可有效抑制破骨细胞的形成。
This effect is achieved by reducing the expression of Trem2 and NFATc1 and downregulating the expression of CTSK and TRAP to inhibit bone resorption activity. These findings provide further evidence for the impact of GLP-1RAs on osteoclastic bone resorption.367 A study involving 12-week-old ovariectomized mice revealed that administering liraglutide for 4 weeks effectively prevented the loss of trabecular bone.
这种效果是通过降低Trem2和NFATc1的表达并下调CTSK和TRAP的表达来抑制骨吸收活性来实现的。这些发现为GLP-1RAs对破骨细胞骨吸收的影响提供了进一步的证据.367一项涉及12周龄卵巢切除小鼠的研究表明,服用利拉鲁肽4周可有效防止小梁骨的丢失。
The analysis of bone tissue morphology revealed that there were no alterations in the rate of bone formation or in the levels of calcitonin or sclerostin in these mice. These findings suggest that liraglutide specifically reduces bone resorption without influencing bone formation.368.
骨组织形态分析显示,这些小鼠的骨形成速率或降钙素或硬化蛋白水平没有变化。这些发现表明利拉鲁肽特异性地减少骨吸收而不影响骨形成。
Since GLP-1R is expressed in thyroid C cells and GLP-1 directly stimulates the secretion of calcitonin, which is a potent inhibitor of bone resorption in osteoclasts, GLP-1 may contribute to the nutrient-mediated reduction in bone resorption.369,370 Genetic disruption of GLP-1R signaling leads to cortical osteopenia and heightened bone fragility, primarily caused by increased bone resorption by osteoclasts.
由于GLP-1R在甲状腺C细胞中表达,GLP-1直接刺激降钙素的分泌,降钙素是破骨细胞骨吸收的有效抑制剂,GLP-1可能有助于营养物质介导的骨吸收减少.369370 GLP-1R信号传导的遗传破坏导致皮质骨质减少和骨脆性增加,主要是由破骨细胞骨吸收增加引起的。
This change was accompanied by a decrease in thyroid calcitonin expression. Furthermore, the administration of exogenous GLP-1 resulted in elevated calcitonin expression in the thyroids of normal (wild-type) mice.362 The administration of calcitonin successfully reduced the levels of urinary deoxypyridinoline in GLP-1R knockout mice.
这种变化伴随着甲状腺降钙素表达的降低。此外,外源性GLP-1的给药导致正常(野生型)小鼠甲状腺中降钙素表达升高[362]。降钙素的给药成功降低了GLP-1R基因敲除小鼠尿脱氧吡啶啉的水平。
Additionally, treatment with GLP-1RA and exendin-4 increased the expression of the calcitonin gene in the thyroids of normal (wild-type) mice. These findings provide evidence that the regulatory influence of endogenous GLP-1R signaling on bone resorption is likely mediated through pathways that involve calcitonin.362 Considering the expression of the GLP-1R in thyroid C cells and the ability of GLP-1 to stimulate calcitonin secretion through a cAMP-mediated mechanism in vitro, it is plausible that calcitonin plays a role in the alterations in bone metabolism observed in GLP-1R-treated animals.369,370 Later, quantitative real-time PCR analysis demonstrated that the administration of exendin-4, a GLP-1RA, resulted in significant upregulation of thyroid calcitonin mRNA levels in wild-type mice.362.
此外,用GLP-1RA和exendin-4处理可增加正常(野生型)小鼠甲状腺中降钙素基因的表达。这些发现提供的证据表明,内源性GLP-1R信号传导对骨吸收的调节作用可能是通过涉及降钙素的途径介导的。考虑到GLP-1R在甲状腺C细胞中的表达以及GLP-1通过cAMP介导的机制刺激降钙素分泌的能力,降钙素在GLP-1R处理的动物中观察到的骨代谢改变中起作用似乎是合理的。369370后来,定量实时PCR分析表明,施用exendin-4(一种GLP-1RA)导致野生型小鼠甲状腺降钙素mRNA水平显着上调。(笑声)。
GLP-1RAs and Osteoblasts Osteoblasts arise through the differentiation of mesenchymal stem cells and play a crucial role in the process of bone formation. Stimulating GLP-1R in BMSCs triggers the buildup of nuclear β-catenin, which, in turn, activates osteogenic genes by binding with TCF7L12.371 In osteoblasts, the administration of GLP-1 and GIP incretins suppressed the excessive expression of the pro-degradative enzymes MMP-3 and MMP-13 induced by IL-1β stimulation.372 In vitro, GLP-1 disrupts the ability of osteoblasts to survive and differentiate by triggering the activation of c-Fos, which is a proto-oncogene.373 In fact, when BMSCs are exposed to exendin-4, the expression of genes related to bone development factors such as Runx and Osterix, as well as genes responsible for producing the bone matrix such as Balp and Bglap, is upregulated.
GLP-1RAs和成骨细胞成骨细胞通过间充质干细胞的分化而产生,并在骨形成过程中起关键作用。刺激骨髓间充质干细胞中的GLP-1R会触发核β-连环蛋白的积累,进而通过与成骨细胞中的TCF7L12.371结合来激活成骨基因,GLP-1和GIP肠促胰岛素的施用抑制了IL-1β刺激诱导的促降解酶MMP-3和MMP-13的过度表达。372在体外,GLP-1通过触发c-Fos(一种原癌基因)的激活来破坏成骨细胞的存活和分化能力。事实上,当骨髓间充质干细胞暴露于exendin-4时,与骨发育因子相关的基因的表达,例如Runx和Osterix以及负责产生骨基质的基因(例如Balp和Bglap)被上调。
Moreover, stimulation of GLP-1R in BMSCs results in the accumulation of β-catenin in the cell nucleus. This accumulation facilitates the binding of β-catenin to TCF7L12, triggering the activation of genes associated with osteogenesis.371.
此外,BMSCs中GLP-1R的刺激导致β-连环蛋白在细胞核中的积累。这种积累促进了β-连环蛋白与TCF7L12的结合,触发了与成骨相关的基因的激活。
In a study examining the effects of GLP-1RA on osteoporosis induced by ovariectomy in aged rats, administering exendin-4 for 16 weeks prevented deterioration of the trabecular microarchitecture and increased bone strength. This was achieved by inhibiting bone resorption through an increase in the OPG/RANKL ratio and promoting bone formation by enhancing the expression of osteoblast-specific transcription factors.374 Exendin-4 has also been shown to stimulate osteoblast activity and mitigate bone loss in an ovariectomized mouse model.374 Liraglutide can directly enhance bone formation in the MC3T3-E1 osteoblastic cell line.
在一项研究GLP-1RA对老年大鼠卵巢切除术引起的骨质疏松症的影响的研究中,给予exendin-4 16周可防止小梁微结构的恶化和骨强度的增加。这是通过增加OPG/RANKL比率来抑制骨吸收,并通过增强成骨细胞特异性转录因子的表达来促进骨形成.374 Exendin-4也被证明可以刺激成骨细胞活性并减轻去卵巢小鼠模型中的骨丢失.374利拉鲁肽可以直接增强MC3T3-E1成骨细胞系中的骨形成。
This effect is achieved through the activation of signaling pathways such as the ERK1/2, PI3K/AKT, and cAMP/PKA/β-cat-Ser675 pathways, which are mediated by GLP-1RAs.375 (Fig. 3).Fig. 3The Effects of GLP-1RAs on osteoclasts and osteoblasts. GLP-1RAs aid in weight loss by regulating the gut-brain axis and interacting with leptin, while weight loss can alleviate the harmful effects of obesity on the body, particularly in knee OA, by reducing joint loading and inflammation.
这种效应是通过激活信号通路如ERK1/2,PI3K/AKT和cAMP/PKA/β-cat-Ser675通路来实现的,这些通路由GLP-1RAs.375介导(图3)。图3 GLP-1RAs对破骨细胞和成骨细胞的影响。GLP-1RAs通过调节肠脑轴并与瘦素相互作用来帮助减肥,而减肥可以通过减少关节负荷和炎症来减轻肥胖对身体的有害影响,特别是在膝关节OA中。
Obesity disrupts bone metabolism and leads to increased bone resorption, but GLP-1RAs can inhibit this damage and improve bone health by increasing the OPG/RANKL ratio, reducing osteoclast activity, and promoting bone formationFull size image.
。
GLP-1RAs and muscle
GLP-1RAs和肌肉
GLP-1RAs and Muscle Atrophy In previous experiments, exendin-4 (Ex-4) inhibited the expression of myostatin (MSTN), atrophy-factor F-box only protein 32 (atrogin-1) and muscle ring finger protein 1 (MuRF-1) in dexamethasone-treated C2C12 myotubes.376,377,378 In a dexamethasone-induced muscle atrophy model, Ex-4 ameliorated muscle atrophy by inhibiting muscle atrophy factor and enhancing myogenic factors (MyoG and MyoD), thereby increasing muscle mass and function.
GLP-1RAs和肌肉萎缩在先前的实验中,exendin-4(Ex-4)抑制地塞米松处理的C2C12肌管中肌肉生长抑制素(MSTN),萎缩因子F-box-only蛋白32(atrogin-1)和肌肉无名指蛋白1(MuRF-1)的表达。在地塞米松诱导的肌肉萎缩模型中,Ex-4通过抑制肌肉萎缩因子和增强肌源性因子(MyoG和MyoD)来改善肌肉萎缩,从而增加肌肉质量和功能。
In the muscle atrophy mouse model, Ex-4 also increased muscle mass and muscle fiber size and improved muscle function. In addition, treatment with the long-acting GLP-1RA duraglutide restored muscle mass and function in DBA/2J-mdx mice.379.
在肌肉萎缩小鼠模型中,Ex-4还增加了肌肉质量和肌纤维大小,并改善了肌肉功能。此外,长效GLP-1RA duraglutide治疗可恢复DBA/2J mdx小鼠的肌肉质量和功能。
GLP-1RAs, particularly PF1801, have demonstrated effective relief in inflammatory myopathies, such as polymyositis (PM), through preclinical studies.376,380 The therapeutic effects of PF1801 are primarily achieved by modulating several key proteins that play central roles in inflammation and cellular metabolism.380 Firstly, the expression of GLP-1R is enhanced in the inflamed muscle fibers under pathological conditions, revealing the critical role of GLP-1R in regulating the muscle’s response to inflammation.381 PF1801 activates these receptors, initiating a series of biological responses that influence the inflammatory state of muscle cells, thereby alleviating inflammation.
GLP-1RAs,特别是PF1801,通过临床前研究已经证明可以有效缓解炎症性肌病,如多发性肌炎(PM)。376380 PF1801的治疗效果主要是通过调节几种在炎症和细胞代谢中起核心作用的关键蛋白来实现的。首先,GLP-1R的表达在病理条件下在发炎的肌纤维中增强,揭示了GLP-1R在调节肌肉对炎症反应中的关键作用。381 PF1801激活这些受体,引发一系列影响肌肉细胞炎症状态的生物反应,从而减轻炎症。
Next, PF1801 exerts its effects by activating AMP-activated protein kinase (AMPK).382 As a central node in energy sensing and metabolic regulation, the activation of AMPK helps maintain cellular energy balance and prevents cell death due to energy depletion.383,384 Importantly, the activation of AMPK reduces the expression of phosphoglycerate mutase 5 (PGAM5), which plays a promotive role in cell necrosis by contributing to mitochondrial dysfunction and the production of reactive oxygen species (ROS).385,386,387 Thus, by inhibiting PGAM5, AMPK suppresses necrosis, reduces ROS accumulation, and mitigates oxidative stress.385,387 PF1801 displays its anti-inflammatory effects by lowering levels of inflammatory mediators such as TNFα, IL-6, and HMGB1, and enhances the cell’s antioxidant capability by upregulating molecules like Nfe2l2, Hmox1, Gclm, and Nqo1, which further improves cellular defense against oxidative stress and protects them from further damage.382 Through this sophisticated molecular regulation, PF1801 not only alleviates inflammation and necrosis in muscle fibers but also enhances the .
接下来,PF1801通过激活AMP激活的蛋白激酶(AMPK)发挥其作用。382作为能量感应和代谢调节的中心节点,AMPK的激活有助于维持细胞能量平衡并防止由于能量消耗而导致的细胞死亡。383384重要的是,AMPK的激活降低了磷酸甘油酸突变酶5(PGAM5)的表达,磷酸甘油酸突变酶5(PGAM5)通过促进线粒体功能障碍和活性氧(ROS)的产生而在细胞坏死中发挥促进作用。385386387因此,AMPK通过抑制PGAM5来抑制坏死,减少ROS的积累,减轻氧化应激。385387 PF1801通过降低炎症介质的水平来显示其抗炎作用,例如作为TNFα,IL-6和HMGB1,并通过上调Nfe2l2,Hmox1,Gclm和Nqo1等分子来增强细胞的抗氧化能力,这进一步提高了细胞对氧化应激的防御能力,并保护它们免受进一步的损伤.382通过这种复杂的分子调控,PF1801不仅减轻了肌纤维的炎症和坏死,而且增强了肌纤维的炎症和坏死。
GLP-1RAs in Enhancing Exercise Endurance Studies indicate that acute exercise and short-term endurance training significantly increase GLP-1 secretion in mice. In endurance-trained men, GLP-1 plasma concentrations are elevated immediately at 30 and 45 minutes after exercise.388 To confirm the role of GLP-1 in enhancing physical endurance and the possible mechanisms involved, an in vivo AAV-mediated GLP-1 overexpression model and an in vitro siRNA-mediated AMPK knockdown model were generated.
GLP-1RAs在增强运动耐力方面的研究表明,急性运动和短期耐力训练显着增加了小鼠GLP-1的分泌。在耐力训练的男性中,GLP-1血浆浓度在运动后30分钟和45分钟立即升高.388为了证实GLP-1在增强身体耐力中的作用及其可能的机制,产生了体内AAV介导的GLP-1过表达模型和体外siRNA介导的AMPK敲低模型。
We demonstrated that GLP-1 enhances physical endurance by inducing skeletal muscle remodeling, which may be mediated by GLP-1R/AMPK signaling.389 Overall, GLP-1 secretion is induced by exercise. Overexpression of GLP-1 in skeletal muscle can improve endurance. These results suggest that GLP-1 may improve exercise endurance in mice by enhancing skeletal muscle glycogen synthesis and glucose uptake.
我们证明GLP-1通过诱导骨骼肌重塑来增强身体耐力,这可能是由GLP-1R/AMPK信号传导介导的.389总体而言,GLP-1分泌是由运动诱导的。骨骼肌中GLP-1的过度表达可以提高耐力。这些结果表明,GLP-1可能通过增强骨骼肌糖原合成和葡萄糖摄取来改善小鼠的运动耐力。
Mitochondrial content and function in skeletal muscle are regulated by GLP-1.389 The interaction between GLP-1 and its receptor GLP-1R initiates the AMPK signaling cascade within skeletal muscle tissue. This initiation precipitates a multitude of alterations in the cellular milieu, notably the augmentation of mitochondrial biogenesis-a mechanism responsible for the genesis of new mitochondria.
骨骼肌中的线粒体含量和功能受GLP-1.389调节。GLP-1及其受体GLP-1R之间的相互作用启动骨骼肌组织内的AMPK信号级联反应。这种启动促使细胞环境发生多种变化,特别是线粒体生物发生的增加,这是导致新线粒体发生的机制。
Furthermore, GLP-1 augments mitochondrial efficacy, as manifested by the ameliorated oxidative metabolism of muscle tissue. This enhancement is demonstrable through an increase in mitochondrial DNA content, the upregulation of genes integral to mitochondrial biogenesis, and the increased expression of proteins pivotal in oxidative phosphorylation.
此外,GLP-1增强线粒体功效,表现为肌肉组织的氧化代谢得到改善。这种增强可以通过线粒体DNA含量的增加,线粒体生物发生不可或缺的基因的上调以及氧化磷酸化关键蛋白的表达增加来证明。
These cellular transformations contribute significantly to enhanced endurance during exercise, thereby underscoring the critical role that GLP-1 plays in t.
这些细胞转化显着提高了运动期间的耐力,从而强调了GLP-1在t中的关键作用。
GLP-1RAs and fat metabolismGLP-1RAs work via numerous mechanisms that contribute to weight loss, one of the most well-known of which is the gut-brain axis.212,213,390 Within this axis, GLP-1 functions by acting on both the gut and the brain.391 Furthermore, the combination of GLP-1-mediated signaling and the adipocyte hormone leptin has recently garnered increased interest.
。
Notably, leptin may serve as a crucial biological signal for GLP-1, working in synergy, to decrease food intake and body weight. The effects of the leptin-GLP-1 interaction may be governed by intracellular signaling pathways, including those involving phosphorylated STAT3 and PTP1B.15,392In Wistar rats, a diet high in fat was found to lead to a decrease in the ratio of OPG/RANKL, which resulted in increased bone resorption and ultimately a reduction in bone mass.
值得注意的是,瘦素可能是GLP-1的关键生物信号,协同作用,减少食物摄入和体重。瘦素-GLP-1相互作用的影响可能受细胞内信号通路的控制,包括涉及磷酸化STAT3和PTP1B的信号通路。15392在Wistar大鼠中,发现高脂肪饮食导致OPG/RANKL比例降低,导致骨吸收增加,最终骨量减少。
The administration of GLP-1RA or exendin-4 to rats fed a high-fat diet resulted in an increase in the OPG/RANKL ratio and a reduction in the degree of bone loss. It was observed that the treatment of rats on a high-fat diet with exendin-4 resulted in a decrease in the number of osteoclasts and the area of eroded surfaces, while there was an increase in the osteoid area, bone mass, and trabecular bone volume.
向喂食高脂饮食的大鼠施用GLP-1RA或exendin-4导致OPG/RANKL比率增加和骨质流失程度降低。据观察,用exendin-4治疗高脂饮食的大鼠导致破骨细胞数量和侵蚀表面面积减少,而类骨质面积,骨量和骨小梁体积增加。
These effects were compared to those of untreated controls that were also maintained on a high-fat diet.393 As a result, GLP-1RAs could mitigate the detrimental effects of hyperlipidemia-induced skeletal defects, leading to an improved prognosis in individuals with OA.On the surface of the cartilage, there is a layer of special phospholipids.
这些影响与未经治疗的对照组进行了比较,这些对照组也维持在高脂饮食中.393因此,GLP-1RAs可以减轻高脂血症引起的骨骼缺陷的有害影响,从而改善OA患者的预后。软骨表面有一层特殊的磷脂。
When a joint bears weight, it functions as a lubricant, playing a crucial role in enabling the joint to continue operating efficiently and smoothly. Altering the composition of this phospholipid lay.
当关节承受重量时,它起着润滑剂的作用,在使关节继续高效平稳地工作中起着至关重要的作用。改变这种磷脂层的组成。
Hepatocellular carcinoma (HCC)
肝细胞癌(HCC)
Initially developed for treating diabetes, GLP-1RAs have shown potential in treating NASH, which is closely related to HCC.513 Studies suggest that the anti-inflammatory and metabolic effects of GLP-1RAs might also influence the progression of liver diseases, including HCC.503,512,518 These effects include modulating cell proliferation, inflammation, and oxidative stress in liver cells, all of which are key factors in the development and progression of HCC.513,522 In a mouse model induced with NASH-related HCC, treatment with liraglutide (a type of GLP-1RA) was shown to prevent the progression of hepatocellular carcinoma.518 This was observed through improved glycemic control, reduced occurrence of liver cancer, and better liver histology compared to the control group.518 Studies indicate that liraglutide may inhibit liver carcinogenesis through its metabolic effects, suggesting that GLP-1RAs could potentially play a role in preventing or managing HCC in the context of NASH.523 Not only hepatocellular carcinoma, but GLP-1 has also shown potential in the treatment of other gastrointestinal tumors.524,525.
最初开发用于治疗糖尿病的GLP-1RAs已显示出治疗NASH的潜力,NASH与HCC密切相关.513研究表明,GLP-1RAs的抗炎和代谢作用也可能影响肝脏疾病的进展,包括HCC.503512518这些作用包括调节肝细胞的细胞增殖,炎症和氧化应激,所有这些都是HCC发展和进展的关键因素.513522在NASH相关HCC诱导的小鼠模型中,利拉鲁肽(一种GLP-1RA)的治疗被证明可以预防肝细胞癌的进展.518这是通过改善血糖控制,减少肝癌的发生而观察到的。518研究表明,利拉鲁肽可能通过其代谢作用抑制肝癌的发生,提示GLP-1RAs可能在NASH的背景下预防或管理HCC中发挥作用[523]。不仅肝细胞癌,GLP-1也显示出治疗其他胃肠道肿瘤的潜力[524525]。
Pancreatic cancer
胰腺癌
Researchers first compared the expression of GLP-1R in human pancreatic cancer tissues with adjacent non-tumorous pancreatic tissues, finding generally lower or absent expression of GLP-1R in pancreatic cancer tissues.520 Subsequently, the study observed that treatment with liraglutide, both in vitro (cell culture models) and in vivo (mouse models), inhibited the tumor formation and metastatic capabilities of pancreatic cancer cells by activating GLP-1R.520 The anti-tumor effect of liraglutide is related to its inhibition of the PI3K/Akt signaling pathway, as the activation of Akt is crucial for promoting cell survival and proliferation, and liraglutide can inhibit this process in a dose-dependent manner.520,526 In the context of T2DM, liraglutide, by regulating the PI3K/Akt pathway and activating GLP-1R, effectively inhibits the growth and spread of pancreatic cancer cells.520.
研究人员首先比较了GLP-1R在人胰腺癌组织和邻近的非肿瘤性胰腺组织中的表达,发现GLP-1R在胰腺癌组织中的表达通常较低或不存在。随后,该研究观察到利拉鲁肽在体外(细胞培养模型)和体内(小鼠模型)通过激活GLP-1R抑制胰腺癌细胞的肿瘤形成和转移能力。利拉鲁肽的抗肿瘤作用与其抑制PI3K/Akt信号通路有关,因为Akt的激活对于促进细胞存活和增殖至关重要,利拉鲁肽可以剂量依赖性方式抑制这一过程。520526在T2DM的背景下,利拉鲁肽通过调节PI3K/Akt途径和激活GLP-1R,有效抑制胰腺癌细胞的生长和扩散。
Colorectal cancer
大肠癌
The potential impact of GLP-1RAs on colorectal cancer (CRC) treatment is achieved through the modulation of Bone Morphogenetic Protein 4 (BMP4).519 In T2DM and CRC, the regulation of BMP4 is abnormal, which is a key focus of the research.519 Specifically, high blood glucose-induced insulin resistance in CRC cells leads to increased BMP4 expression, which activates the BMP4-Smad1/5/8 signaling pathway.519 The activation of this pathway enhances cell proliferation and metastatic capabilities by promoting epithelial-mesenchymal transition (EMT), thereby increasing the invasiveness and metastatic potential of tumors.
GLP-1RAs对结直肠癌(CRC)治疗的潜在影响是通过调节骨形态发生蛋白4(BMP4)来实现的。在T2DM和CRC中,BMP4的调节异常,这是研究的重点。具体而言,高血糖诱导的CRC细胞胰岛素抵抗导致BMP4表达增加,从而激活BMP4-Smad1/5/8信号通路。该通路的激活通过促进上皮-间质转化(EMT)增强细胞增殖和转移能力,从而增加肿瘤的侵袭性和转移潜能。
However, GLP-1RAs have been shown to reduce BMP4 levels through exogenous administration. Studies have shown that treating CRC cells with GLP-1RA can inhibit cell proliferation induced by insulin resistance by downregulating BMP4. Therefore, BMP4 becomes a potential therapeutic target in CRC, especially in a diabetic context where high blood glucose significantly affects cancer progression through the BMP4 pathway.519 Ultimately, GLP-1RA, by regulating BMP4 and its effects on cell proliferation and metastasis, provides a promising treatment approach.519 This not only demonstrates the role of GLP-1RA in diabetes management but also offers potential for integrating diabetes and cancer treatment.520 This finding emphasizes the importance of considering metabolic status in cancer treatment and the necessity for further research in this area.519 While early models have shown promising results, the application of GLP-1RAs in cancer treatment has not yet been established and requires further clinical trials.527.
然而,已显示GLP-1RAs通过外源给药降低BMP4水平。研究表明,用GLP-1RA处理CRC细胞可以通过下调BMP4来抑制胰岛素抵抗诱导的细胞增殖。因此,BMP4成为CRC的潜在治疗靶点,特别是在高血糖通过BMP4途径显着影响癌症进展的糖尿病背景下.519最终,GLP-1RA通过调节BMP4及其对细胞增殖和转移的影响,提供了一种有希望的治疗方法.519这不仅证明了GLP-1RA在糖尿病管理中的作用,而且为整合糖尿病和癌症治疗提供了潜力.520这一发现强调了在癌症治疗中考虑代谢状态的重要性以及在这一领域进一步研究的必要性.519虽然早期模型已显示出有希望的结果,但GLP-1RAs在癌症治疗中的应用尚未建立,需要进一步的临床试验.527是的。
Conclusions and perspectivePrimarily recognized for their role in diabetes mellitus treatment, GLP-1RAs have demonstrated significant benefits in cardiovascular health, skeletal muscle-related diseases, obesity management, and neurodegenerative conditions, among others. In this review, we delved into the multifaceted role of GLP-1R, especially its significance in disease contexts beyond traditional glucose metabolism.
结论和观点GLP-1RAs主要因其在糖尿病治疗中的作用而被认可,在心血管健康,骨骼肌相关疾病,肥胖管理和神经退行性疾病等方面显示出显着的益处。在这篇综述中,我们深入研究了GLP-1R的多方面作用,特别是其在传统葡萄糖代谢以外的疾病背景下的意义。
It explored the mechanisms of action of GLP-1RAs and their therapeutic potential in a wide array of diseases, such as diabetes mellitus, providing new insights into metabolic disease management. These findings underscore the multifunctionality of GLP-1R as a therapeutic target and its involvement in various biological processes, emphasizing its role in addressing complex disease mechanisms.
。这些发现强调了GLP-1R作为治疗靶标的多功能性及其参与各种生物学过程,强调了其在解决复杂疾病机制中的作用。
GLP-1 acts on the GLP-1R, activating multiple intracellular signaling pathways, including the cAMP/PKA pathway, the PI3K/Akt signaling pathway, and pathways related to anti-inflammatory and anti-oxidative stress responses, among others. These pathways play a crucial role in its wide-ranging therapeutic effects, extending the benefits of GLP-1RAs beyond metabolic diseases.
GLP-1作用于GLP-1R,激活多种细胞内信号传导途径,包括cAMP/PKA途径,PI3K/Akt信号传导途径以及与抗炎和抗氧化应激反应相关的途径等。这些途径在其广泛的治疗效果中起着至关重要的作用,将GLP-1RAs的益处扩展到代谢疾病之外。
While the therapeutic benefits of GLP-1RAs in diabetes management are well-established, their emerging role in other diseases suggests novel treatment strategies. Conclusively, research on GLP-1R and its agonists marks a promising direction in metabolic disease therapy, extending their potential beyond glucose regulation and offering hope for more comprehensive approaches in addressing metabolic diseases.
虽然GLP-1RAs在糖尿病管理中的治疗益处已经确立,但它们在其他疾病中的新兴作用提示了新的治疗策略。总之,对GLP-1R及其激动剂的研究标志着代谢疾病治疗的一个有希望的方向,将其潜力扩展到葡萄糖调节之外,并为解决代谢疾病的更全面方法提供了希望。
This research necessitates continued exploration, potentially revolutionizing future therapeutic strategies.In the intensely competitive GLP-1 drug market, simply enhancing drug efficacy is no longer .
这项研究需要继续探索,可能会彻底改变未来的治疗策略。在竞争激烈的GLP-1药物市场中,不再简单地提高药物疗效。
ReferencesMarzook, A., Tomas, A. & Jones, B. The interplay of glucagon-like peptide-1 receptor trafficking and signalling in pancreatic beta cells. Front Endocrinol. (Lausanne) 12, 678055 (2021).Article
参考文献Marzook,A.,Tomas,A。&Jones,B。胰高血糖素样肽-1受体运输与胰腺β细胞信号传导的相互作用。前内分泌。(洛桑)12678055(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ibrahim, S. S. et al. The effect of GLP-1R agonists on the medical triad of obesity, diabetes, and cancer. Cancer Metastasis Rev. 43, 141–156 (2024).MacDonald, P. E. et al. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51, S434–442 (2002).Article .
Ibrahim,S.S.等人。GLP-1R激动剂对肥胖、糖尿病和癌症三联征的影响。癌症转移Rev.43141-156(2024)。MacDonald,P.E。等人。GLP-1在葡萄糖刺激的胰岛素分泌过程中的多重作用。糖尿病51,S434-442(2002)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bu, T. et al. Glucagon-like peptide-1: New regulator in lipid metabolism. Diab Metab. J. 48, 354–372 (2024).Article
Bu,T。等人。胰高血糖素样肽-1:脂质代谢的新调节剂。糖尿病代谢。J、 48354-372(2024)。文章
Google Scholar
谷歌学者
Zhao, X. et al. GLP-1 receptor agonists: beyond their pancreatic effects. Front Endocrinol. (Lausanne) 12, 721135 (2021).Article
Zhao,X。等人。GLP-1受体激动剂:超越其胰腺作用。前内分泌。(洛桑)12721135(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Diz-Chaves, Y. et al. Anti-inflammatory effects of GLP-1 receptor activation in the brain in neurodegenerative diseases. Int. J. Mol. Sci. 23, 9583 (2022).Toft-Nielsen, M. B., Madsbad, S. & Holst, J. J. Determinants of the effectiveness of glucagon-like peptide-1 in type 2 diabetes. J.
Diz Chaves,Y。等人。GLP-1受体激活在神经退行性疾病中的抗炎作用。Int.J.Mol.Sci。239583(2022)。Toft Nielsen,M.B.,Madsbad,S。&Holst,J.J。胰高血糖素样肽-1在2型糖尿病中有效性的决定因素。J。
Clin. Endocrinol. Metab. 86, 3853–3860 (2001).Article .
临床。内分泌。代谢。863853-3860(2001)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, J. et al. GLP-1 receptor agonist as a modulator of innate immunity. Front Immunol. 13, 997578 (2022).Article
Chen,J。等人。GLP-1受体激动剂作为先天免疫调节剂。。13997578(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heinla, K. et al. GLP-1 receptor agonists induce growth hormone secretion in healthy volunteers. Diab Ther. 14, 777–786 (2023).Article
Heinla,K。等人。GLP-1受体激动剂在健康志愿者中诱导生长激素分泌。糖尿病。14777-786(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Andreasen, C. R., Andersen, A., Knop, F. K. & Vilsbøll, T. How glucagon-like peptide 1 receptor agonists work. Endocr. Connect 10, R200–r212 (2021).Article
Andreasen,C.R.,Andersen,A.,Knop,F.K。&Vilsbøll,T。胰高血糖素样肽1受体激动剂的工作原理。Endocr。连接10,R200–r212(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mojsov, S., Weir, G. C. & Habener, J. F. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest 79, 616–619 (1987).Article
Mojsov,S.,Weir,G.C。&Habener,J.F。促胰岛素:胰高血糖素基因中共编码的胰高血糖素样肽I(7-37)是灌注大鼠胰腺中胰岛素释放的有效刺激物。J、 临床。投资79616-619(1987)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guo, W. et al. Discovery of ecnoglutide - A novel, long-acting, cAMP-biased glucagon-like peptide-1 (GLP-1) analog. Mol. Metab. 75, 101762 (2023).Article
Guo,W.等。埃诺鲁肽的发现-一种新型的,长效的,cAMP偏向的胰高血糖素样肽-1(GLP-1)类似物。分子代谢。75101762(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Du, H., Meng, X., Yao, Y. & Xu, J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer’s disease. Front Endocrinol. (Lausanne) 13, 1033479 (2022).Article
Du,H.,Meng,X.,Yao,Y。&Xu,J。GLP-1受体激动剂治疗阿尔茨海默病的机制和疗效。前内分泌。(洛桑)131033479(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Reich, N. & Hölscher, C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer’s and Parkinson’s disease: An in-depth review. Front Neurosci. 16, 970925 (2022).Article
Reich,N。&Hölscher,C。胰高血糖素样肽1在阿尔茨海默病和帕金森病中的神经保护作用:深入综述。前神经科学。16970925(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Meurot, C. et al. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J. Orthop. Transl. 32, 121–129 (2022).CAS
Meurot,C。等人。靶向GLP-1/GLP-1R轴治疗骨关节炎:一个新的机会?J、 骨科。翻译。32121-129(2022)。中科院
Google Scholar
谷歌学者
de Lemos, J. A. et al. Tirzepatide reduces 24-hour ambulatory blood pressure in adults with body mass index ≥27 kg/m(2): SURMOUNT-1 ambulatory blood pressure monitoring substudy. Hypertension 81, e41–e43 (2024).Article
de Lemos,J.A.等人。替罗西肽可降低体重指数≥27 kg/m的成年人的24小时动态血压(2):CONVERSION-1动态血压监测子研究。高血压81,e41-e43(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, Q. X. et al. GLP-1 and underlying beneficial actions in Alzheimer’s disease, hypertension, and NASH. Front Endocrinol. (Lausanne) 12, 721198 (2021).Article
Li,Q。X。等人。GLP-1和阿尔茨海默病,高血压和NASH的潜在有益作用。前内分泌。(洛桑)12721198(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nielsen, R. et al. Effect of liraglutide on myocardial glucose uptake and blood flow in stable chronic heart failure patients: A double-blind, randomized, placebo-controlled LIVE sub-study. J. Nucl. Cardiol. 26, 585–597 (2019).Article
尼尔森,R。等人。利拉鲁肽对稳定型慢性心力衰竭患者心肌葡萄糖摄取和血流量的影响:一项双盲,随机,安慰剂对照的LIVE亚研究。J、 核。心脏病。26585-597(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mundil, D., Cameron-Vendrig, A. & Husain, M. GLP-1 receptor agonists: A clinical perspective on cardiovascular effects. Diab Vasc. Dis. Res. 9, 95–108 (2012).Article
Mundil,D.,Cameron Vendrig,A。&Husain,M。GLP-1受体激动剂:心血管效应的临床观点。Diab Vasc。Dis。第9、95-108号决议(2012年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lund, P. K., Goodman, R. H., Dee, P. C. & Habener, J. F. Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc. Natl. Acad. Sci. USA 79, 345–349 (1982).Article
Lund,P.K.,Goodman,R.H.,Dee,P.C。&Habener,J.F。胰腺前胰高血糖素cDNA包含两个串联排列的胰高血糖素相关编码序列。程序。纳特尔。阿卡德。科学。美国79345-349(1982)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bell, G. I., Santerre, R. F. & Mullenbach, G. T. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 302, 716–718 (1983).Article
Bell,G.I.,Santerre,R.F。&Mullenbach,G.T。仓鼠前胰高血糖素含有胰高血糖素和两种相关肽的序列。《自然》302716-718(1983)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bell, G. I., Sanchez-Pescador, R., Laybourn, P. J. & Najarian, R. C. Exon duplication and divergence in the human preproglucagon gene. Nature 304, 368–371 (1983).Article
Bell,G.I.,Sanchez-Pescador,R.,Laybourn,P.J。&Najarian,R.C。人类前胰高血糖素基因的外显子重复和分歧。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Holst, J. J., Orskov, C., Nielsen, O. V. & Schwartz, T. W. Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 211, 169–174 (1987).Article
Holst,J.J.,Orskov,C.,Nielsen,O.V。&Schwartz,T.W。截短的胰高血糖素样肽I,一种来自远端肠道的胰岛素释放激素。FEBS Lett公司。211169-174(1987)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kreymann, B., Williams, G., Ghatei, M. A. & Bloom, S. R. Glucagon-like peptide-1 7-36: A physiological incretin in man. Lancet 2, 1300–1304 (1987).Article
Kreymann,B.,Williams,G.,Ghatei,M.A。&Bloom,S.R。胰高血糖素样肽-17-36:人体的生理肠促胰岛素。《柳叶刀》21300-1304(1987)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Eng, J. et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. 267, 7402–7405 (1992).Article
Eng,J.等人。从疑似Heloderma毒液中分离和鉴定exendin-4(一种exendin-3类似物)。豚鼠胰腺分散腺泡上exendin受体的进一步证据。J、 生物。化学。2677402-7405(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).Article
Day,J.W.等人。一种新的胰高血糖素和GLP-1共同激动剂消除了啮齿动物的肥胖。自然化学。生物学5749-757(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Finan, B. et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med. 5, 209ra151 (2013).Article
Finan,B。等人。单分子双肠促胰岛素使啮齿动物,猴子和人类的代谢益处最大化。科学。翻译。医学杂志5209RA151(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med 21, 27–36 (2015).Article
Finan,B。等人。一种合理设计的单体肽三角体治疗剂可纠正啮齿动物的肥胖和糖尿病。《自然医学》21,27-36(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
D’Alessio, D. Is GLP-1 a hormone: Whether and When? J. Diab Investig. 7, 50–55 (2016).Article
D'Alessio,D。GLP-1是一种激素:是否以及何时?J、 糖尿病调查。。文章
Google Scholar
谷歌学者
Thorens B. Expression cloning of the pancreatic β cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proceedings of the National Academy of Sciences of the United States of America, 89, 8641–8645 (United States, 1992).Deacon, C. F. & Holst, J. J. Immunoassays for the incretin hormones GIP and GLP-1.
Thorens B.葡萄糖-肠促胰岛素激素胰高血糖素样肽1的胰腺β细胞受体的表达克隆。美国国家科学院院刊,898641-8645(美国,1992)。Deacon,C.F。&Holst,J.J。肠促胰岛素激素GIP和GLP-1的免疫测定。
Best. Pr. Res Clin. Endocrinol. Metab. 23, 425–432 (2009).Article .
最好的。公共关系临床。内分泌。代谢。23425-432(2009)。文章。
CAS
中科院
Google Scholar
谷歌学者
Malik, J. & Roohi, N. GLP-1, a powerful physiological incretin: an update. J. Biol. Regul. Homeost. Agents 32, 1171–1176 (2018).CAS
Malik,J。&Roohi,N。GLP-1,一种强大的生理肠降血糖素:更新。J、 生物。法规。顺势。代理人321171-1176(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nadkarni, P., Chepurny, O. G. & Holz, G. G. Regulation of glucose homeostasis by GLP-1. Prog. Mol. Biol. Transl. Sci. 121, 23–65 (2014).Article
Nadkarni,P.,Chepurny,O.G。&Holz,G.G。通过GLP-1调节葡萄糖稳态。程序。分子生物学。翻译。科学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Campbell, J. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).Article
Campbell,J.E。&Drucker,D.J。肠促胰岛素激素作用的药理学,生理学和机制。。17819-837(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Deacon, C. F. Circulation and degradation of GIP and GLP-1. Horm. Metab. Res 36, 761–765 (2004).Article
Deacon,C.F。GIP和GLP-1的循环和降解。霍姆。代谢。第36761-765号决议(2004年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mentlein, R. Mechanisms underlying the rapid degradation and elimination of the incretin hormones GLP-1 and GIP. Best. Pr. Res Clin. Endocrinol. Metab. 23, 443–452 (2009).Article
Mentlein,R。肠促胰岛素激素GLP-1和GIP快速降解和消除的机制。最好的。公共关系临床。内分泌。代谢。23443-452(2009)。文章
CAS
中科院
Google Scholar
谷歌学者
Drucker, D. J. The biology of incretin hormones. Cell Metab. 3, 153–165 (2006).Article
Drucker,D.J。肠促胰岛素激素的生物学。。3153-165(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pyke, C. et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology 155, 1280–1290 (2014).Article
Pyke,C。等人。GLP-1受体在猴和人体组织中的定位:通过广泛验证的单克隆抗体揭示了新的分布。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Baggio, L. L. & Drucker, D. J. Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157 (2007).Article
Baggio,L.L。和Drucker,D.J。肠促胰岛素的生物学:GLP-1和GIP。胃肠病学1322131-2157(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nauck, M. A. & Meier, J. J. Incretin hormones: Their role in health and disease. Diab Obes. Metab. 20, 5–21 (2018).Article
Nauck,M.A。&Meier,J.J。肠促胰岛素激素:它们在健康和疾病中的作用。暗黑破坏神出窍。代谢。20,5-21(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Ayala, J. E. et al. Glucagon-like peptide-1 receptor knockout mice are protected from high-fat diet-induced insulin resistance. Endocrinology 151, 4678–4687 (2010).Article
Ayala,J.E。等人。胰高血糖素样肽-1受体敲除小鼠免受高脂饮食诱导的胰岛素抵抗的影响。内分泌学1514678-4687(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ahrén, B., Yamada, Y. & Seino, Y. The Insulin Response to Oral Glucose in GIP and GLP-1 Receptor Knockout Mice: Review of the Literature and Stepwise Glucose Dose Response Studies in Female Mice. Front Endocrinol. (Lausanne) 12, 665537 (2021).Article
Ahrén,B.,Yamada,Y。&Seino,Y。GIP和GLP-1受体敲除小鼠对口服葡萄糖的胰岛素反应:文献综述和雌性小鼠的逐步葡萄糖剂量反应研究。前内分泌。(洛桑)12665537(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ussher, J. R. & Drucker, D. J. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat. Rev. Cardiol. 20, 463–474 (2023).Article
Ussher,J.R。&Drucker,D.J。胰高血糖素样肽1受体激动剂:心血管益处和作用机制。国家心脏病修订版。20463-474(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sheikh, A. Direct cardiovascular effects of glucagon like peptide-1. Diabetol. Metab. Syndr. 5, 47 (2013).Article
Sheikh,A。胰高血糖素样肽-1的直接心血管作用。糖尿病。代谢。Syndr公司。5,47(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, L., Zhang, W. & Tian, X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J. Neurosci. 133, 473–491 (2023).Article
Zhang,L.,Zhang,W。&Tian,X。GLP-1/GLP-1R轴在中枢神经系统疾病中的多效性。Int J.Neurosci。133473-491(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
McIntyre, R. S. et al. The neuroprotective effects of GLP-1: possible treatments for cognitive deficits in individuals with mood disorders. Behav. Brain Res 237, 164–171 (2013).Article
McIntyre,R.S.等人。GLP-1的神经保护作用:情绪障碍患者认知缺陷的可能治疗方法。行为。大脑研究237164-171(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gilbert, M. P. & Pratley, R. E. GLP-1 analogs and DPP-4 inhibitors in type 2 diabetes therapy: Review of head-to-head clinical trials. Front Endocrinol. (Lausanne) 11, 178 (2020).Article
Gilbert,M.P。&Pratley,R.E。GLP-1类似物和DPP-4抑制剂在2型糖尿病治疗中的应用:头对头临床试验的回顾。前内分泌。(洛桑)11178(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sun, L. et al. Rational design by structural biology of industrializable, long-acting antihyperglycemic GLP-1 receptor agonists. Pharmaceuticals (Basel). 15, 740 (2022).Meier, J. J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol.
Sun,L.等人。通过结构生物学合理设计可工业化的长效抗高血糖GLP-1受体激动剂。制药(巴塞尔)。15740(2022)。Meier,J。J。GLP-1受体激动剂用于2型糖尿病的个体化治疗。《国家内分泌杂志》。
8, 728–742 (2012).Article .
8728-742(2012)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Meier, J. J. et al. Intravenous glucagon-like peptide 1 normalizes blood glucose after major surgery in patients with type 2 diabetes. Crit. Care Med. 32, 848–851 (2004).Article
Meier,J.J.等人。静脉注射胰高血糖素样肽1可使2型糖尿病患者大手术后的血糖正常化。暴击。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Graaf, C. et al. Glucagon-like peptide-1 and its class B G protein-coupled receptors: A long march to therapeutic successes. Pharm. Rev. 68, 954–1013 (2016).Article
Graaf,C.等人,《胰高血糖素样肽-1及其B类G蛋白偶联受体:通往治疗成功的漫长道路》。Pharm.Rev.68954-1013(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Furman, B. L. The development of Byetta (exenatide) from the venom of the Gila monster as an anti-diabetic agent. Toxicon 59, 464–471 (2012).Article
Furman,B.L。从吉拉怪兽的毒液中开发出Byetta(艾塞那肽)作为抗糖尿病药物。毒理学59464-471(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Christel, C. M., DeNardo, D. F. & Secor, S. M. Metabolic and digestive response to food ingestion in a binge-feeding lizard, the Gila monster (Heloderma suspectum). J. Exp. Biol. 210, 3430–3439 (2007).Article
Christel,C.M.,DeNardo,D.F。&Secor,S.M。狂暴进食蜥蜴吉拉怪兽(Heloderma suspectum)对食物摄入的代谢和消化反应。J、 实验生物。2103430-3439(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Longwell, C. K. et al. Identification of N-terminally diversified GLP-1R agonists using saturation mutagenesis and chemical design. ACS Chem. Biol. 16, 58–66 (2021).Article
Longwell,C.K.等人。使用饱和诱变和化学设计鉴定N端多样化的GLP-1R激动剂。ACS化学。生物学16,58-66(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mapelli, C. et al. Eleven amino acid glucagon-like peptide-1 receptor agonists with antidiabetic activity. J. Med Chem. 52, 7788–7799 (2009).Article
Mapelli,C。等。11种具有抗糖尿病活性的氨基酸胰高血糖素样肽-1受体激动剂。J、 医学化学。527788–7799(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Malone, J. et al. Exenatide once weekly for the treatment of type 2 diabetes. Expert Opin. Investig. Drugs 18, 359–367 (2009).Article
Malone,J。等人。艾塞那肽每周一次,用于治疗2型糖尿病。专家意见。。药物18359-367(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gao, Z., Wei, Y. & Ma, G. A review of recent research and development on GLP-1 receptor agonists-sustained-release microspheres. J. Mater. Chem. B 11, 11184–11197 (2023).Article
Gao,Z.,Wei,Y。&Ma,G。GLP-1受体激动剂缓释微球的最新研究和开发综述。J、 马特。化学。B 111184-11197(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pechenov, S. et al. Development of an orally delivered GLP-1 receptor agonist through peptide engineering and drug delivery to treat chronic disease. Sci. Rep. 11, 22521 (2021).Article
Pechenov,S.等人。通过肽工程和药物递送开发口服递送的GLP-1受体激动剂以治疗慢性疾病。科学。代表1122521(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rasmussen, M. F. The development of oral semaglutide, an oral GLP-1 analog, for the treatment of type 2 diabetes. Diabetol. Int 11, 76–86 (2020).Article
Rasmussen,M.F。口服semaglutide(一种口服GLP-1类似物)的开发,用于治疗2型糖尿病。糖尿病。Int 11,76–86(2020年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Parkes, D. G., Mace, K. F. & Trautmann, M. E. Discovery and development of exenatide: The first antidiabetic agent to leverage the multiple benefits of the incretin hormone, GLP-1. Expert Opin. Drug Discov. 8, 219–244 (2013).Article
Parkes,D.G.,Mace,K.F。&Trautmann,M.E。艾塞那肽的发现和开发:第一种利用肠促胰岛素激素GLP-1多种益处的抗糖尿病药物。专家意见。药物发现。8219-244(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Andreasen, C. R., Andersen, A., Knop, F. K. & Vilsbøll, T. Understanding the place for GLP-1RA therapy: Translating guidelines for treatment of type 2 diabetes into everyday clinical practice and patient selection. Diab Obes. Metab. 23, 40–52 (2021).Article
Andreasen,C.R.,Andersen,A.,Knop,F.K。&Vilsbøll,T。了解GLP-1RA治疗的位置:将2型糖尿病治疗指南转化为日常临床实践和患者选择。暗黑破坏神出窍。代谢。23,40-52(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Drucker, D. J., Dritselis, A. & Kirkpatrick, P. Liraglutide. Nat. Rev. Drug Discov. 9, 267–268 (2010).Article
Drucker,D.J.,Dritselis,A。和Kirkpatrick,P。Liraglutide。《药物目录》修订版。9267-268(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
National Center for Biotechnology Information. (n.d.). Lixisenatide. PubChem. Retrieved, from https://pubchem.ncbi.nlm.nih.gov/compound/Lixisenatide#section=NIPH-Clinical-Trials-Search-of-Japan (August 9, 2024).Liu, J. et al. Incretin based treatments and mortality in patients with type 2 diabetes: systematic review and meta-analysis.
国家生物技术信息中心。(不另作说明)。利西塞纳肽。公共化学。检索自https://pubchem.ncbi.nlm.nih.gov/compound/Lixisenatide#section=NIPH-日本临床试验搜索(2024年8月9日)。Liu,J.等人。基于肠降血糖素的治疗和2型糖尿病患者的死亡率:系统评价和荟萃分析。
Bmj 357, j2499 (2017).Article .
BMJ 357,J2499(2017)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stewart, J. Trulicity FDA Approval History, https://www.drugs.com/history/trulicity.html (Jan 28, 2021).Ozempic FDA Approval History, https://www.drugs.com/history/ozempic.html (December 5, 2017).Fang, X. et al. Beinaglutide shows significantly beneficial effects in diabetes/obesity-induced nonalcoholic steatohepatitis in ob/ob mouse model.
Stewart,J.Trulicity FDA批准历史,https://www.drugs.com/history/trulicity.html(2021年1月28日)。Ozempic FDA批准历史,https://www.drugs.com/history/ozempic.html(2017年12月5日)。Fang,X。等人,贝那鲁肽在ob/ob小鼠模型中显示出对糖尿病/肥胖诱导的非酒精性脂肪性肝炎的显着有益作用。
Life Sci. 270, 118966 (2021).Article .
生命科学。270118966(2021)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Blevins, T. et al. DURATION-5: Exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 96, 1301–1310 (2011).Article
。J、 临床。内分泌。代谢。961301-1310(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Faillie, J. L. et al. Association of bile duct and gallbladder diseases with the use of incretin-based drugs in patients with type 2 diabetes mellitus. JAMA Intern Med 176, 1474–1481 (2016).Article
Faillie,J.L.等人。2型糖尿病患者使用肠降血糖素类药物与胆管和胆囊疾病的关系。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, J., Wang, G., Jia, Y. & Xu, Y. GLP-1 receptor agonists: effects on the progression of non-alcoholic fatty liver disease. Diab Metab. Res. Rev. 31, 329–335 (2015).Article
Liu,J.,Wang,G.,Jia,Y。&Xu,Y。GLP-1受体激动剂:对非酒精性脂肪肝疾病进展的影响。糖尿病代谢。第31329-335号决议(2015年)。文章
CAS
中科院
Google Scholar
谷歌学者
McClean, P. L. & Hölscher, C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology 86, 241–258 (2014).Article
McClean,P.L.&Hölscher,C.Lixisenatide是一种用于治疗2型糖尿病的药物,在阿尔茨海默病小鼠模型中显示出神经保护作用。神经药理学86241-258(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Monami, M. et al. Glucagon-like peptide-1 receptor agonists and pancreatitis: a meta-analysis of randomized clinical trials. Diab Res. Clin. Pr. 103, 269–275 (2014).Article
Monami,M.等人,《胰高血糖素样肽-1受体激动剂与胰腺炎:随机临床试验的荟萃分析》。Diab Res.临床。。文章
CAS
中科院
Google Scholar
谷歌学者
Samson, S. L. & Garber, A. GLP-1R agonist therapy for diabetes: benefits and potential risks. Curr. Opin. Endocrinol. Diab Obes. 20, 87–97 (2013).Article
Samson,S.L。和Garber,A。GLP-1R激动剂治疗糖尿病:益处和潜在风险。。奥平。内分泌。暗黑破坏神出窍。20,87-97(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Nauck, M. et al. Efficacy and safety of dulaglutide versus sitagliptin after 52 weeks in type 2 diabetes in a randomized controlled trial (AWARD-5). Diab Care 37, 2149–2158 (2014).Article
Nauck,M.等人在一项随机对照试验(AWARD-5)中,杜拉鲁肽与西他列汀治疗2型糖尿病52周后的疗效和安全性。糖尿病护理372149-2158(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Buse, J. B. et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 374, 39–47 (2009).Article
Buse,J.B.等人,《利拉鲁肽每日一次与艾塞那肽每日两次治疗2型糖尿病:一项为期26周的随机、平行组、多国、开放标签试验(LEAD-6)》。柳叶刀374,39-47(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Knop, F. K., Brønden, A. & Vilsbøll, T. Exenatide: pharmacokinetics, clinical use, and future directions. Expert Opin. Pharmacother. 18, 555–571 (2017).Article
Knop,F.K.,Brønden,A。&Vilsbøll,T.Exenatide:药代动力学,临床应用和未来方向。专家意见。药剂师。18555-571(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gillian M. Keating Adis International Limited, A., New Zealand. Exenatide. ADIS DRUG PROFILE, (2005).Su-yuan, C., Xiao-jing, L., & Jian-hui, L. Research progress of glucagon-like receptor agonists. Chin. J. New Drugs, 29, 2580–2585 (China, 2020).Tamborlane, W. V. et al. Liraglutide in children and adolescents with type 2 diabetes.
新西兰吉利安·M·基廷·阿迪斯国际有限公司。艾塞那肽。ADIS药物概况(2005)。Su yuan,C.,Xiao jing,L.,&Jian hui,L.胰高血糖素样受体激动剂的研究进展。下巴。J、 新药,292580-2585(中国,2020)。Tamborlane,W.V.等人,利拉鲁肽治疗儿童和青少年2型糖尿病。
N. Engl. J. Med. 381, 637–646 (2019).Article .
N、 英语。J、 医学381637-646(2019)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
O’Neil, P. M. et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet 392, 637–649 (2018).Article
O'Neil,P.M.等人。semaglutide与利拉鲁肽和安慰剂相比对肥胖患者减肥的疗效和安全性:一项随机,双盲,安慰剂和主动对照,剂量范围,2期试验。柳叶刀392637-649(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jacobsen, L. V., Flint, A., Olsen, A. K. & Ingwersen, S. H. Liraglutide in type 2 diabetes mellitus: clinical pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 55, 657–672 (2016).Article
Jacobsen,L.V.,Flint,A.,Olsen,A.K。&Ingwersen,S.H。利拉鲁肽治疗2型糖尿病:临床药代动力学和药效学。临床。药代动力学。55657-672(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lundgren, J. R. et al. Healthy weight loss maintenance with exercise, liraglutide, or both combined. N. Engl. J. Med. 384, 1719–1730 (2021).Article
Lundgren,J.R.等人。运动、利拉鲁肽或两者联合维持健康减肥。N、 英语。J、 医学3841719-1730(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ladenheim, E. E. Liraglutide and obesity: a review of the data so far. Drug Des. Devel Ther. 9, 1867–1875 (2015).Article
拉登海姆,E。E。利拉鲁肽与肥胖:迄今为止的数据回顾。药物Des。开发。91867-1875(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, C. H. et al. An evaluation of liraglutide including its efficacy and safety for the treatment of obesity. Expert Opin. Pharmacother. 21, 275–285 (2020).Article
Lin,C.H.等人。利拉鲁肽的评估,包括其治疗肥胖症的有效性和安全性。专家意见。药剂师。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Moon, S. et al. Efficacy and safety of the new appetite suppressant, liraglutide: A meta-analysis of randomized controlled trials. Endocrinol. Metab. (Seoul.) 36, 647–660 (2021).Article
Moon,S.等人。新型食欲抑制剂利拉鲁肽的疗效和安全性:随机对照试验的荟萃分析。内分泌。代谢。(首尔)36647-660(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wilding, J. P. et al. Exposure-response analyses of liraglutide 3.0 mg for weight management. Diab Obes. Metab. 18, 491–499 (2016).Article
Wilding,J.P。等人。用于体重管理的利拉鲁肽3.0mg的暴露-反应分析。暗黑破坏神出窍。代谢。18491-499(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Yousef, C. C. et al. Liraglutide effects on glycemic control and weight in patients with type 2 diabetes Mellitus: A real-world, observational study and brief narrative review. Diab Res Clin. Pr. 177, 108871 (2021).Article
Yousef,C.C.等人,《利拉鲁肽对2型糖尿病患者血糖控制和体重的影响:一项现实世界的观察性研究和简要叙述性综述》。糖尿病临床研究。公共关系177108871(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Tilinca, M. C., Tiuca, R. A., Burlacu, A. & Varga, A. A 2021 update on the use of liraglutide in the modern treatment of ‘Diabesity’: A Narrative Review. Medicina (Kaunas). 57, 669 (2021).Nathan, D. M. et al. Glycemia reduction in type 2 diabetes - microvascular and cardiovascular outcomes.
Tilinca,M.C.,Tiuca,R.A.,Burlacu,A。&Varga,A。2021年利拉鲁肽在现代“糖尿病”治疗中的使用更新:叙述性评论。麦地那(考纳斯)。57669(2021)。Nathan,D.M.等人,《2型糖尿病的血糖降低-微血管和心血管结局》。
N. Engl. J. Med. 387, 1075–1088 (2022).Article .
N、 英语。J、 医学3871075-1088(2022)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Introduction: Standards of Medical Care in Diabetes—2022. Diabetes Care. 45, S1–S2, (United States, 2022).Nathan, D. M. et al. Glycemia reduction in type 2 diabetes - glycemic outcomes. N. Engl. J. Med. 387, 1063–1074 (2022).Article
简介:2022年糖尿病医疗保健标准。糖尿病护理。。Nathan,D.M.等人,《2型糖尿病的血糖降低-血糖结果》。N、 英语。J、 医学3871063-1074(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Xie, Z. et al. Efficacy and safety of liraglutide and semaglutide on weight loss in people with obesity or overweight: A systematic review. Clin. Epidemiol. 14, 1463–1476 (2022).Article
Xie,Z.等人。利拉鲁肽和semaglutide对肥胖或超重人群减肥的有效性和安全性:系统评价。临床。流行病。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pfeffer, M. A. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N. Engl. J. Med. 373, 2247–2257 (2015).Article
Pfeffer,M.A.等人。利西那肽治疗2型糖尿病和急性冠状动脉综合征患者。N、 英语。J、 医学3732247-2257(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Christensen, M., Knop, F. K., Holst, J. J. & Vilsboll, T. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. IDrugs 12, 503–513 (2009).CAS
Christensen,M.,Knop,F.K.,Holst,J.J。&Vilsboll,T.Lixisenatide,一种用于治疗2型糖尿病的新型GLP-1受体激动剂。IDrugs 12503–513(2009)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xie, P. et al. Pharmacokinetics and safety of Iglarlixi in healthy chinese participants: Results of a phase 1 randomized study. Diab Ther. 14, 1387–1397 (2023).Article
Xie,P。等。健康中国参与者中Iglarlixi的药代动力学和安全性:第一阶段随机研究的结果。糖尿病。141387-1397(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Trujillo, J. M. & Goldman, J. Lixisenatide, a once-daily prandial glucagon-like peptide-1 receptor agonist for the treatment of adults with type 2 diabetes. Pharmacotherapy 37, 927–943 (2017).Article
Trujillo,J.M。和Goldman,J.Lixisenatide,一种每日一次的膳食胰高血糖素样肽-1受体激动剂,用于治疗成人2型糖尿病。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bolli, G. B. & Owens, D. R. Lixisenatide, a novel GLP-1 receptor agonist: efficacy, safety and clinical implications for type 2 diabetes mellitus. Diab Obes. Metab. 16, 588–601 (2014).Article
Bolli,G.B。&Owens,D.R。Lixisenatide,一种新型GLP-1受体激动剂:对2型糖尿病的疗效,安全性和临床意义。暗黑破坏神出窍。代谢。16588-601(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Christensen, M. et al. The design and discovery of lixisenatide for the treatment of type 2 diabetes mellitus. Expert Opin. Drug Discov. 9, 1223–1251 (2014).Article
Christensen,M.等人。用于治疗2型糖尿病的利西那肽的设计和发现。专家意见。药物发现。91223-1251(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
McCarty, D., Coleman, M. & Boland, C. L. Lixisenatide: A new daily GLP-1 agonist for type 2 diabetes management. Ann. Pharmacother. 51, 401–409 (2017).Article
McCarty,D.,Coleman,M。&Boland,C.L。Lixisenatide:用于2型糖尿病管理的新型每日GLP-1激动剂。安。药剂师。51401-409(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huetson, P. et al. Cost-effectiveness of once daily GLP-1 receptor agonist lixisenatide compared to bolus insulin both in combination with basal insulin for the treatment of patients with type 2 diabetes in Norway. J. Med. Econ. 18, 573–585 (2015).Article
Huetson,P。等人。与推注胰岛素联合基础胰岛素治疗挪威2型糖尿病患者相比,每日一次GLP-1受体激动剂利西那肽的成本效益。J、 医学经济学。18573-585(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Federici, M. O. et al. Utilization patterns of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus in Italy: A retrospective cohort study. Diab Ther. 9, 789–801 (2018).Article
Federici,M.O.等人,《意大利2型糖尿病患者胰高血糖素样肽-1受体激动剂的使用模式:回顾性队列研究》。糖尿病。9789-801(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Poole, R. M. & Nowlan, M. L. Albiglutide: first global approval. Drugs 74, 929–938 (2014).Article
Poole,R.M。和Nowlan,M.L.Albiglutide:首次全球批准。药物74929-938(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Matthews, J. E. et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 4810–4817 (2008).Article
Matthews,J.E.等人。albiglutide(一种长效胰高血糖素样肽-1模拟物)在2型糖尿病患者中的药效学,药代动力学,安全性和耐受性。J、 临床。内分泌。代谢。934810-4817(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Werner, U., Haschke, G., Herling, A. W. & Kramer, W. Pharmacological profile of lixisenatide: A new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul. Pept. 164, 58–64 (2010).Article
Werner,U.,Haschke,G.,Herling,A.W。&Kramer,W。利西那肽的药理学概况:一种用于治疗2型糖尿病的新型GLP-1受体激动剂。法规。佩普。164、58-64(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chang, K. C. et al. Comparative effectiveness of dulaglutide versus liraglutide in Asian type 2 diabetes patients: a multi-institutional cohort study and meta-analysis. Cardiovasc Diabetol. 19, 172 (2020).Article
Chang,K.C.等人。杜拉鲁肽与利拉鲁肽在亚洲2型糖尿病患者中的比较有效性:多机构队列研究和荟萃分析。心血管糖尿病。19172(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Healthcare, G. EASD 2018: the struggles of GSK’s GLP-1 receptor agonist, https://www.pharmaceutical-technology.com/comment/easd-2018-struggles-gsks-glp-1-receptor-agonist/?cf-view (October 3, 2018).Pratley, R. E. et al. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): a randomised, open-label, multicentre, non-inferiority phase 3 study.
Healthcare,G。EASD 2018:GSK GLP-1受体激动剂的斗争,https://www.pharmaceutical-technology.com/comment/easd-2018-struggles-gsks-glp-1-receptor-agonist/?cf-视图(2018年10月3日)。Pratley,R.E.等人,《口服药物控制不佳的2型糖尿病患者每周服用一次阿比鲁肽与每天服用一次利拉鲁肽的对比研究》(HARMONY 7):一项随机、开放标签、多中心、非劣效性3期研究。
Lancet Diab Endocrinol. 2, 289–297 (2014).Article .
柳叶刀糖尿病内分泌。2289-297(2014)。文章。
CAS
中科院
Google Scholar
谷歌学者
Hoerman, J. Tanzeum (albiglutide) Discontinued After FDA Warns Of Risk Of Anaphylaxis Reaction, https://trulaw.com/fda/tanzeum-albiglutide-anaphylaxis-reaction/ (November 21, 2017).Otto, T. et al. Utilization patterns of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes mellitus in Germany: a retrospective cohort study.
Hoerman,J.Tanzeum(albiglutide)在FDA警告过敏反应风险后停药,https://trulaw.com/fda/tanzeum-albiglutide-anaphylaxis-reaction/(2017年11月21日)。德国2型糖尿病患者胰高血糖素样肽-1受体激动剂的使用模式:一项回顾性队列研究。
Curr. Med Res Opin. 35, 893–901 (2019).Article .
Curr。医学研究专栏。35, 893-901 (2019).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Helfand, C. GlaxoSmithKline GLP-1 Tanzeum meets its end, and it doesn’t bode well for Sanofi, AstraZeneca: analyst, https://www.fiercepharma.com/marketing/glaxosmithkline-glp-1-tanzeum-meets-its-end-and-it-doesn-t-bode-well-for-sanofi-az (Jul 31, 2017).Tanzeum® (albiglutide) – Drug discontinuation, https://professionals.optumrx.com/publications/library/drugwithdrawal-tanzeum-2017-0726.html (July 26, 2017).Sanford, M.
,https://www.fiercepharma.com/marketing/glaxosmithkline-glp-1-tanzeum-meets-its-end-and-it-doesn-t-bode-well-for-sanofi-az(2017年7月31日)。Tanzeum®(阿比鲁肽)-停药,https://professionals.optumrx.com/publications/library/drugwithdrawal-tanzeum-2017-0726.html(2017年7月26日)。桑福德,M。
Dulaglutide: first global approval. Drugs 74, 2097–2103 (2014).Article .
杜拉鲁肽:首次获得全球批准。药物742097-2103(2014)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tibble, C. A., Cavaiola, T. S. & Henry, R. R. Longer acting GLP-1 receptor agonists and the potential for improved cardiovascular outcomes: a review of current literature. Expert Rev. Endocrinol. Metab. 8, 247–259 (2013).Article
Tibble,C.A.,Cavaiola,T.S。&Henry,R.R。长效GLP-1受体激动剂和改善心血管结局的潜力:当前文献综述。内分泌专家Rev。代谢。8247-259(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Terauchi, Y., Satoi, Y., Takeuchi, M. & Imaoka, T. Monotherapy with the once weekly GLP-1 receptor agonist dulaglutide for 12 weeks in Japanese patients with type 2 diabetes: dose-dependent effects on glycaemic control in a randomised, double-blind, placebo-controlled study. Endocr. J.
Terauchi,Y.,Satoi,Y.,Takeuchi,M。&Imaoka,T。日本2型糖尿病患者每周一次GLP-1受体激动剂杜拉鲁肽单药治疗12周:随机,双盲,安慰剂对照研究中对血糖控制的剂量依赖性影响。内分泌。J。
61, 949–959 (2014).Article .
61949-959(2014)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dhillon, S. Semaglutide: First global approval. Drugs 78, 275–284 (2018).Article
Dhillon,S.Semaglutide:首次获得全球批准。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lau, J. et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med Chem. 58, 7370–7380 (2015).Article
。J、 医学化学。587370-7380(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Frias, J. P. et al. Efficacy and safety of co-administered once-weekly cagrilintide 2·4 mg with once-weekly semaglutide 2·4 mg in type 2 diabetes: a multicentre, randomised, double-blind, active-controlled, phase 2 trial. Lancet 402, 720–730 (2023).Article
。柳叶刀402720-730(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gao, L. et al. Comparison of beinaglutide versus metformin for weight loss in overweight and obese non-diabetic patients. Exp. Clin. Endocrinol. Diab 130, 358–367 (2022).Article
Gao,L.等人。贝那鲁肽与二甲双胍对超重和肥胖非糖尿病患者体重减轻的比较。实验临床。内分泌。《糖尿病杂志》130358-367(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhang, Y. L. et al. Beinaglutide showed significant weight-loss benefit and effective glycaemic control for the treatment of type 2 diabetes in a real-world setting: a 3-month, multicentre, observational, retrospective, open-label study. Obes. Sci. Pr. 5, 366–375 (2019).Article
Zhang,Y。L。等人,贝那鲁肽在现实世界中治疗2型糖尿病显示出显着的减肥益处和有效的血糖控制:一项为期3个月的多中心,观察性,回顾性,开放标签研究。Obes。科学。第5366-375页(2019年)。文章
CAS
中科院
Google Scholar
谷歌学者
Ding, B. et al. Effectiveness of beinaglutide in a patient with late dumping syndrome after gastrectomy: A case report. Med. (Baltim.) 100, e26086 (2021).Article
丁,B。等。贝那鲁肽对胃切除术后晚期倾倒综合征患者的有效性:病例报告。医学(巴尔的摩)100,e26086(2021)。文章
Google Scholar
谷歌学者
Aldawsari, M. et al. The efficacy of GLP-1 analogues on appetite parameters, gastric emptying, food preference and taste among adults with obesity: Systematic review of randomized controlled trials. Diab Metab. Syndr. Obes. 16, 575–595 (2023).Article
Aldawsari,M.等人。GLP-1类似物对肥胖成年人食欲参数,胃排空,食物偏好和味道的影响:随机对照试验的系统评价。糖尿病代谢。Syndr公司。Obes。16575-595(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhang, F. et al. Recombinant human GLP-1 beinaglutide regulates lipid metabolism of adipose tissues in diet-induced obese mice. iScience 24, 103382 (2021).Article
Zhang,F。等人。重组人GLP-1贝那鲁肽调节饮食诱导的肥胖小鼠脂肪组织的脂质代谢。iScience 24103382(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, L. et al. Long-term cost-effectiveness of subcutaneous once-weekly semaglutide versus polyethylene glycol loxenatide for treatment of type 2 diabetes mellitus in China. Diab Ther. 14, 93–107 (2023).Article
Liu,L.等。中国皮下注射每周一次的semaglutide与聚乙二醇洛西那肽治疗2型糖尿病的长期成本效益。糖尿病。14,93-107(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Nauck, M. A. & D’Alessio, D. A. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc Diabetol. 21, 169 (2022).Article
Nauck,M.A。&D'Alessio,D.A。Tirzepatide,一种双重GIP/GLP-1受体共激动剂,用于治疗2型糖尿病,具有无与伦比的效果,可改善血糖控制和体重减轻。心血管糖尿病。21169(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, Q. et al. Efficacy and safety of tirzepatide, dual GLP-1/GIP receptor agonists, in the management of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 15, 222 (2023).Article
Zhou,Q。等。双重GLP-1/GIP受体激动剂tirzepatide在2型糖尿病治疗中的疗效和安全性:随机对照试验的系统评价和荟萃分析。糖尿病。代谢。Syndr公司。15222(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, F. et al. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat. Commun. 13, 1057 (2022).Article
Zhao,F。等人。关于替罗西肽和肽20在GIP,GLP-1或胰高血糖素受体上的多重药理作用的结构见解。国家公社。131057(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brandt, S. J. et al. Peptide-based multi-agonists: a new paradigm in metabolic pharmacology. J. Intern Med. 284, 581–602 (2018).Article
Brandt,S.J.等人。基于肽的多激动剂:代谢药理学的新范例。J、 实习生医学284581-602(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mayendraraj, A., Rosenkilde, M. M. & Gasbjerg, L. S. GLP-1 and GIP receptor signaling in beta cells - A review of receptor interactions and co-stimulation. Peptides 151, 170749 (2022).Article
Mayendraraj,A.,Rosenkilde,M.M。&Gasbjerg,L.S。GLP-1和GIP受体信号在β细胞中的作用-受体相互作用和共刺激的综述。肽151170749(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Karagiannis, T. et al. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia 65, 1251–1261 (2022).Article
Karagiannis,T.等人。使用双重GIP/GLP-1受体激动剂替罗西肽治疗2型糖尿病:系统评价和荟萃分析。糖尿病651251-1261(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fisman, E. Z. & Tenenbaum, A. The dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide: a novel cardiometabolic therapeutic prospect. Cardiovasc Diabetol. 20, 225 (2021).Article
Fisman,E.Z。&Tenenbaum,A。双重葡萄糖依赖性促胰岛素多肽(GIP)和胰高血糖素样肽-1(GLP-1)受体激动剂tirzepatide:一种新的心脏代谢治疗前景。心血管糖尿病。20225(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Y. et al. GLP-1 receptor in pancreatic α-cells regulates glucagon secretion in a glucose-dependent bidirectional manner. Diabetes 68, 34–44 (2019).Article
Zhang,Y。等。胰腺α细胞中的GLP-1受体以葡萄糖依赖性双向方式调节胰高血糖素的分泌。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Y. et al. Erratum. GLP-1 receptor in pancreatic α-cells regulates glucagon secretion in a glucose-dependent bidirectional manner. diabetes 2019;68. Diabetes 69, 267–268 (2020).Article
Zhang,Y。等人。勘误表。胰腺α细胞中的GLP-1受体以葡萄糖依赖性双向方式调节胰高血糖素的分泌。糖尿病2019;68、《糖尿病》69267-268(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Danowitz, M., & De Leon, D.D. The role of GLP-1 signaling in hypoglycemia due to hyperinsulinism. Front Endocrinol. (Lausanne) 13, 863184 (2022).Article
Danowitz,M.,&De Leon,D.D.GLP-1信号在高胰岛素血症引起的低血糖中的作用。前内分泌。(洛桑)13863184(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tong, J. & D’Alessio, D. Give the receptor a brake: slowing gastric emptying by GLP-1. Diabetes 63, 407–409 (2014).Article
Tong,J。和D'Alessio,D。给受体一个刹车:通过GLP-1减缓胃排空。糖尿病63407-409(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nogueiras, R., Nauck, M. A. & Tschöp, M. H. Gut hormone co-agonists for the treatment of obesity: from bench to bedside. Nat. Metab. 5, 933–944 (2023).Article
Nogueiras,R.,Nauck,M.A。&Tschöp,M.H。用于治疗肥胖的肠道激素共同激动剂:从长凳到床边。自然代谢。5933-944(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Syed, Y. Y. Tirzepatide: First approval. Drugs 82, 1213–1220 (2022).Article
Syed,Y.Y.Tirzepatide:首次批准。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Forzano, I. et al. Tirzepatide: A systematic update. Int. J. Mol. Sci. 23, 14631 (2022).Rosenstock, J. et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 398, 143–155 (2021).Article .
Forzano,I。等人,《替西帕肽:系统更新》。Int.J.Mol.Sci。2314631(2022)。Rosenstock,J.等人。新型双重GIP和GLP-1受体激动剂替罗西肽治疗2型糖尿病(SUPASS-1)患者的疗效和安全性:一项双盲,随机,3期临床试验。。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Del Prato, S. et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 398, 1811–1824 (2021).Article
Del Prato,S.等人,《替西帕肽与甘精胰岛素治疗2型糖尿病和心血管风险增加(SUPERSS-4):一项随机、开放标签、平行组、多中心、3期临床试验》。柳叶刀3981811-1824(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sattar, N. et al. Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. Nat. Med. 28, 591–598 (2022).Article
Sattar,N.等人,《替罗西肽心血管事件风险评估:预先指定的荟萃分析》。《自然医学》28591-598(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wilson, J. M. et al. The dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist tirzepatide improves cardiovascular risk biomarkers in patients with type 2 diabetes: A post hoc analysis. Diab Obes. Metab. 24, 148–153 (2022).Article
Wilson,J.M.等人。双重葡萄糖依赖性促胰岛素多肽和胰高血糖素样肽-1受体激动剂替罗巴肽改善2型糖尿病患者的心血管风险生物标志物:事后分析。暗黑破坏神出窍。代谢。。文章
CAS
中科院
Google Scholar
谷歌学者
France, N. L. & Syed, Y. Y. Tirzepatide: A review in type 2 diabetes. Drugs 84, 227–238 (2024).Article
France,N.L.&Syed,Y.Y.Tirzepatide:2型糖尿病的综述。药物84227-238(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Garvey, W. T. et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 402, 613–626 (2023).Article
加维(Garvey,W.T.)等人(W.T.)每周服用一次替罗西肽,用于治疗2型糖尿病患者的肥胖症(Overside-2):一项双盲、随机、多中心、安慰剂对照的3期临床试验。柳叶刀402613-626(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Romero-Gómez, M. et al. A phase IIa active-comparator-controlled study to evaluate the efficacy and safety of efinopegdutide in patients with non-alcoholic fatty liver disease. J. Hepatol. 79, 888–897 (2023).Article
Romero-Gómez,M.等人,一项IIa期活性比较对照研究,用于评估依非匹格列肽对非酒精性脂肪肝患者的疗效和安全性。J、 肝病。79888-897(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Boland, M. L. et al. Resolution of NASH and hepatic fibrosis by the GLP-1R/GcgR dual-agonist Cotadutide via modulating mitochondrial function and lipogenesis. Nat. Metab. 2, 413–431 (2020).Article
Boland,M.L.等人。GLP-1R/GcgR双重激动剂cotaudide通过调节线粒体功能和脂肪生成来解决NASH和肝纤维化。自然代谢。2413-431(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Parker, V. E. R. et al. Cotadutide promotes glycogenolysis in people with overweight or obesity diagnosed with type 2 diabetes. Nat. Metab. 5, 2086–2093 (2023).Article
Parker,V.E.R.等人,Cotadutide促进超重或肥胖诊断为2型糖尿病患者的糖原分解。自然代谢。52086-2093(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nahra, R. et al. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: A 54-week randomized phase 2b study. Diab Care 44, 1433–1442 (2021).Article
Nahra,R.等人。cotadutide对超重或肥胖和2型糖尿病成年人代谢和肝脏参数的影响:一项为期54周的随机2b期研究。糖尿病护理441433-1442(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Newsome, P. N. & Ambery, P. Incretins (GLP-1 receptor agonists and dual/triple agonists) and the liver. J. Hepatol. 79, 1557–1565 (2023).Article
Newsome,P.N。&Ambery,P.Incretins(GLP-1受体激动剂和双/三重激动剂)和肝脏。J、 肝病。791557-1565(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Riddy, D. M. et al. G protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharm. Rev. 70, 39–67 (2018).Article
Riddy,D.M.等人,针对胰岛素抵抗、肥胖和2型糖尿病的G蛋白偶联受体。Pharm.Rev.70,39-67(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bisson, A., Fauchier, G. & Fauchier, L. Triple-hormone-receptor agonist retatrutide for obesity. N. Engl. J. Med. 389, 1628 (2023).Article
Bisson,A.,Fauchier,G。&Fauchier,L。三重激素受体激动剂瑞他曲肽治疗肥胖症。N、 英语。J、 医学3891628(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Knerr, P. J. et al. Next generation GLP-1/GIP/glucagon triple agonists normalize body weight in obese mice. Mol. Metab. 63, 101533 (2022).Article
Knerr,P.J。等人。下一代GLP-1/GIP/胰高血糖素三重激动剂使肥胖小鼠的体重正常化。分子代谢。63101533(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, T., Ji, R. L. & Tao, Y. X. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. Pharm. Ther. 234, 108044 (2022).Article
Liu,T.,Ji,R.L。&Tao,Y.X。与肥胖和2型糖尿病相关的G蛋白偶联受体的天然突变。药剂师。234108044(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Elfeki, M. A. & Alkhouri, N. Triple-hormone-receptor agonist retatrutide for obesity. N. Engl. J. Med. 389, 1629 (2023).PubMed
Elfeki,M.A。和Alkhouri,N。三重激素受体激动剂瑞他曲肽治疗肥胖症。N、 英语。J、 医学3891629(2023)。PubMed出版社
Google Scholar
谷歌学者
Urva, S. et al. The novel GIP, GLP-1 and glucagon receptor agonist retatrutide delays gastric emptying. Diab Obes. Metab. 25, 2784–2788 (2023).Article
新型GIP、GLP-1和胰高血糖素受体激动剂瑞他曲肽延迟胃排空。暗黑破坏神出窍。代谢。252784-2788(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Harris, E. Triple-hormone combination retatrutide induces 24% body weight loss. JAMA 330, 306 (2023).PubMed
Harris,E。三重激素组合瑞他曲肽可诱导24%的体重减轻。《美国医学会杂志》330306(2023)。PubMed出版社
Google Scholar
谷歌学者
Doggrell, S. A. Is retatrutide (LY3437943), a GLP-1, GIP, and glucagon receptor agonist a step forward in the treatment of diabetes and obesity? Expert Opin. Investig. Drugs 32, 355–359 (2023).Article
Doggrell,S.A。retatrutide(LY3437943),一种GLP-1,GIP和胰高血糖素受体激动剂,是治疗糖尿病和肥胖症的一个进步吗?专家意见。。药物32355-359(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Urva, S. et al. LY3437943, a novel triple GIP, GLP-1, and glucagon receptor agonist in people with type 2 diabetes: a phase 1b, multicentre, double-blind, placebo-controlled, randomised, multiple-ascending dose trial. Lancet 400, 1869–1881 (2022).Article
Urva,S.等人LY3437943是一种新型的三重GIP,GLP-1和胰高血糖素受体激动剂,用于2型糖尿病患者:1b期,多中心,双盲,安慰剂对照,随机,多次递增剂量试验。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Doggrell, S. A. Retatrutide showing promise in obesity (and type 2 diabetes). Expert Opin. Investig. Drugs 32, 997–1001 (2023).Article
Doggrell,S.A。Retatrutide在肥胖(和2型糖尿病)方面显示出前景。专家意见。。药物32997-1001(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bailey, C. J., Flatt, P. R. & Conlon, J. M. Recent advances in peptide-based therapies for obesity and type 2 diabetes. Peptides 173, 171149 (2024).Article
。肽173171149(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jastreboff, A. M. et al. Triple-hormone-receptor agonist retatrutide for obesity - a phase 2 trial. N. Engl. J. Med. 389, 514–526 (2023).Article
Jastreboff,A.M.等人。三重激素受体激动剂瑞曲肽治疗肥胖症-2期临床试验。N、 英语。J、 医学389514-526(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rosenstock, J. et al. Retatrutide, a GIP, GLP-1 and glucagon receptor agonist, for people with type 2 diabetes: a randomised, double-blind, placebo and active-controlled, parallel-group, phase 2 trial conducted in the USA. Lancet 402, 529–544 (2023).Article
Rosenstock,J.等人。Retatrutide,一种GIP,GLP-1和胰高血糖素受体激动剂,用于2型糖尿病患者:一项在美国进行的随机,双盲,安慰剂和主动对照,平行组,2期试验。柳叶刀402529-544(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Abdelmalek, M. F. et al. A phase 2, adaptive randomized, double-blind, placebo-controlled, multicenter, 52-week study of HM15211 in patients with biopsy-confirmed non-alcoholic steatohepatitis - Study design and rationale of HM-TRIA-201 study. Contemp. Clin. Trials 130, 107176 (2023).Article .
。康坦普。临床。试验130107176(2023)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Prikhodko, V. A., Bezborodkina, N. N. & Okovityi, S. V. Pharmacotherapy for non-alcoholic fatty liver disease: Emerging targets and drug candidates. Biomedicines. 10, 274 (2022).Coskun, T. et al. LY3437943, a novel triple glucagon, GIP, and GLP-1 receptor agonist for glycemic control and weight loss: From discovery to clinical proof of concept.
。生物医学。10274(2022)。Coskun,T。等人LY3437943,一种用于血糖控制和体重减轻的新型三重胰高血糖素,GIP和GLP-1受体激动剂:从发现到临床概念验证。
Cell Metab. 34, 1234–1247.e1239 (2022).Kaur, M. & Misra, S. A review of an investigational drug retatrutide, a novel triple agonist agent for the treatment of obesity. Eur. J. Clin. Pharm. 80, 669–676 (2024).Article .
。341234-1247.e1239(2022)。Kaur,M。&Misra,S。综述了一种研究药物retatrutide,一种用于治疗肥胖症的新型三重激动剂。欧洲临床杂志。Pharm.80669-676(2024)。文章。
CAS
中科院
Google Scholar
谷歌学者
Baggio, L. L. & Drucker, D. J. Glucagon-like peptide-1 receptor co-agonists for treating metabolic disease. Mol. Metab. 46, 101090 (2021).Article
Baggio,L.L。&Drucker,D.J。胰高血糖素样肽-1受体共激动剂用于治疗代谢性疾病。分子代谢。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dahl, D. et al. Effect of subcutaneous tirzepatide vs placebo added to titrated insulin glargine on glycemic control in patients with type 2 diabetes: The SURPASS-5 randomized clinical trial. JAMA 327, 534–545 (2022).Article
Dahl,D.等人。皮下注射替罗西肽与安慰剂添加滴定甘精胰岛素对2型糖尿病患者血糖控制的影响:SUPERSS-5随机临床试验。JAMA 327534-545(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Frías, J. P. et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N. Engl. J. Med. 385, 503–515 (2021).Article
Frías,J.P.等人,2型糖尿病患者每周一次替利帕肽与semaglutide的比较。N、 英语。J、 医学385503-515(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Blaszczak, A. M., LaSalle, J. M., Concepcion, B. P. What is the pipeline for future medications for obesity? Int J Obes. (United Kingdom, 2024) https://doi.org/10.1038/s41366-024-01473-y.Baker, D. E., Walley, K. & Levien, T. L. Tirzepatide. Hosp. Pharm. 58, 227–243 (2023).Article
Blaszczak,A.M.,LaSalle,J.M.,Concepcion,B.P。未来肥胖药物的管道是什么?国际J Obes。(英国,2024年)https://doi.org/10.1038/s41366-024-01473-y.Baker,D.E.,Walley,K。和Levien,T.L.Tirzepatide。医院药学58227-243(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun, X. et al. Small-molecule albumin ligand modification to enhance the anti-diabetic ability of GLP-1 derivatives. Biomed. Pharmacother. 148, 112722 (2022).Article
Sun,X。等人。小分子白蛋白配体修饰以增强GLP-1衍生物的抗糖尿病能力。生物医学。药剂师。148112722(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saxena, A. R. et al. Efficacy and safety of oral small molecule glucagon-like peptide 1 receptor agonist danuglipron for glycemic control among patients with type 2 diabetes: A randomized clinical trial. JAMA Netw. Open 6, e2314493 (2023).Article
Saxena,A.R.等人。口服小分子胰高血糖素样肽1受体激动剂达努格列隆对2型糖尿病患者血糖控制的疗效和安全性:一项随机临床试验。JAMA网络。开放6,e2314493(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nauck, M. A. & Horowitz, M. Non-peptide, once-per-day oral orforglipron to compete with established peptide-based, injectable GLP-1 receptor agonists. Lancet 402, 429–431 (2023).Article
Nauck,M.A。&Horowitz,M.Non-peptide,每天一次口服或口服利普隆,与已建立的基于肽的可注射GLP-1受体激动剂竞争。柳叶刀402429-431(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wharton, S. et al. Daily oral GLP-1 receptor agonist orforglipron for adults with obesity. N. Engl. J. Med. 389, 877–888 (2023).Article
Wharton,S.等人。肥胖成人每日口服GLP-1受体激动剂或福格列隆。N、 英语。J、 医学389877-888(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Therapeutics, S. Structure Therapeutics Provides Comprehensive GSBR-1290 Program Update Including Clinically Meaningful Proof-of-Concept Data From Phase 2a Clinical Study, https://ir.structuretx.com/news-releases/news-release-details/structure-therapeutics-provides-comprehensive-gsbr-1290-program (December 18, 2023).Zhang, T.
Therapeutics,S。Structure Therapeutics提供全面的GSBR-1290程序更新,包括来自2a期临床研究的具有临床意义的概念验证数据,https://ir.structuretx.com/news-releases/news-release-details/structure-therapeutics-provides-comprehensive-gsbr-1290-program(2023年12月18日)。张,T。
et al. An inter-organ neural circuit for appetite suppression. Cell 185, 2478–2494.e2428 (2022).Article .
等。抑制食欲的器官间神经回路。单元格1852478–2494.e2428(2022)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sandoval, D. A. & D’Alessio, D. A. Physiology of proglucagon peptides: Role of glucagon and GLP-1 in health and disease. Physiol. Rev. 95, 513–548 (2015).Article
Sandoval,D.A。和D'Alessio,D.A。胰高血糖素原肽的生理学:胰高血糖素和GLP-1在健康和疾病中的作用。生理学。修订版95513-548(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kaihara, K. A. et al. PKA enhances the acute insulin response leading to the restoration of glucose control. Diabetes 64, 1688–1697 (2015).Article
Kaihara,K.A。等人,PKA增强急性胰岛素反应,从而恢复葡萄糖控制。糖尿病641688-1697(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).Article
Holst,J.J。胰高血糖素样肽1的生理学。生理学。修订版871409-1439(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yang, H. & Yang, L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J. Mol. Endocrinol. 57, R93–r108 (2016).Article
Yang,H。&Yang,L。靶向cAMP/PKA途径用于血糖控制和2型糖尿病治疗。J、 分子内分泌。57,R93–r108(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hameed, A. et al. Eriodictyol stimulates insulin secretion through cAMP/PKA signaling pathway in mice islets. Eur. J. Pharm. 820, 245–255 (2018).Article
Hameed,A。等人,Eriodictyol通过小鼠胰岛中的cAMP/PKA信号通路刺激胰岛素分泌。《欧洲药典》820245-255(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Almahariq, M., Mei, F. C. & Cheng, X. The pleiotropic role of exchange protein directly activated by cAMP 1 (EPAC1) in cancer: implications for therapeutic intervention. Acta Biochim Biophys. Sin. (Shanghai) 48, 75–81 (2016).Article
Almahariq,M.,Mei,F.C。&Cheng,X。由cAMP 1(EPAC1)直接激活的交换蛋白在癌症中的多效性作用:对治疗干预的影响。生物化学学报。罪恶。(上海)48,75-81(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tengholm, A. & Gylfe, E. cAMP signalling in insulin and glucagon secretion. Diab Obes. Metab. 19, 42–53 (2017).Article
Tengholm,A。&Gylfe,E。胰岛素和胰高血糖素分泌中的cAMP信号传导。暗黑破坏神出窍。代谢。19,42-53(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Kaihara, K. A. et al. β-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes 62, 1527–1536 (2013).Article
Kaihara,K.A。等人。β细胞特异性蛋白激酶A激活通过增加急性期胰岛素分泌来增强葡萄糖控制的效率。糖尿病621527-1536(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bhalla, S., Mehan, S., Khan, A. & Rehman, M. U. Protective role of IGF-1 and GLP-1 signaling activation in neurological dysfunctions. Neurosci. Biobehav Rev. 142, 104896 (2022).Article
Bhalla,S.,Mehan,S.,Khan,A。&Rehman,M.U。IGF-1和GLP-1信号激活在神经功能障碍中的保护作用。神经科学。Biobehav版本142104896(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Glauser, D. A. & Schlegel, W. The emerging role of FOXO transcription factors in pancreatic beta cells. J. Endocrinol. 193, 195–207 (2007).Article
Glauser,D.A。&Schlegel,W。FOXO转录因子在胰腺β细胞中的新兴作用。J、 内分泌。193195-207(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Purwana, I. et al. GABA promotes human β-cell proliferation and modulates glucose homeostasis. Diabetes 63, 4197–4205 (2014).Article
Purwana,I。等人。GABA促进人β细胞增殖并调节葡萄糖稳态。糖尿病634197-4205(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rondas, D., D’Hertog, W., Overbergh, L. & Mathieu, C. Glucagon-like peptide-1: modulator of β-cell dysfunction and death. Diab Obes. Metab. 15, 185–192 (2013).Article
Rondas,D.,D'Hertog,W.,Overbergh,L。&Mathieu,C。胰高血糖素样肽-1:β细胞功能障碍和死亡的调节剂。暗黑破坏神出窍。代谢。15185-192(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Ahrén, B. Hepato-incretin function of GLP-1: novel concept and target in type 1 diabetes. Diabetes 64, 715–717 (2015).Article
Ahrén,B。GLP-1的肝肠降血糖素功能:1型糖尿病的新概念和靶点。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jun, L. S. et al. Absence of glucagon and insulin action reveals a role for the GLP-1 receptor in endogenous glucose production. Diabetes 64, 819–827 (2015).Article
Jun,L.S.等人。缺乏胰高血糖素和胰岛素作用揭示了GLP-1受体在内源性葡萄糖产生中的作用。糖尿病64819-827(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Holter, M. M., Saikia, M. & Cummings, B. P. Alpha-cell paracrine signaling in the regulation of beta-cell insulin secretion. Front Endocrinol. (Lausanne) 13, 934775 (2022).Article
Holter,M.M.,Saikia,M。&Cummings,B.P。α细胞旁分泌信号在调节β细胞胰岛素分泌中的作用。前内分泌。(洛桑)13934775(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Saraiva, F. K. & Sposito, A. C. Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists. Cardiovasc Diabetol. 13, 142 (2014).Article
Saraiva,F.K。&Sposito,A.C。胰高血糖素样肽1(GLP-1)受体激动剂的心血管作用。心血管糖尿病。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lucey, M. et al. Acylation of the incretin peptide exendin-4 directly impacts glucagon-like peptide-1 receptor signaling and trafficking. Mol. Pharm. 100, 319–334 (2021).Article
Lucey,M。等人。肠降血糖素肽exendin-4的酰化直接影响胰高血糖素样肽-1受体的信号传导和运输。分子药理学100319-334(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Deganutti, G. et al. Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nat. Commun. 13, 92 (2022).Article
Deganutti,G。等人。GLP-1R肽激动剂结合的动力学与G蛋白活化的动力学相关。国家公社。13,92(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, H. et al. Structural insights into the activation of GLP-1R by a small molecule agonist. Cell Res. 30, 1140–1142 (2020).Article
。Cell Res.301140–1142(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cong, Z. et al. Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with G(s) proteins. Cell Discov. 10, 18 (2024).Article
Cong,Z。等人。与G(s)蛋白复合的无配体GLP-1R,GCGR和GIPR的分子特征。细胞Discov。10,18(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, T. M. et al. OSU-T315: a novel targeted therapeutic that antagonizes AKT membrane localization and activation of chronic lymphocytic leukemia cells. Blood 125, 284–295 (2015).Article
Liu,T.M.等人。OSU-T315:一种新型靶向治疗剂,可拮抗AKT膜的定位和慢性淋巴细胞白血病细胞的活化。血液125284-295(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, P., Wang, Z. & Wei, W. Phosphorylation of Akt at the C-terminal tail triggers Akt activation. Cell Cycle 13, 1947–1955 (2014).Chan, C. H. et al. Posttranslational regulation of Akt in human cancer. Cell Biosci. 4, 59 (2014).Article
Liu,P.,Wang,Z。&Wei,W。C末端尾部Akt的磷酸化触发Akt活化。细胞周期131947-1955(2014)。Chan,C.H.等人。Akt在人类癌症中的翻译后调控。细胞生物科学。4,59(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van Dam, E. M., Govers, R. & James, D. E. Akt activation is required at a late stage of insulin-induced GLUT4 translocation to the plasma membrane. Mol. Endocrinol. 19, 1067–1077 (2005).Article
van Dam,E.M.,Govers,R。&James,D.E。在胰岛素诱导的GLUT4易位至质膜的晚期,需要激活Akt。分子内分泌。191067-1077(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chang, Y. C. et al. Glucose transporter 4: Insulin response mastermind, glycolysis catalyst and treatment direction for cancer progression. Cancer Lett. 563, 216179 (2023).Article
Chang,Y.C.等。葡萄糖转运蛋白4:胰岛素反应策划者,糖酵解催化剂和癌症进展的治疗方向。癌症Lett。563216179(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gao, Y. et al. Effects of D-pinitol on insulin resistance through the PI3K/Akt signaling pathway in type 2 diabetes mellitus rats. J. Agric Food Chem. 63, 6019–6026 (2015).Article
Gao,Y。等人。D-松醇通过PI3K/Akt信号通路对2型糖尿病大鼠胰岛素抵抗的影响。J、 农业食品化学。636019-6026(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yang, F. et al. Knockdown of NCAPD3 inhibits the tumorigenesis of non-small cell lung cancer by regulation of the PI3K/Akt pathway. BMC Cancer 24, 408 (2024).Article
Yang,F。等人。敲除NCAPD3通过调节PI3K/Akt途径抑制非小细胞肺癌的肿瘤发生。BMC癌症24408(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
García, S., Liz, M., Gómez-Reino, J. J. & Conde, C. Akt activity protects rheumatoid synovial fibroblasts from Fas-induced apoptosis by inhibition of Bid cleavage. Arthritis Res Ther. 12, R33 (2010).Article
。关节炎。12,R33(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cignarelli, A. et al. Mini review: Effect of GLP-1 receptor agonists and SGLT-2 inhibitors on the growth hormone/IGF axis. Front Endocrinol. (Lausanne) 13, 846903 (2022).Article
Cignarelli,A。等。迷你评论:GLP-1受体激动剂和SGLT-2抑制剂对生长激素/IGF轴的影响。前内分泌。(洛桑)13846903(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rowlands, J., Heng, J., Newsholme, P. & Carlessi, R. PleiOTROPIC EFFects of GLP-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol. (Lausanne) 9, 672 (2018).Article
Rowlands,J.,Heng,J.,Newsholme,P。&Carlessi,R。GLP-1及其类似物对细胞信号传导,代谢和功能的多效性作用。前内分泌。(洛桑)9672(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chai, W. et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes 61, 888–896 (2012).Article
。糖尿病61888-896(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Andreozzi, F. et al. The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism. J. Transl. Med. 14, 229 (2016).Article
Andreozzi,F。等人。GLP-1受体激动剂艾塞那肽和利拉鲁肽通过AMPK依赖性机制激活葡萄糖转运。J、 翻译。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, Y. et al. GLP-1 improves adipocyte insulin sensitivity following induction of endoplasmic reticulum stress. Front Pharm. 9, 1168 (2018).Article
Jiang,Y。等人。GLP-1在诱导内质网应激后改善脂肪细胞胰岛素敏感性。Front Pharm.91168(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Singh, I. et al. Activation of arcuate nucleus glucagon-like peptide-1 receptor-expressing neurons suppresses food intake. Cell Biosci. 12, 178 (2022).Article
Singh,I。等人。弓形核胰高血糖素样肽-1受体表达神经元的激活抑制食物摄入。细胞生物科学。12178(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baggio, L. L. & Drucker, D. J. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J. Clin. Invest 124, 4223–4226 (2014).Article
Baggio,L.L。和Drucker,D.J。大脑中胰高血糖素样肽-1受体:控制食物摄入和体重。J、 临床。投资1244223–4226(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van Bloemendaal, L. et al. GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans. Diabetes 63, 4186–4196 (2014).Article
van Bloemendaal,L。等人。GLP-1受体激活调节人类食欲和奖励相关的大脑区域。糖尿病634186-4196(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Barakat, G. M., Ramadan, W., Assi, G. & Khoury, N. B. E. Satiety: a gut-brain-relationship. J. Physiol. Sci. 74, 11 (2024).Article
Barakat,G.M.,Ramadan,W.,Assi,G。&Khoury,N.B.E。饱腹感:肠脑关系。J、 生理学。科学。74,11(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nachawi, N., Rao, P. P. & Makin, V. The role of GLP-1 receptor agonists in managing type 2 diabetes. Cleve Clin. J. Med 89, 457–464 (2022).Article
Nachawi,N.,Rao,P。P。和Makin,V。GLP-1受体激动剂在治疗2型糖尿病中的作用。克利夫临床。J、 医学89457-464(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Iqbal, J. et al. Effect of glucagon-like peptide-1 receptor agonists on body weight in adults with obesity without diabetes mellitus-a systematic review and meta-analysis of randomized control trials. Obes. Rev. 23, e13435 (2022).Article
Iqbal,J.等人。胰高血糖素样肽-1受体激动剂对无糖尿病肥胖成年人体重的影响-随机对照试验的系统评价和荟萃分析。Obes。第23版,e13435(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, Y. S. et al. Glucagon-like peptide 1 increases β-cell regeneration by promoting α- to β-cell transdifferentiation. Diabetes 67, 2601–2614 (2018).Article
Lee,Y.S.等人。胰高血糖素样肽1通过促进α细胞向β细胞的转分化来增加β细胞的再生。糖尿病672601-2614(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wei, R. et al. Antagonistic glucagon receptor antibody promotes α-cell proliferation and increases β-cell mass in diabetic mice. iScience 16, 326–339 (2019).Article
Wei,R。等人。拮抗性胰高血糖素受体抗体促进糖尿病小鼠的α细胞增殖并增加β细胞量。iScience 16326-339(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Drucker, D. J. Glucagon-like peptide-1 and the islet beta-cell: augmentation of cell proliferation and inhibition of apoptosis. Endocrinology 144, 5145–5148 (2003).Article
Drucker,D.J。胰高血糖素样肽-1和胰岛β细胞:增强细胞增殖和抑制细胞凋亡。内分泌学1445145-5148(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Miki, T. et al. Distinct effects of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 on insulin secretion and gut motility. Diabetes 54, 1056–1063 (2005).Article
Miki,T。等人。葡萄糖依赖性促胰岛素多肽和胰高血糖素样肽-1对胰岛素分泌和肠道运动的不同影响。糖尿病541056-1063(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Holz, G. G. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 53, 5–13 (2004).Article
Holz,G.G.Epac:一种新的cAMP结合蛋白,支持胰高血糖素样肽-1受体介导的胰腺β细胞信号转导。糖尿病53,5-13(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Naylor, J. et al. Use of CRISPR/Cas9-engineered INS-1 pancreatic β cells to define the pharmacology of dual GIPR/GLP-1R agonists. Biochem J. 473, 2881–2891 (2016).Article
Naylor,J。等人。使用CRISPR/Cas9工程化的INS-1胰腺β细胞来定义双重GIPR/GLP-1R激动剂的药理学。生物化学J.4732881–2891(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pamir, N. et al. Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis. Am. J. Physiol. Endocrinol. Metab. 284, E931–939 (2003).Article
Pamir,N。等人。葡萄糖依赖性促胰岛素多肽受体无效小鼠在肠岛轴上表现出代偿性变化。Am.J.Physiol。内分泌。代谢。284,E931–939(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Koppes, E. A. et al. Insulin secretion deficits in a Prader-Willi syndrome β-cell model are associated with a concerted downregulation of multiple endoplasmic reticulum chaperones. PLoS Genet 19, e1010710 (2023).Article
Koppes,E.A.等人。Prader-Willi综合征β细胞模型中的胰岛素分泌缺陷与多种内质网伴侣的协同下调有关。PLoS Genet 19,e1010710(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, S. J. et al. Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression.
Kim,S.J.等人。葡萄糖依赖性促胰岛素多肽(GIP)刺激胰腺β细胞存活取决于磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(PKB)信号传导,叉头转录因子Foxo1的失活和bax表达的下调。
J. Biol. Chem. 280, 22297–22307 (2005).Article .
J.生物学。化学。280, 22297-22307 (2005).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wei, T. et al. Glucagon acting at the GLP-1 receptor contributes to β-cell regeneration induced by glucagon receptor antagonism in diabetic mice. Diabetes 72, 599–610 (2023).Article
Wei,T。等人。胰高血糖素作用于GLP-1受体有助于糖尿病小鼠胰高血糖素受体拮抗作用诱导的β细胞再生。糖尿病72599-610(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gotoh, K. et al. Hypothalamic brain-derived neurotrophic factor regulates glucagon secretion mediated by pancreatic efferent nerves. J. Neuroendocrinol. 25, 302–311 (2013).Article
下丘脑脑源性神经营养因子调节胰腺传出神经介导的胰高血糖素分泌。J、 神经内分泌。25302-311(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Qiao, L. et al. Maternal GLP-1 receptor activation inhibits fetal growth. Am. J. Physiol. Endocrinol. Metab. 326, E268–e276 (2024).Article
Qiao,L。等人。母体GLP-1受体激活抑制胎儿生长。Am.J.Physiol。内分泌。代谢。326,E268–e276(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chou, C. L. et al. Collecting duct water permeability inhibition by EGF is associated with decreased cAMP, PKA activity, and AQP2 phosphorylation at Ser(269). Am. J. Physiol. Ren. Physiol. 326, F545–f559 (2024).Article
Chou,C.L.等人。EGF对收集管水渗透性的抑制与Ser处cAMP,PKA活性和AQP2磷酸化的降低有关(269)。Am.J.Physiol。任。生理学。326,F545–f559(2024)。文章
CAS
中科院
Google Scholar
谷歌学者
Planès, C. et al. Hypoxia and beta 2-agonists regulate cell surface expression of the epithelial sodium channel in native alveolar epithelial cells. J. Biol. Chem. 277, 47318–47324 (2002).Article
Planès,C。等人。缺氧和β2受体激动剂调节天然肺泡上皮细胞中上皮钠通道的细胞表面表达。J、 生物。化学。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Eaton, M., Hernandez, L. A. & Schaefer, S. Ischemic preconditioning and diazoxide limit mitochondrial Ca overload during ischemia/reperfusion: Role of reactive oxygen species. Exp. Clin. Cardiol. 10, 96–103 (2005).CAS
Eaton,M.,Hernandez,L.A。&Schaefer,S。缺血预处理和二氮嗪限制缺血/再灌注期间线粒体Ca超载:活性氧的作用。实验临床。心脏病。10,96-103(2005)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, L. et al. Preconditioning limits mitochondrial Ca(2+) during ischemia in rat hearts: Role of K(ATP) channels. Am. J. Physiol. Heart Circ. Physiol. 280, H2321–2328 (2001).Article
。Am.J.Physiol。心脏循环。生理学。280,H2321–2328(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bagger, J. I. et al. Glucagonostatic potency of GLP-1 in patients with type 2 diabetes, patients with type 1 diabetes, and healthy control subjects. Diabetes 70, 1347–1356 (2021).Article
Bagger,J.I.等人。GLP-1在2型糖尿病患者,1型糖尿病患者和健康对照受试者中的胰高血糖素抑制效力。糖尿病701347-1356(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lebrun, L. J. et al. Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion. Cell Rep. 21, 1160–1168 (2017).Article
Lebrun,L.J。等人。肠内分泌L细胞在肠屏障损伤后感知LPS以增强GLP-1分泌。Cell Rep.211160–1168(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ramracheya, R. et al. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca(2+) channels. Physiol. Rep. 6, e13852 (2018).Article
Ramracheya,R。等人。GLP-1通过抑制P/Q型Ca(2+)通道来抑制人胰腺α细胞中胰高血糖素的分泌。生理学。代表6,e13852(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
De Marinis, Y. Z. et al. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis. Cell Metab. 11, 543–553 (2010).Article
De Marinis,Y.Z.等人,GLP-1通过差异调节N型和L型Ca2+通道依赖性胞吐作用来抑制和肾上腺素刺激胰高血糖素的释放。。11543-553(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Andreu, J. M., Carreira, J. & Muñoz, E. Isolation and partial characterization of the two major subunits of the BF1 factor (ATPase) from Micrococcus lysodeikticus and evidence for their glycoprotein nature. FEBS Lett. 65, 198–203 (1976).Article
Andreu,J.M.,Carreira,J。&Muñoz,E。从溶皮微球菌中分离和部分表征BF1因子(ATPase)的两个主要亚基及其糖蛋白性质的证据。FEBS Lett公司。65198-203(1976)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aird, I. Intestinal obstruction : The results of recent experiment applied to clinical practice. Edinb. Med J. 43, 375–394 (1936).PubMed
Aird,I。肠梗阻:最近的实验结果应用于临床实践。爱丁堡。医学杂志43375-394(1936)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).Article
Saltiel,A.R。&Kahn,C.R。胰岛素信号传导和葡萄糖和脂质代谢的调节。自然414799-806(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Meier, J. J. & Nauck, M. A. Glucagon-like peptide 1(GLP-1) in biology and pathology. Diab Metab. Res. Rev. 21, 91–117 (2005).Article
Meier,J.J。&Nauck,M.A。胰高血糖素样肽1(GLP-1)在生物学和病理学中的应用。糖尿病代谢。第21号决议,91-117(2005年)。文章
CAS
中科院
Google Scholar
谷歌学者
Marathe, C. S., Rayner, C. K., Jones, K. L. & Horowitz, M. Relationships between gastric emptying, postprandial glycemia, and incretin hormones. Diab Care 36, 1396–1405 (2013).Article
Marathe,C.S.,Rayner,C.K.,Jones,K.L。&Horowitz,M。胃排空,餐后血糖和肠促胰岛素激素之间的关系。糖尿病护理361396-1405(2013)。文章
CAS
中科院
Google Scholar
谷歌学者
Gandasi, N. R. et al. GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of mouse and human pancreatic islet glucagon secretion. Diabetologia 67, 528–546 (2024).Article
Gandasi,N.R。等人GLP-1代谢物GLP-1(9-36)是小鼠和人胰岛胰高血糖素分泌的全身性抑制剂。糖尿病学67528-546(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Heller, R. S., Kieffer, T. J. & Habener, J. F. Insulinotropic glucagon-like peptide I receptor expression in glucagon-producing alpha-cells of the rat endocrine pancreas. Diabetes 46, 785–791 (1997).Article
Heller,R.S.,Kieffer,T.J。&Habener,J.F。促胰岛素胰高血糖素样肽I受体在大鼠内分泌胰腺产生胰高血糖素的α细胞中的表达。糖尿病46785-791(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brereton, M. F., Vergari, E., Zhang, Q. & Clark, A. Alpha-, Delta- and PP-cells: are they the architectural cornerstones of islet structure and co-ordination? J. Histochem Cytochem 63, 575–591 (2015).Article
Brereton,M.F.,Vergari,E.,Zhang,Q.&Clark,A。Alpha,Delta和PP细胞:它们是胰岛结构和协调的建筑基石吗?J、 组织化学细胞化学63575-591(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hauge-Evans, A. C. et al. Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58, 403–411 (2009).Article
Hauge-Evans,A.C。等人。胰岛三角洲细胞分泌的生长抑素作为胰岛功能的旁分泌调节剂发挥多种作用。糖尿病58403-411(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pappas, T. N., Debas, H. T., Goto, Y. & Taylor, I. L. Peptide YY inhibits meal-stimulated pancreatic and gastric secretion. Am. J. Physiol. 248, G118–123 (1985).CAS
Pappas,T.N.,Debas,H.T.,Goto,Y。&Taylor,I.L。肽YY抑制膳食刺激的胰腺和胃分泌。Am.J.Physiol。248,G118–123(1985)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brazeau, P. et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179, 77–79 (1973).Article
Brazeau,P。等人。抑制免疫反应性垂体生长激素分泌的下丘脑多肽。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gromada, J., Holst, J. J. & Rorsman, P. Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflug. Arch. 435, 583–594 (1998).Article
Gromada,J.,Holst,J。J。和Rorsman,P。肠促胰岛素激素胰高血糖素样肽1对胰岛激素分泌的细胞调节。P插头。拱门。435583-594(1998)。文章
CAS
中科院
Google Scholar
谷歌学者
Shilleh, A. H. et al. GLP1R and GIPR expression and signaling in pancreatic alpha cells, beta cells and delta cells. Peptides 175, 171179 (2024).Article
Shilleh,A.H.等人,GLP1R和GIPR在胰腺α细胞,β细胞和δ细胞中的表达和信号传导。肽175171179(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rutter, G. A. Regulating glucagon secretion: somatostatin in the spotlight. Diabetes 58, 299–301 (2009).Article
Rutter,G.A。调节胰高血糖素分泌:生长抑素在聚光灯下。糖尿病58299-301(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Strowski, M. Z., Parmar, R. M., Blake, A. D. & Schaeffer, J. M. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 141, 111–117 (2000).Article
生长抑素通过两种受体亚型抑制胰岛素和胰高血糖素的分泌:生长抑素受体2基因敲除小鼠胰岛的体外研究。内分泌学141111-117(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ørgaard, A. & Holst, J. J. The role of somatostatin in GLP-1-induced inhibition of glucagon secretion in mice. Diabetologia 60, 1731–1739 (2017).Article
Ørgaard,A。&Holst,J。J。生长抑素在GLP-1诱导的小鼠胰高血糖素分泌抑制中的作用。糖尿病学601731-1739(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gao, R., Yang, T. & Zhang, Q. δ-Cells: The neighborhood watch in the islet community. Biology (Basel). 10, 74 (2021).Röder, P. V., Wu, B., Liu, Y. & Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48, e219 (2016).Article
Gao,R.,Yang,T。&Zhang,Q。δ细胞:胰岛社区的邻里观察。生物学(巴塞尔)。10,74(2021)。Röder,P.V.,Wu,B.,Liu,Y。&Han,W。胰腺调节葡萄糖稳态。实验分子医学48,e219(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Garzilli, I. & Itzkovitz, S. Design principles of the paradoxical feedback between pancreatic alpha and beta cells. Sci. Rep. 8, 10694 (2018).Article
Garzilli,I。&Itzkovitz,S。胰腺α和β细胞之间矛盾反馈的设计原则。科学。代表810694(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Donnelly, D. The structure and function of the glucagon-like peptide-1 receptor and its ligands. Br. J. Pharm. 166, 27–41 (2012).Article
Donnelly,D。胰高血糖素样肽-1受体及其配体的结构和功能。Br.J.Pharm.166,27-41(2012)。文章
CAS
中科院
Google Scholar
谷歌学者
Mentlein, R., Gallwitz, B. & Schmidt, W. E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem 214, 829–835 (1993).Article
Mentlein,R.,Gallwitz,B。&Schmidt,W.E。二肽基肽酶IV水解胃抑制多肽,胰高血糖素样肽-1(7-36)酰胺,肽组氨酸甲硫氨酸,并负责其在人血清中的降解。《欧洲生物化学杂志》214829-835(1993)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kieffer, T. J., McIntosh, C. H. & Pederson, R. A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136, 3585–3596 (1995).Article
Kieffer,T.J.,McIntosh,C.H。和Pederson,R.A。通过二肽基肽酶IV在体外和体内降解葡萄糖依赖性促胰岛素多肽和截短的胰高血糖素样肽1。内分泌学1363585-3596(1995)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Knudsen, L. B. & Pridal, L. Glucagon-like peptide-1-(9-36) amide is a major metabolite of glucagon-like peptide-1-(7-36) amide after in vivo administration to dogs, and it acts as an antagonist on the pancreatic receptor. Eur. J. Pharm. 318, 429–435 (1996).Article
Knudsen,L.B。&Pridal,胰高血糖素样肽-1-(9-36)酰胺是胰高血糖素样肽-1-(7-36)酰胺体内给药后的主要代谢产物,它可作为胰腺受体的拮抗剂。《欧洲药典》318429–435(1996)。文章
CAS
中科院
Google Scholar
谷歌学者
Patel, D. Glycaemic and non-glycaemic efficacy of once-weekly GLP-1 receptor agonists in people with type 2 diabetes. J. Clin. Pharm. Ther. 45, 28–42 (2020).Article
Patel,D。每周一次的GLP-1受体激动剂对2型糖尿病患者的血糖和非血糖疗效。J、 临床。药剂师。45,28-42(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Meyer-Gerspach, A. C. et al. Endogenous GLP-1 alters postprandial functional connectivity between homeostatic and reward-related brain regions involved in regulation of appetite in healthy lean males: A pilotstudy. Diab Obes. Metab. 20, 2330–2338 (2018).Article
Meyer-Gerspach,A.C.等人。内源性GLP-1改变了健康瘦男性食欲调节中涉及的稳态和奖励相关大脑区域之间的餐后功能连接:一项试点研究。暗黑破坏神出窍。代谢。202330-2338(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Phillips, A. & Clements, J. N. Clinical review of subcutaneous semaglutide for obesity. J. Clin. Pharm. Ther. 47, 184–193 (2022).Article
Phillips,A。&Clements,J.N。皮下semaglutide治疗肥胖症的临床综述。J、 临床。药剂师。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ando, H. et al. Glucagon-like peptide-1 reduces pancreatic β-cell mass through hypothalamic neural pathways in high-fat diet-induced obese rats. Sci. Rep. 7, 5578 (2017).Article
在高脂饮食诱导的肥胖大鼠中,胰高血糖素样肽-1通过下丘脑神经通路减少胰腺β细胞量。科学。代表75578(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yamanaka, M. et al. Protective effect of brain-derived neurotrophic factor on pancreatic islets in obese diabetic mice. Metabolism 55, 1286–1292 (2006).Article
Yamanaka,M。等人。脑源性神经营养因子对肥胖糖尿病小鼠胰岛的保护作用。新陈代谢551286-1292(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Edholm, T. et al. Differential incretin effects of GIP and GLP-1 on gastric emptying, appetite, and insulin-glucose homeostasis. Neurogastroenterol. Motil. 22, 1191–1200.e1315 (2010).Article
Edholm,T。等人。GIP和GLP-1对胃排空,食欲和胰岛素-葡萄糖稳态的不同肠促胰岛素作用。神经胃肠道。运动型。221191–1200.e1315(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
van Bloemendaal, L. et al. Brain reward-system activation in response to anticipation and consumption of palatable food is altered by glucagon-like peptide-1 receptor activation in humans. Diab Obes. Metab. 17, 878–886 (2015).Article
van Bloemendaal,L。等人。人类胰高血糖素样肽-1受体激活会改变大脑奖励系统对美味食物的预期和消耗的激活。暗黑破坏神出窍。代谢。17878-886(2015)。文章
Google Scholar
谷歌学者
Papaconstantinou, I. et al. The impact of peri-operative anti-TNF treatment on anastomosis-related complications in Crohn’s disease patients. A critical review. J. Gastrointest. Surg. 18, 1216–1224 (2014).Article
Papaconstantinou,I。等人。围手术期抗TNF治疗对克罗恩病患者吻合口相关并发症的影响。批判性评论。J、 。Surg.181216-1224(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Farr, O. M. et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia 59, 954–965 (2016).Article .
Farr,O.M.等人。GLP-1受体存在于人脑的顶叶皮层,下丘脑和髓质中,GLP-1类似物利拉鲁肽改变了糖尿病患者与非常理想的食物线索相关的大脑活动:一项交叉,随机,安慰剂对照试验。。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nauck, M. A., Kemmeries, G., Holst, J. J. & Meier, J. J. Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 60, 1561–1565 (2011).Article
Nauck,M.A.,Kemmeries,G.,Holst,J.J。&Meier,J.J。胰高血糖素样肽1的快速快速反应诱导人类胃排空减速。糖尿病601561-1565(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Little, T. J. et al. Effects of intravenous glucagon-like peptide-1 on gastric emptying and intragastric distribution in healthy subjects: relationships with postprandial glycemic and insulinemic responses. J. Clin. Endocrinol. Metab. 91, 1916–1923 (2006).Article
Little,T.J.等人。静脉注射胰高血糖素样肽-1对健康受试者胃排空和胃内分布的影响:与餐后血糖和胰岛素反应的关系。J、 临床。内分泌。代谢。911916-1923(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Moran, T. H. & McHugh, P. R. Cholecystokinin suppresses food intake by inhibiting gastric emptying. Am. J. Physiol. 242, R491–497 (1982).CAS
Moran,T.H。&McHugh,P.R。胆囊收缩素通过抑制胃排空来抑制食物摄入。Am.J.Physiol。242,R491-497(1982)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Robinson, P. H., McHugh, P. R., Moran, T. H. & Stephenson, J. D. Gastric control of food intake. J. Psychosom. Res. 32, 593–606 (1988).Article
Robinson,P.H.,McHugh,P.R.,Moran,T.H。&Stephenson,J.D。食物摄入的胃控制。J、 精神病。第32593-606号决议(1988年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tahrani, A. & Morton, J. Benefits of weight loss of 10% or more in patients with overweight or obesity: A review. Obesity 30, 802–840 (2022).Article
Tahrani,A。&Morton,J。超重或肥胖患者体重减轻10%或更多的益处:综述。肥胖30802-840(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chen, J. et al. Glucagon-like peptide-1 receptor regulates endoplasmic reticulum stress-induced apoptosis and the associated inflammatory response in chondrocytes and the progression of osteoarthritis in rat. Cell Death Dis. 9, 212 (2018).Article
。细胞死亡Dis。9212(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bjørnholm, K. D. et al. Activation of the renal GLP-1R leads to expression of Ren1 in the renal vascular tree. Endocrinol. Diab Metab. 4, e00234 (2021).Article
Bjørnholm,K.D.等人。肾脏GLP-1R的激活导致肾血管树中Ren1的表达。内分泌。糖尿病代谢。4,e00234(2021)。文章
Google Scholar
谷歌学者
Foer, D. et al. Glucagon-like peptide-1 receptor pathway attenuates platelet activation in aspirin-exacerbated respiratory disease. J. Immunol. 211, 1806–1813 (2023).Article
Foer,D。等人。胰高血糖素样肽-1受体途径减弱阿司匹林加重的呼吸系统疾病中的血小板活化。J、 免疫。2111806-1813(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).Article
Loeser,R.F.,Collins,J.A。&Diekman,B.O。衰老和骨关节炎的发病机制。风湿病杂志。12412-420(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aigner, T., Haag, J., Martin, J. & Buckwalter, J. Osteoarthritis: Aging of matrix and cells–going for a remedy. Curr. Drug Targets 8, 325–331 (2007).Article
Aigner,T.,Haag,J.,Martin,J。&Buckwalter,J。骨关节炎:基质和细胞的衰老-正在寻求治疗。。药物目标8325-331(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, X. et al. Fisetin suppresses chondrocyte senescence and attenuates osteoarthritis progression by targeting sirtuin 6. Chem. Biol. Interact. 390, 110890 (2024).Article
Wang,X。等人。非瑟酮通过靶向sirtuin 6抑制软骨细胞衰老并减弱骨关节炎的进展。化学。生物互动。390110890(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shiraishi, D. et al. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation. Biochem Biophys. Res Commun. 425, 304–308 (2012).Article
Shiraishi,D。等人。胰高血糖素样肽-1(GLP-1)通过STAT3激活诱导人巨噬细胞的M2极化。生物化学生物物理。Res Commun公司。425304-308(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Noguchi, T. et al. The GLP-1 receptor agonist exenatide improves recovery from spinal cord injury by inducing macrophage polarization toward the M2 phenotype. Front Neurosci. 18, 1342944 (2024).Article
Noguchi,T。等人。GLP-1受体激动剂艾塞那肽通过诱导巨噬细胞向M2表型极化来改善脊髓损伤的恢复。前神经科学。181342944(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Que, Q. et al. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J. Inflamm. (Lond.) 16, 13 (2019).Article
Que,Q。等人。GLP-1激动剂利拉鲁肽通过激活膝骨关节炎大鼠模型中的PKA/CREB途径来改善炎症。J、 发炎。(Lond。)16,13(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fernandes, T. L. et al. Macrophage: A potential target on cartilage regeneration. Front Immunol. 11, 111 (2020).Article
Fernandes,T.L.等人,《巨噬细胞:软骨再生的潜在靶点》。。11111(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, A. R. et al. Is synovial macrophage activation the inflammatory link between obesity and osteoarthritis? Curr. Rheumatol. Rep. 18, 57 (2016).Article
Sun,A.R.等人滑膜巨噬细胞活化是肥胖和骨关节炎之间的炎症联系吗?。风湿病。代表18,57(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sanchez-Lopez, E. et al. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 18, 258–275 (2022).Article
Sanchez-Lopez,E.等人。骨关节炎进展中的滑膜炎症。风湿病杂志。18258-275(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kapoor, M. et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).Article
Kapoor,M.等人。促炎细胞因子在骨关节炎病理生理学中的作用。风湿病杂志。7,33-42(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, T. & He, C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 44, 38–50 (2018).Article
Wang,T。&He,C。促炎细胞因子:肥胖与骨关节炎之间的联系。细胞因子生长因子Rev.44,38-50(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chang, S. Y. et al. Exendin-4 inhibits iNOS expression at the protein level in LPS-stimulated Raw264.7 macrophage by the activation of cAMP/PKA pathway. J. Cell Biochem 114, 844–853 (2013).Article
Chang,S.Y.等人。Exendin-4通过激活cAMP/PKA途径抑制LPS刺激的Raw264.7巨噬细胞中蛋白质水平的iNOS表达。J、 。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kang, J. H. et al. Exendin-4 inhibits interleukin-1beta-induced iNOS expression at the protein level, but not at the transcriptional and posttranscriptional levels, in RINm5F beta-cells. J. Endocrinol. 202, 65–75 (2009).Article
Kang,J。H。等人。Exendin-4在RINm5Fβ细胞中在蛋白质水平抑制白细胞介素-1β诱导的iNOS表达,但在转录和转录后水平不抑制。J、 内分泌。202,65-75(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, N., Wang, Y., Li, T. & Feng, X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int. J. Mol. Sci. 22, 5260 (2021).Weivoda, M. M. et al. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways.
Liu,N.,Wang,Y.,Li,T。&Feng,X。G蛋白偶联受体(GPCR):昆虫生理学和毒理学中的信号传导途径,表征和功能。Int.J.Mol.Sci。225260(2021)。Weivoda,M.M.等人,Wnt信号通过激活经典和非经典cAMP/PKA途径抑制破骨细胞分化。
J. Bone Min. Res. 31, 65–75 (2016).Article .
J、 Bone Min.Res.31,65-75(2016)。文章。
CAS
中科院
Google Scholar
谷歌学者
Min, S. H. et al. Hypothalamic AMP-activated protein kinase as a whole-body energy sensor and regulator. Endocrinol. Metab. (Seoul.) 39, 1–11 (2024).Article
Min,S.H.等人。下丘脑AMP激活的蛋白激酶作为全身能量传感器和调节剂。内分泌。代谢。(首尔)39,1-11(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).Article
Hardie,D.G.,Ross,F.A。&Hawley,S.A。AMPK:一种维持能量稳态的营养和能量传感器。Nat。Rev。Mol。Cell Biol。13251-262(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yun, B. et al. Prostaglandins from cytosolic phospholipase A2α/Cyclooxygenase-1 pathway and mitogen-activated protein kinases regulate gene expression in candida albicans-infected macrophages. J. Biol. Chem. 291, 7070–7086 (2016).Article
Yun,B。等人。来自胞质磷脂酶A2α/环氧合酶-1途径的前列腺素和丝裂原活化蛋白激酶调节白色念珠菌感染的巨噬细胞中的基因表达。J、 生物。化学。2917070–7086(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, X. L. et al. Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J. Biol. Chem. 278, 703–711 (2003).Article
Chen,X.L.等人。层流诱导内皮细胞中抗氧化反应元件介导的基因。一种新型的抗炎机制。J、 生物。化学。278703-711(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).Article
Kaneko,Y.,Nimmerjahn,F。&Ravetch,J.V。由Fc唾液酸化产生的免疫球蛋白G的抗炎活性。科学313670-673(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cogswell, J. P. et al. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J. Immunol. 153, 712–723 (1994).Article
Cogswell,J.P。等人。NF-κB通过共有NF-κB结合位点和非共有CRE样位点调节IL-1β转录。J、 免疫。153712-723(1994)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, S. F. & Malik, A. B. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 290, L622–l645 (2006).Article
Liu,S.F。&Malik,A.B。NF-κB活化作为感染性休克和炎症的病理机制。Am.J.Physiol。。290,L622–l645(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jung, Y. J. et al. IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. Faseb j. 17, 2115–2117 (2003).Article
Jung,Y。J。等人。IL-1β介导的通过NFkappaB/COX-2途径上调HIF-1α,将HIF-1鉴定为炎症和肿瘤发生之间的关键联系。Faseb j.172115-2117(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Burke, J. R. et al. BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J. Biol. Chem. 278, 1450–1456 (2003).Article
Burke,J.R。等人BMS-345541是IκB激酶的高选择性抑制剂,其结合酶的变构位点并阻断小鼠中NF-κB依赖性转录。J、 生物。化学。2781450-1456(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Josephson, A. M. et al. Systemic NF-κB-mediated inflammation promotes an aging phenotype in skeletal stem/progenitor cells. Aging (Albany NY) 13, 13421–13429 (2021).Article
Josephson,A.M.等人。全身性NF-κB介导的炎症促进骨骼干/祖细胞的衰老表型。老龄化(纽约州奥尔巴尼)1313421–13429(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cao, Q. T., Ishak, M., Shpilman, I. & Hirota, J. A. TNF-α and Poly(I:C) induction of A20 and activation of NF-κB signaling are independent of ABCF1 in human airway epithelial cells. Sci. Rep. 13, 14745 (2023).Article
Cao,Q.T.,Ishak,M.,Shpilman,I。&Hirota,J.A。TNF-α和Poly(I:C)诱导A20和激活NF-κB信号传导与人气道上皮细胞中的ABCF1无关。科学。代表1314745(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ebata, T. et al. Flightless I is a catabolic factor of chondrocytes that promotes hypertrophy and cartilage degeneration in osteoarthritis. iScience 24, 1–16 (2021).Zhao, D. et al. Anti-neuroinflammatory effects of fucoxanthin via inhibition of Akt/NF-κB and MAPKs/AP-1 pathways and activation of PKA/CREB pathway in lipopolysaccharide-activated BV-2 microglial cells.
Ebata,T。等人。Flightless I是软骨细胞的分解代谢因子,可促进骨关节炎中的肥大和软骨变性。iScience 24,1-16(2021)。Zhao,D。等。岩藻黄素通过抑制脂多糖激活的BV-2小胶质细胞中的Akt/NF-κB和MAPKs/AP-1途径以及激活PKA/CREB途径的抗炎作用。
Neurochem Res. 42, 667–677 (2017).Article .
神经化学研究42,667-677(2017)。第[UNK]条。
PubMed
PubMed
Google Scholar
谷歌学者
Liang, F. & Gardner, D. G. Mechanical strain activates BNP gene transcription through a p38/NF-kappaB-dependent mechanism. J. Clin. Invest 104, 1603–1612 (1999).Article
Liang,F。&Gardner,D.G。机械应变通过p38/NF-κB依赖性机制激活BNP基因转录。J、 临床。投资1041603-1612(1999)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sica, G. L. et al. RELT, a new member of the tumor necrosis factor receptor superfamily, is selectively expressed in hematopoietic tissues and activates transcription factor NF-kappaB. Blood 97, 2702–2707 (2001).Article
Sica,G.L。等人RELT是肿瘤坏死因子受体超家族的新成员,在造血组织中选择性表达并激活转录因子NF-κB。血液972702-2707(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Guo, C. et al. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz. J. Med. Biol. Res. 49, e5826 (2016).Article
Guo,C。等人。胰高血糖素样肽1通过巨噬细胞的抗炎作用在体外改善胰岛素抵抗。钎焊。J、 医学生物学。第49号决议,e5826(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Abdalqadir, N. & Adeli, K. GLP-1 and GLP-2 Orchestrate intestine integrity, gut microbiota, and immune system crosstalk. Microorganisms. 10, 2061 (2022).Lam, N. T. & Kieffer, T. J. The multifaceted potential of glucagon-like peptide-1 as a therapeutic agent. Minerva Endocrinol. 27, 79–93 (2002).CAS .
Abdalqadir,N。&Adeli,K。GLP-1和GLP-2协调肠道完整性,肠道微生物群和免疫系统串扰。微生物。102061(2022)。Lam,N.T。&Kieffer,T.J。胰高血糖素样肽-1作为治疗剂的多方面潜力。密涅瓦内分泌。27,79-93(2002)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Wang, L., Feng, L. & Zhang, J. Liraglutide exhibits anti-inflammatory activity through the activation of the PKA/CREB pathway. J. Inflamm. (Lond.) 16, 21 (2019).Article
Wang,L.,Feng,L。&Zhang,J。Liraglutide通过激活PKA/CREB途径表现出抗炎活性。J、 发炎。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Masson, A. O. & Krawetz, R. J. Understanding cartilage protection in OA and injury: A spectrum of possibilities. BMC Musculoskelet. Disord. 21, 432 (2020).Article
Masson,A.O。&Krawetz,R.J。了解OA和损伤中的软骨保护:一系列可能性。BMC肌肉骨骼。混乱。21432(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bennell, K. L. et al. Effect of intra-articular platelet-rich plasma vs placebo injection on pain and medial tibial cartilage volume in patients with knee osteoarthritis: The RESTORE Randomized Clinical Trial. JAMA 326, 2021–2030 (2021).Article
Bennell,K.L.等人。关节内富含血小板血浆与安慰剂注射对膝骨关节炎患者疼痛和胫骨内侧软骨体积的影响:RESORE随机临床试验。JAMA 3262021–2030(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fang, Y. et al. Liraglutide alleviates hepatic steatosis by activating the TFEB-regulated autophagy-lysosomal pathway. Front Cell Dev. Biol. 8, 602574 (2020).Article
Fang,Y。等人。利拉鲁肽通过激活TFEB调节的自噬-溶酶体途径减轻肝脂肪变性。前细胞发育生物学。8602574(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, M. Y. & Lu, J. H. Autophagy and macrophage functions: inflammatory response and phagocytosis. Cells 9, 70 (2019).Perrotta, C., Cattaneo, M. G., Molteni, R. & De Palma, C. Autophagy in the regulation of tissue differentiation and homeostasis. Front Cell Dev. Biol. 8, 602901 (2020).Article .
Wu,M.Y.&Lu,J.H。自噬和巨噬细胞功能:炎症反应和吞噬作用。细胞9,70(2019)。Perrotta,C.,Cattaneo,M.G.,Molteni,R。&De Palma,C。自噬在组织分化和体内平衡的调节中。前细胞发育生物学。8602901(2020)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arai, T. et al. Analgesic effects and arthritic changes following intra-articular injection of diclofenac etalhyaluronate in a rat knee osteoarthritis model. BMC Musculoskelet. Disord. 23, 960 (2022).Article
Arai,T。等人。在大鼠膝骨关节炎模型中关节内注射双氯芬酸乙硫醛酸盐后的镇痛作用和关节炎变化。BMC肌肉骨骼。混乱。23960(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yoh, S. et al. Intra-articular injection of monoiodoacetate induces diverse hip osteoarthritis in rats, depending on its dose. BMC Musculoskelet. Disord. 23, 494 (2022).Article
Yoh,S。等人。关节内注射单碘乙酸盐可诱导大鼠多种髋部骨关节炎,具体取决于其剂量。BMC肌肉骨骼。混乱。23494(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Takahashi, I., Matsuzaki, T., Kuroki, H. & Hoso, M. Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model. PLoS One 13, e0196625 (2018).Article
Takahashi,I.,Matsuzaki,T.,Kuroki,H。&Hoso,M。通过将碘乙酸钠注射到实验大鼠模型的髌股关节中来诱导骨关节炎。PLoS One 13,e0196625(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wan, S. & Sun, H. Glucagon-like peptide-1 modulates RAW264.7 macrophage polarization by interfering with the JNK/STAT3 signaling pathway. Exp. Ther. Med. 17, 3573–3579 (2019).CAS
。实验温度。医学杂志173573-3579(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, Y., Dong, Z. & Liu, K. Unraveling the complexity of STAT3 in cancer: Molecular understanding and drug discovery. J. Exp. Clin. Cancer Res. 43, 23 (2024).Article
Hu,Y.,Dong,Z。&Liu,K。揭示STAT3在癌症中的复杂性:分子理解和药物发现。J、 实验临床。癌症研究43,23(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiong, A. et al. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers (Basel) 6, 926–957 (2014).Article
熊,A。等。转录因子STAT3作为癌症预防的新型分子靶标。癌症(巴塞尔)6926-957(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, S. et al. The regulatory relationship between transcription factor STAT3 and noncoding RNA. Cell Mol. Biol. Lett. 29, 4 (2024).Article
Liu,S。等。转录因子STAT3与非编码RNA之间的调控关系。细胞分子生物学。利特。29,4(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, N. et al. Exendin-4 induces bone marrow stromal cells migration through bone marrow-derived macrophages polarization via PKA-STAT3 signaling pathway. Cell Physiol. Biochem 44, 1696–1714 (2017).Article
Wang,N。等人。Exendin-4通过PKA-STAT3信号通路通过骨髓来源的巨噬细胞极化诱导骨髓基质细胞迁移。细胞生理学。生物化学441696-1714(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, X. et al. Wei-Tong-Xin exerts anti-inflammatory effects through TLR4-mediated macrophages M1/M2 polarization and affects GLP-1 secretion. J. Pharm. Pharm. 75, 574–584 (2023).Article
Zhang,X。et al。Wei Tong Xin通过TLR4介导的巨噬细胞M1/M2极化发挥抗炎作用,并影响GLP-1的分泌。J、 《药学》75574-584(2023)。文章
Google Scholar
谷歌学者
Yao, Y., Xu, X. H. & Jin, L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 10, 792 (2019).Article
Yao,Y.,Xu,X.H。&Jin,L。生理和病理妊娠中的巨噬细胞极化。。10792(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sica, A., Erreni, M., Allavena, P. & Porta, C. Macrophage polarization in pathology. Cell Mol. Life Sci. 72, 4111–4126 (2015).Article
Sica,A.,Erreni,M.,Allavena,P。&Porta,C。病理学中的巨噬细胞极化。细胞分子生命科学。724111-4126(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, H. et al. An orally active allosteric GLP-1 receptor agonist is neuroprotective in cellular and rodent models of stroke. PLoS One 11, e0148827 (2016).Article
Zhang,H。等人。口服活性变构GLP-1受体激动剂在中风的细胞和啮齿动物模型中具有神经保护作用。PLoS One 11,e0148827(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Portha, B., Tourrel-Cuzin, C. & Movassat, J. Activation of the GLP-1 receptor signalling pathway: A relevant strategy to repair a deficient beta-cell mass. Exp. Diab Res. 2011, 376509 (2011).Article
Portha,B.,Tourrel-Cuzin,C。&Movassat,J。GLP-1受体信号通路的激活:修复缺陷β细胞团的相关策略。Exp。Diab Res.2011376509(2011)。文章
Google Scholar
谷歌学者
Yusta, B. et al. GLP-1R agonists modulate enteric immune responses through the intestinal intraepithelial lymphocyte GLP-1R. Diabetes 64, 2537–2549 (2015).Article
Yusta,B。等人。GLP-1R激动剂通过肠上皮内淋巴细胞GLP-1R调节肠道免疫反应。糖尿病642537-2549(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Akkiraju, H. & Nohe, A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J. Dev. Biol. 3, 177–192 (2015).Article
Akkiraju,H。&Nohe,A。软骨细胞在软骨形成,骨关节炎进展和软骨再生中的作用。J、 开发生物。3177-192(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chen, H. et al. Molecular mechanisms of chondrocyte proliferation and differentiation. Front Cell Dev. Biol. 9, 664168 (2021).Article
Chen,H。等。软骨细胞增殖和分化的分子机制。前细胞发育生物学。9664168(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, H., Wang, D., Yuan, Y. & Min, J. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Res Ther. 19, 248 (2017).Article
Li,H.,Wang,D.,Yuan,Y。&Min,J。关于MMP-13调节网络在早期骨关节炎发病机制中的新见解。关节炎。19248(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tan, D. et al. Single‑cell sequencing, genetics, and epigenetics reveal mesenchymal stem cell senescence in osteoarthritis (Review). Int. J. Mol. Med. 53, 2 (2024).Hu, Q. & Ecker, M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int. J. Mol. Sci. 22, 1742 (2021).Jiang, L.
单细胞测序,遗传学和表观遗传学揭示了骨关节炎中的间充质干细胞衰老(综述)。Int.J.Mol.Med.53,2(2024)。Hu,Q。&Ecker,M。MMP-13作为治疗骨关节炎的有希望的靶标的概述。Int.J.Mol.Sci。221742(2021)。。
et al. ADAMTS5 in osteoarthritis: Biological functions, regulatory network, and potential targeting therapies. Front Mol. Biosci. 8, 703110 (2021).Article .
等。骨关节炎中的ADAMTS5:生物学功能,调节网络和潜在的靶向治疗。前Mol.Biosci。8703110(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zamora, R., Vodovotz, Y. & Billiar, T. R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 6, 347–373 (2000).Article
Zamora,R.,Vodovotz,Y。&Billiar,T.R。诱导型一氧化氮合酶和炎症性疾病。《分子医学》6347-373(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cinelli, M. A., Do, H. T., Miley, G. P. & Silverman, R. B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev. 40, 158–189 (2020).Article
Cinelli,M.A.,Do,H.T.,Miley,G.P。和Silverman,R.B。诱导型一氧化氮合酶:调节,结构和抑制。《医学研究》第40158-189版(2020年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, L. et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunol. 21, 32 (2020).Article
Liu,L。等人。颗粒体蛋白原通过NF-кB和MAPK途径抑制LPS诱导的巨噬细胞M1极化。BMC免疫。21,32(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tak, P. P. & Firestein, G. S. NF-kappaB: A key role in inflammatory diseases. J. Clin. Invest 107, 7–11 (2001).Article
Tak,P。P。&Firestein,G。S。NF-κB:在炎症性疾病中的关键作用。J、 临床。投资107,7-11(2001)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, Q. & Verma, I. M. NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).Article
Li,Q。&Verma,I.M。免疫系统中的NF-κB调节。国家免疫修订版。2725-734(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Anton, S. E. et al. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 185, 1130–1142.e1111 (2022).Article
。细胞1851130-1142.e1111(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Park, T. et al. N-Docosahexaenoylethanolamine ameliorates LPS-induced neuroinflammation via cAMP/PKA-dependent signaling. J. Neuroinflammation 13, 284 (2016).Article
Park,T。等人。N-二十二碳六烯基乙醇胺通过cAMP/PKA依赖性信号传导改善LPS诱导的神经炎症。J、 神经炎症13284(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vincenti, M. P. & Brinckerhoff, C. E. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 4, 157–164 (2002).Article
Vincenti,M.P。&Brinckerhoff,C.E。关节炎中胶原酶(MMP-1,MMP-13)基因的转录调控:整合复杂的信号通路以募集基因特异性转录因子。关节炎第4157-164号决议(2002年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, X. P. et al. Quercetin suppresses apoptosis of chondrocytes induced by IL-1β via inactivation of p38 MAPK signaling pathway. Exp. Ther. Med. 21, 468 (2021).Article
Wang,X.P.等。槲皮素通过失活p38 MAPK信号通路抑制IL-1β诱导的软骨细胞凋亡。实验温度。医学杂志21468(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gao, X. et al. Piceatannol suppresses inflammation and promotes apoptosis in rheumatoid arthritis‑fibroblast‑like synoviocytes by inhibiting the NF‑κB and MAPK signaling pathways. Mol. Med. Rep. 25, 294–304 (2022).Ma, X. et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential.
Gao,X。等人,Piceatannol通过抑制NF-κB和MAPK信号通路来抑制炎症并促进类风湿性关节炎成纤维细胞样滑膜细胞的凋亡。Mol.Med.Rep.25294–304(2022)。Ma,X。等。GLP-1受体激动剂(GLP-1RAs):心血管作用和治疗潜力。
Int. J. Biol. Sci. 17, 2050–2068 (2021).Article .
国际生物学杂志。科学。172050-2068(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, S. et al. From hyperglycemia to intervertebral disc damage: Exploring diabetic-induced disc degeneration. Front Immunol. 15, 1355503 (2024).Article
Li,S.等。从高血糖到椎间盘损伤:探索糖尿病引起的椎间盘退变。。151355503(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tripolino, C. et al. Insulin signaling in arthritis. Front Immunol. 12, 672519 (2021).Article
Tripolino,C。等人。关节炎中的胰岛素信号传导。。12672519(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Meurot, C. et al. Liraglutide, a glucagon-like peptide 1 receptor agonist, exerts analgesic, anti-inflammatory and anti-degradative actions in osteoarthritis. Sci. Rep. 12, 1567 (2022).Article
Meurot,C。等人。利拉鲁肽是一种胰高血糖素样肽1受体激动剂,在骨关节炎中发挥镇痛,抗炎和抗降解作用。科学。代表121567(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, Q., Zhu, S., Liu, Y., Liao, C., Liang, Y. & Wu, G. Liraglutide suppresses TNF-α-induced degradation of extracellular matrix in human chondrocytes: a therapeutic implication in osteoarthritis. Inflamm. Res. (Switzerland, 2019).Siddhanti, S. et al. Thu0054 Nktr-358, a Novel Il-2 conjugate, stimulates high levels of regulatory T cells in patients with systemic lupus erythematosus.
Wu,Q.,Zhu,S.,Liu,Y.,Liao,C.,Liang,Y。&Wu,G。利拉鲁肽抑制TNF-α诱导的人软骨细胞中细胞外基质的降解:对骨关节炎的治疗意义。发炎。Res.(瑞士,2019)。Siddhanti,S。等人Thu0054 Nktr-358是一种新型的Il-2结合物,可刺激系统性红斑狼疮患者的高水平调节性T细胞。
Ann. Rheum. Dis. 79, 238.232–239 (2020).Article .
安。瑞姆。Dis。79238.232-239(2020)。文章。
Google Scholar
谷歌学者
Oezer, K. et al. The effect of GLP-1 receptor agonist lixisenatide on experimental diabetic retinopathy. Acta Diabetol. 60, 1551–1565 (2023).Article
Oezer,K。等。GLP-1受体激动剂利西那肽对实验性糖尿病视网膜病变的影响。糖尿病学报。601551-1565(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bendotti, G. et al. The anti-inflammatory and immunological properties of GLP-1 receptor agonists. Pharm. Res. 182, 106320 (2022).Article
Bendotti,G。等人。GLP-1受体激动剂的抗炎和免疫学特性。。文章
CAS
中科院
Google Scholar
谷歌学者
Du, X. et al. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol. 75, 105732 (2019).Article
Du,X。等人。利西那肽对人类风湿性关节炎成纤维细胞样滑膜细胞炎症反应的保护作用。国际免疫药理学。75105732(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).Article
Sellam,J。&Berenbaum,F。滑膜炎在骨关节炎的病理生理学和临床症状中的作用。风湿病杂志。6625-635(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xu, J. et al. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol. 14, 1222129 (2023).Article
徐,J。等。细胞因子对成骨细胞和破骨细胞在骨质疏松症骨重建中的作用:综述。。141222129(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Y. et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat. Med. 22, 1160–1169 (2016).Article
Zhang,Y。等人。植入物衍生的镁诱导局部神经元产生CGRP,以改善大鼠骨折愈合。《自然医学》221160-1169(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Srivastava, R. K., Sapra, L. & Mishra, P. K. Osteometabolism: Metabolic alterations in bone pathologies. Cells 11, 14655 (2022).Datta, H. K. et al. The cell biology of bone metabolism. J. Clin. Pathol. 61, 577–587 (2008).Article
Srivastava,R.K.,Sapra,L。和Mishra,P.K。骨代谢:骨病理的代谢改变。细胞1114655(2022)。Datta,H.K.等人,《骨代谢的细胞生物学》。J、 临床。病理学。61577-587(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, N. et al. Identification of a prolonged action molecular GLP-1R agonist for the treatment of femoral defects. Biomater. Sci. 8, 1604–1614 (2020).Article
Wang,N.等人。用于治疗股骨缺损的长效分子GLP-1R激动剂的鉴定。生物计。科学。81604-1614(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kim, J. Y. et al. Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci. 92, 8–15 (2013).Koren, N. et al. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.
Kim,J.Y.等人,Exendin-4可能通过下调骨细胞中的SOST/硬化蛋白来增加2型糖尿病OLETF大鼠的骨矿物质密度。生命科学。92,8-15(2013)。Koren,N。等人。早期接触ω-3脂肪酸可加速骨骼生长并改善骨骼质量。
J. Nutr. Biochem 25, 623–633 (2014).Article .
J、 营养。生物化学25623-633(2014)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yamada, C. et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149, 574–579 (2008).Article
Yamada,C。等人。鼠胰高血糖素样肽-1受体对于控制骨吸收至关重要。内分泌学149574-579(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shen, W. R. et al. The Glucagon-Like Peptide-1 Receptor Agonist Exendin-4 Inhibits Lipopolysaccharide-Induced Osteoclast Formation and Bone Resorption via Inhibition of TNF-alpha Expression in Macrophages. J. Immunol. Res. 2018, 5783639 (2018).Article
Shen,W.R.等人。胰高血糖素样肽-1受体激动剂Exendin-4通过抑制巨噬细胞中TNF-α的表达来抑制脂多糖诱导的破骨细胞形成和骨吸收。J、 免疫。第20185783639(2018)号决议。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ishida, M. et al. DPP-4 inhibitor impedes lipopolysaccharide-induced osteoclast formation and bone resorption in vivo. Biomed. Pharmacother. 109, 242–253 (2019).Article
Ishida,M。等人。DPP-4抑制剂在体内阻碍脂多糖诱导的破骨细胞形成和骨吸收。生物医学。药剂师。109242-253(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nuche-Berenguer, B. et al. GLP-1 and exendin-4 can reverse hyperlipidic-related osteopenia. J. Endocrinol. 209, 203–210 (2011).Article
Nuche-Berenguer,B。等人GLP-1和exendin-4可以逆转高脂血症相关的骨质减少症。J、 内分泌。209203-210(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, G. et al. Frailty and Risk of Fractures in Patients With Type 2 Diabetes. Diab Care 42, 507–513 (2019).Article
Li,G.等人。2型糖尿病患者的脆弱性和骨折风险。糖尿病护理42507-513(2019)。文章
Google Scholar
谷歌学者
Yu, J. et al. Liraglutide Inhibits Osteoclastogenesis and Improves Bone Loss by Downregulating Trem2 in Female Type 1 Diabetic Mice: Findings From Transcriptomics. Front Endocrinol. (Lausanne) 12, 763646 (2021).Article
Yu,J.等人。利拉鲁肽通过下调雌性1型糖尿病小鼠的Trem2来抑制破骨细胞生成并改善骨质流失:转录组学的发现。前内分泌。(洛桑)12763646(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tsukiyama, K. et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol. Endocrinol. 20, 1644–1651 (2006).Article
Tsukiyama,K。等人。胃抑制多肽作为促进食物摄入后新骨形成的内源性因子。分子内分泌。201644-1651(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Crespel, A., De Boisvilliers, F., Gros, L., Kervran, A. Effects of glucagon and glucagon-like peptide-1-(7-36) amide on C cells from rat thyroid and medullary thyroid carcinoma CA-77 cell line. Endocrinology 137, 3674–3680 (1996).Lamari, Y. Expression of glucagon-like peptide 1 receptor in a murine C cell line: regulation of calcitonin gene by glucagon-like peptide 1.
Crespel,A.,De Boisvilliers,F.,Gros,L.,Kervran,A.胰高血糖素和胰高血糖素样肽-1-(7-36)酰胺对大鼠甲状腺和甲状腺髓样癌CA-77细胞系C细胞的影响。内分泌学1373674-3680(1996)。Lamari,Y。胰高血糖素样肽1受体在小鼠C细胞系中的表达:胰高血糖素样肽1对降钙素基因的调节。
FEBS Lett. 393, 248–252 (1996).Meng, J. et al. Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through beta-Catenin. Stem Cell Rep. 6, 579–591 (2016).Article .
FEBS Lett公司。393248-252(1996)。Meng,J。等人。GLP-1受体的激活通过β-连环蛋白促进骨髓基质细胞成骨分化。干细胞代表6579-591(2016)。文章。
CAS
中科院
Google Scholar
谷歌学者
Berenbaum, F., Bougault, C. & Attali, C. Treatment of osteoarthritis with incretin hormones or analogues thereof. US 09592272 (2017).Pacheco-Pantoja, E. L. et al. c-Fos induction by gut hormones and extracellular ATP in osteoblastic-like cell lines. Purinergic Signal. 12, 647–651 (2016).Article .
Berenbaum,F.,Bougault,C。&Attali,C。用肠促胰岛素激素或其类似物治疗骨关节炎。美国09592272(2017)。Pacheco-Pantoja,E.L.等人。肠道激素和细胞外ATP在成骨样细胞系中诱导c-Fos。嘌呤能信号。12647-651(2016)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, X. et al. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J. Bone Min. Res. 28, 1641–1652 (2013).Article
Ma,X。等人。Exendin-4是一种胰高血糖素样肽-1受体激动剂,通过促进老年去卵巢大鼠的骨形成和抑制骨吸收来预防骨质减少。J、 。文章
CAS
中科院
Google Scholar
谷歌学者
Wu, X., Li, S., Xue, P. & Li, Y. Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving beta-catenin.
Wu,X.,Li,S.,Xue,P。&Li,Y。利拉鲁肽是一种胰高血糖素样肽-1受体激动剂,通过磷酸肌醇3-激酶(PI3K)/蛋白激酶B(AKT),细胞外信号相关激酶(ERK)1/2和涉及β-连环蛋白的cAMP/蛋白激酶a(PKA)信号通路促进MC3T3-E1细胞的成骨增殖和分化。
Exp. Cell Res. 360, 281–291 (2017).Article .
Exp.Cell Res.360281–291(2017)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kamiya, M., Mizoguchi, F. & Yasuda, S. Amelioration of inflammatory myopathies by glucagon-like peptide-1 receptor agonist via suppressing muscle fibre necroptosis. J. Cachexia Sarcopenia Muscle 13, 2118–2131 (2022).Article
Kamiya,M.,Mizoguchi,F。&Yasuda,S。通过抑制肌纤维坏死性凋亡,胰高血糖素样肽-1受体激动剂改善炎性肌病。J、 。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Deng, F. et al. Dulaglutide protects mice against diabetic sarcopenia-mediated muscle injury by inhibiting inflammation and regulating the differentiation of myoblasts. Int. J. Endocrinol. 2023, 9926462 (2023).Article
Dulalutide通过抑制炎症和调节成肌细胞的分化来保护小鼠免受糖尿病肌肉减少症介导的肌肉损伤。内分泌学杂志。20239926462(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nguyen, T. T. N., Choi, H. & Jun, H. S. Preventive effects of dulaglutide on disuse muscle atrophy through inhibition of inflammation and apoptosis by induction of Hsp72 expression. Front Pharm. 11, 90 (2020).Article
Nguyen,T。T。N.,Choi,H。&Jun,H。S。杜拉鲁肽通过诱导Hsp72表达抑制炎症和细胞凋亡来预防废用性肌肉萎缩。《前药学》11,90(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Hong, Y. et al. Amelioration of muscle wasting by glucagon-like peptide-1 receptor agonist in muscle atrophy. J. Cachexia Sarcopenia Muscle 10, 903–918 (2019).Article
Hong,Y.等人。胰高血糖素样肽-1受体激动剂在肌肉萎缩中改善肌肉萎缩。J、 恶病质肌肉减少症10903-918(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rajagopal, S. et al. Glucagon-like peptide-1 receptor agonists in the treatment of idiopathic inflammatory myopathy: from mechanisms of action to clinical applications. Cureus 15, e51352 (2023).PubMed
Rajagopal,S.等人。胰高血糖素样肽-1受体激动剂治疗特发性炎性肌病:从作用机制到临床应用。Cureus 15,e51352(2023)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hanaoka, B. Y., Peterson, C. A., Horbinski, C. & Crofford, L. J. Implications of glucocorticoid therapy in idiopathic inflammatory myopathies. Nat. Rev. Rheumatol. 8, 448–457 (2012).Article
Hanaoka,B.Y.,Peterson,C.A.,Horbinski,C。&Crofford,L.J。糖皮质激素治疗特发性炎性肌病的意义。风湿病杂志。8448-457(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kamiya, M. et al. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol. 14, 1191815 (2023).Article
Kamiya,M.等。特发性炎性肌病病理生理学中的肌纤维坏死性凋亡及其作为新治疗策略靶点的潜力。。141191815(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cui, Y. et al. The role of AMPK in macrophage metabolism, function and polarisation. J. Transl. Med. 21, 892 (2023).Article
Cui,Y。等人。AMPK在巨噬细胞代谢,功能和极化中的作用。J、 翻译。医学杂志21892(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yi, D. et al. AMPK signaling in energy control, cartilage biology, and osteoarthritis. Front Cell Dev. Biol. 9, 696602 (2021).Article
Yi,D。等人。能量控制,软骨生物学和骨关节炎中的AMPK信号传导。前细胞发育生物学。9696602(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, Y. et al. ROS signaling under metabolic stress: Cross-talk between AMPK and AKT pathway. Mol. Cancer 16, 79 (2017).Article
Zhao,Y。等。代谢应激下的ROS信号传导:AMPK和AKT途径之间的串扰。分子癌症16,79(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, J. et al. Phosphoglycerate mutase 5 initiates inflammation in acute kidney injury by triggering mitochondrial DNA release by dephosphorylating the pro-apoptotic protein Bax. Kidney Int 103, 115–133 (2023).Article
Li,J。等人。磷酸甘油酸突变酶5通过使促凋亡蛋白Bax去磷酸化来触发线粒体DNA释放,从而在急性肾损伤中引发炎症。肾脏Int 103115-133(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yan, S. et al. ZBP1 promotes hepatocyte pyroptosis in acute liver injury by regulating the PGAM5/ROS pathway. Ann. Hepatol. 29, 101475 (2024).Article
Yan,S。等人,ZBP1通过调节PGAM5/ROS途径促进急性肝损伤中的肝细胞pyroptosis。安。希沃特。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Holliday, A. & Blannin, A. Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration. J. Endocrinol. 235, 193–205 (2017).Article
Holliday,A。&Blannin,A。食欲,食物摄入和肠道激素对不同持续时间的剧烈有氧运动的反应。J、 内分泌。235193-205(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wu, L. et al. GLP-1 regulates exercise endurance and skeletal muscle remodeling via GLP-1R/AMPK pathway. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119300 (2022).Article
Wu,L。等人。GLP-1通过GLP-1R/AMPK途径调节运动耐力和骨骼肌重塑。生物化学。生物物理。Acta Mol.Cell Res.1869119300(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bodnaruc, A. M., Prud’homme, D., Blanchet, R. & Giroux, I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: A review. Nutr. Metab. (Lond.) 13, 92 (2016).Article
Bodnaruc,A.M.,Prud'homme,D.,Blanchet,R。&Giroux,I。内源性胰高血糖素样肽-1分泌的营养调节:综述。营养。代谢。(Lond。)13,92(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ard, J., Fitch, A., Fruh, S. & Herman, L. Weight loss and maintenance related to the mechanism of action of glucagon-like peptide 1 receptor agonists. Adv. Ther. 38, 2821–2839 (2021).Article
Ard,J.,Fitch,A.,Fruh,S。&Herman,L。体重减轻和维持与胰高血糖素样肽1受体激动剂的作用机制有关。高级Ther。382821-2839(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kanoski, S. E., Hayes, M. R. & Skibicka, K. P. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am. J. Physiol. -Regulatory, Integr. Comp. Physiol. 310, R885–R895 (2016).Article
Kanoski,S.E.,Hayes,M.R。&Skibicka,K.P。GLP-1和减肥:解开多种神经回路。Am.J.Physiol-监管,整合。公司。生理学。310,R885–R895(2016)。文章
Google Scholar
谷歌学者
Greff, D. et al. Inositol is an effective and safe treatment in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Reprod. Biol. Endocrinol. 21, 10 (2023).Article
肌醇是多囊卵巢综合征的一种有效且安全的治疗方法:随机对照试验的系统综述和荟萃分析。重新编程。生物内分泌。21、10(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kosinska, M. K. et al. Articular Joint Lubricants during Osteoarthritis and Rheumatoid Arthritis Display Altered Levels and Molecular Species. PLoS One 10, e0125192 (2015).Article
Kosinska,M.K.等人。骨关节炎和类风湿性关节炎期间的关节润滑剂显示出改变的水平和分子种类。PLoS One 10,e0125192(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Berenbaum, F. et al. Protective effects of intra-articular formulated liraglutide in osteoarthritis: Preclinical studies. Osteoarthritis Cartilage. 28, S405–S406 (2020).Li, H. et al. Chronic treatment of exendin-4 affects cell proliferation and neuroblast differentiation in the adult mouse hippocampal dentate gyrus.
Berenbaum,F。等人。关节内配制的利拉鲁肽对骨关节炎的保护作用:临床前研究。骨关节炎软骨。28,S405–S406(2020)。Li,H。等人。exendin-4的慢性治疗影响成年小鼠海马齿状回中的细胞增殖和成神经细胞分化。
Neurosci. Lett. 486, 38–42 (2010).Article .
神经科学。信件486, 38-42 (2010).第[UNK]条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bertilsson, G. et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J. Neurosci. Res. 86, 326–338 (2008).Article
Bertilsson,G。等人。肽激素exendin-4刺激成年啮齿动物大脑的脑室下区神经发生,并诱导帕金森病动物模型的恢复。J、 神经科学。第86326338号决议,第8-338号决议,第8.326-338号决议,第8.326-338号决议,第8.326-338号决议,第8.326-338号决议,第8。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sharma, M. K., Jalewa, J. & Hölscher, C. Neuroprotective and anti-apoptotic effects of liraglutide on SH-SY5Y cells exposed to methylglyoxal stress. J. Neurochem 128, 459–471 (2014).Article
Sharma,M.K.,Jalewa,J。&Hölscher,C。利拉鲁肽对暴露于甲基乙二醛应激的SH-SY5Y细胞的神经保护和抗凋亡作用。J、 神经化学128459-471(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Perry, T. et al. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharm. Exp. Ther. 302, 881–888 (2002).Article
Perry,T。等人。胰高血糖素样肽-1和exendin-4对兴奋毒性神经元损伤的保护和逆转。J、 。302881-888(2002)。文章
CAS
中科院
Google Scholar
谷歌学者
Jolivalt, C. G. et al. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice. Diab Obes. Metab. 13, 990–1000 (2011).Article
Jolivalt,C.G。等人,GLP-1通过外周神经中的ERK发出信号,并预防糖尿病小鼠的神经功能障碍。暗黑破坏神出窍。代谢。13990-1000(2011)。文章
CAS
中科院
Google Scholar
谷歌学者
Liu, W. et al. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 303, 42–50 (2015).Article
Liu,W。等人。利西那肽和利拉鲁肽在帕金森病1-甲基-4-苯基-1,2,3,6-四氢吡啶小鼠模型中的神经保护作用。神经科学303,42-50(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hunter, K. & Hölscher, C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 13, 33 (2012).Article
Hunter,K.&Hölscher,C.开发用于治疗糖尿病的药物,利拉鲁肽和利西那肽,穿过血脑屏障并增强神经发生。BMC神经科学。13,33(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cai, H. Y. et al. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer’s disease. Biochem Biophys. Res Commun. 495, 1034–1040 (2018).Article
Cai,H.Y。等人。利西那肽在阿尔茨海默病的APP/PS1/tau小鼠模型中减少淀粉样斑块,神经原纤维缠结和神经炎症。生物化学生物物理。Res Commun公司。4951034-1040(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Beard, E. et al. Astrocytes as key regulators of brain energy metabolism: New therapeutic perspectives. Front Physiol. 12, 825816 (2021).Article
Beard,E.等人。星形胶质细胞作为脑能量代谢的关键调节剂:新的治疗观点。前沿生理学。12825816(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Reiner, D. J. et al. Astrocytes regulate GLP-1 receptor-mediated effects on energy balance. J. Neurosci. 36, 3531–3540 (2016).Article
。J、 神经科学。363531-3540(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Timper, K. et al. GLP-1 receptor signaling in astrocytes regulates fatty acid oxidation, mitochondrial integrity, and function. Cell Metab. 31, 1189–1205.e1113 (2020).Article
Timper,K。等人。星形胶质细胞中的GLP-1受体信号调节脂肪酸氧化,线粒体完整性和功能。。311189–1205.e1113(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
González-García, I., Gruber, T. & García-Cáceres, C. Insulin action on astrocytes: From energy homeostasis to behaviour. J. Neuroendocrinol. 33, e12953 (2021).Article
González-García,I.,Gruber,T。&García-Cáceres,C。胰岛素对星形胶质细胞的作用:从能量稳态到行为。J、 神经内分泌。33,e12953(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Camandola, S. Astrocytes, emerging stars of energy homeostasis. Cell Stress 2, 246–252 (2018).Article
Camandola,S。星形胶质细胞,能量稳态的新兴恒星。细胞应激2246-252(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, M. H. et al. The GLP-1 receptor agonist exenatide ameliorates neuroinflammation, locomotor activity, and anxiety-like behavior in mice with diet-induced obesity through the modulation of microglial M2 polarization and downregulation of SR-A4. Int Immunopharmacol. 115, 109653 (2023).Article .
。国际免疫药理学。115109653(2023)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sango, K. et al. Glucagon-like peptide-1 receptor agonists as potential myelination-inducible and anti-demyelinating remedies. Front Cell Dev. Biol. 10, 950623 (2022).Article
Sango,K。等人。胰高血糖素样肽-1受体激动剂作为潜在的髓鞘诱导和抗脱髓鞘药物。前细胞发育生物学。10950623(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cui, S. S. et al. Exendin-4 attenuates pain-induced cognitive impairment by alleviating hippocampal neuroinflammation in a rat model of spinal nerve ligation. Neural Regen. Res. 15, 1333–1339 (2020).Article
Cui,S.S.等人。Exendin-4通过减轻脊神经结扎大鼠模型中的海马神经炎症来减轻疼痛引起的认知障碍。神经再生。第15号决议,1333-1339(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Courties, A. et al. Clearing method for 3-dimensional immunofluorescence of osteoarthritic subchondral human bone reveals peripheral cholinergic nerves. Sci. Rep. 10, 8852 (2020).Article
Courties,A。等人。骨关节炎软骨下人骨的三维免疫荧光清除方法揭示了外周胆碱能神经。科学。代表108852(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mehdi, S. F. et al. Glucagon-like peptide-1: A multi-faceted anti-inflammatory agent. Front Immunol. 14, 1148209 (2023).Article
。。141148209(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mehan, S. et al. Potential roles of glucagon-like peptide-1 and its analogues in dementia targeting impaired insulin secretion and neurodegeneration. Degener. Neurol. Neuromuscul. Dis. 12, 31–59 (2022).CAS
Mehan,S.等人。胰高血糖素样肽-1及其类似物在针对胰岛素分泌受损和神经变性的痴呆中的潜在作用。德根。神经病学。神经肌肉。Dis。12,31-59(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, J. Y. et al. GLP-1 receptor agonists for the treatment of obesity: Role as a promising approach. Front Endocrinol. (Lausanne) 14, 1085799 (2023).Article
Wang,J.Y.等人。用于治疗肥胖的GLP-1受体激动剂:作为有希望的方法的作用。前内分泌。(洛桑)141085799(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Iepsen, E. W., Torekov, S. S. & Holst, J. J. Therapies for inter-relating diabetes and obesity - GLP-1 and obesity. Expert Opin. Pharmacother. 15, 2487–2500 (2014).Article
Iepsen,E.W.,Torekov,S.S。&Holst,J.J。相互关联的糖尿病和肥胖的治疗-GLP-1和肥胖。专家意见。药剂师。152487-2500(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Eliaschewitz, F. G. & Canani, L. H. Advances in GLP-1 treatment: Focus on oral semaglutide. Diabetol. Metab. Syndr. 13, 99 (2021).Article
Eliaschewitz,F.G。&Canani,L.H。GLP-1治疗的进展:关注口服semaglutide。糖尿病。代谢。Syndr公司。13,99(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krieger, J. P. et al. Knockdown of GLP-1 receptors in vagal afferents affects normal food intake and glycemia. Diabetes 65, 34–43 (2016).Article
Krieger,J.P。等人。迷走神经传入中GLP-1受体的敲低会影响正常的食物摄入和血糖。糖尿病65,34-43(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hayes, M. R. et al. The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R1479–1485 (2011).Article
Hayes,M.R。等人。迷走神经的共同肝分支不需要介导胰高血糖素样肽-1的血糖和食物摄入抑制作用。Am.J.Physiol。法规。整数。公司。生理学。301,R1479–1485(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krieger, J. P., Langhans, W. & Lee, S. J. Vagal mediation of GLP-1’s effects on food intake and glycemia. Physiol. Behav. 152, 372–380 (2015).Article
Krieger,J.P.,Langhans,W。&Lee,S.J。迷走神经介导GLP-1对食物摄入和血糖的影响。生理学。行为。152372-380(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Skibicka, K. P. The central GLP-1: implications for food and drug reward. Front Neurosci. 7, 181 (2013).Article
Skibicka,K.P。中央GLP-1:对食物和药物奖励的影响。前神经科学。7181(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Farr, O. M. et al. Longer-term liraglutide administration at the highest dose approved for obesity increases reward-related orbitofrontal cortex activation in response to food cues: Implications for plateauing weight loss in response to anti-obesity therapies. Diab Obes. Metab. 21, 2459–2464 (2019).Article .
Farr,O.M.等人。长期服用利拉鲁肽(批准用于肥胖的最高剂量)会增加与食物线索相关的奖赏相关的眶额叶皮层激活:对抗肥胖疗法的稳定体重的影响。暗黑破坏神出窍。代谢。212459-2464(2019)。文章。
CAS
中科院
Google Scholar
谷歌学者
Wong, C. K. et al. Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation. Cell Metab. 36, 130–143.e135 (2024).Article
Wong,C.K.等人。中枢胰高血糖素样肽1受体激活抑制Toll样受体激动剂诱导的炎症。。36130–143.e135(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Armstrong, R. A. The pathogenesis of Alzheimer’s disease: a reevaluation of the “amyloid cascade hypothesis”. Int J. Alzheimers Dis. 2011, 630865 (2011).Article
Armstrong,R.A。阿尔茨海默病的发病机制:对“淀粉样蛋白级联假说”的重新评估。国际J.阿尔茨海默病。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Egecioglu, E., Engel, J. A. & Jerlhag, E. The glucagon-like peptide 1 analogue Exendin-4 attenuates the nicotine-induced locomotor stimulation, accumbal dopamine release, conditioned place preference as well as the expression of locomotor sensitization in mice. PLoS One 8, e77284 (2013).Article .
Egecioglu,E.,Engel,J.A。&Jerlhag,E。胰高血糖素样肽1类似物Exendin-4减弱尼古丁诱导的运动刺激,累积多巴胺释放,条件性位置偏爱以及小鼠运动敏化的表达。PLoS One 8,e77284(2013)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hölscher, C. The role of GLP-1 in neuronal activity and neurodegeneration. Vitam. Horm. 84, 331–354 (2010).Article
Hölscher,C。GLP-1在神经元活动和神经变性中的作用。维塔姆。霍姆。84331-354(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, Y. et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc. Natl Acad. Sci. USA 106, 1285–1290 (2009).Article
Li,Y。等人。GLP-1受体刺激在中风和帕金森病的细胞和啮齿动物模型中保留了原代皮层和多巴胺能神经元。程序。国家科学院。科学。美国1061285–1290(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, X. H. et al. Val8-glucagon-like peptide-1 protects against Aβ1-40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats. Neuroscience 170, 1239–1248 (2010).Article
Wang,X。H。等人。Val8胰高血糖素样肽-1可预防Aβ1-40诱导的大鼠海马晚期长时程增强和空间学习障碍。神经科学1701239-1248(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Perry, T. et al. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J. Neurosci. Res 72, 603–612 (2003).Article
胰高血糖素样肽-1降低内源性淀粉样β肽(Abeta)水平,保护海马神经元免受Abeta和铁诱导的死亡。J、 神经科学。第72603-612号决议(2003年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Alamed, J. et al. The Effects of NLY01, a novel glucagon-like peptide-1 receptor agonist, on cuprizone-induced demyelination and remyelination: challenges and future perspectives. Neurotherapeutics 20, 1229–1240 (United States, 2023).Nowell, J., Blunt, E., Gupta, D. & Edison, P. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease.
Alamed,J。等人。新型胰高血糖素样肽-1受体激动剂NLY01对cuprizone诱导的脱髓鞘和髓鞘再生的影响:挑战和未来前景。神经治疗学201229-1240(美国,2023)。Nowell,J.,Blunt,E.,Gupta,D。&Edison,P。抗糖尿病药物作为阿尔茨海默病和帕金森病的新型治疗方法。
Ageing Res. Rev. 89, 101979 (2023).Article .
《老龄化决议》第89版,第101979页(2023年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Meissner, W. G. et al. Trial of lixisenatide in early Parkinson’s disease. N. Engl. J. Med. 390, 1176–1185 (2024).Article
Meissner,W.G.等人,利西那肽治疗早期帕金森病的试验。N、 英语。J、 医学杂志3901176-1185(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aranäs, C. et al. Semaglutide reduces alcohol intake and relapse-like drinking in male and female rats. EBioMedicine 93, 104642 (2023).Article
Aranäs,C。等人。Semaglutide减少雄性和雌性大鼠的酒精摄入和复发性饮酒。EBioMedicine 93104642(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Järvinen, A., Laine, M. K., Tikkanen, R. & Castrén, M. L. Beneficial effects of GLP-1 agonist in a male with compulsive food-related behavior associated with autism. Front Psychiatry 10, 97 (2019).Article
Järvinen,A.,Laine,M.K.,Tikkanen,R。&Castrén,M.L。GLP-1激动剂对患有自闭症的强迫性食物相关行为的男性的有益作用。前沿精神病学10,97(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hanssen, R. et al. Liraglutide restores impaired associative learning in individuals with obesity. Nat. Metab. 5, 1352–1363 (2023).Article
Hanssen,R.等人利拉鲁肽可恢复肥胖患者受损的联想学习。自然代谢。51352-1363(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Association learning is impaired in insulin resistance and restored by liraglutide. Nat Metab. 5, 1262-1263, (2023).Walkowski, B., Kleibert, M., Majka, M. & Wojciechowska, M. Insight into the role of the PI3K/Akt pathway in ischemic injury and post-infarct left ventricular remodeling in normal and diabetic heart.
关联学习在胰岛素抵抗中受损,并通过利拉鲁肽恢复。自然代谢。51262-1263,(2023)。Walkowski,B.,Kleibert,M.,Majka,M。&Wojciechowska,M。深入了解PI3K/Akt通路在正常和糖尿病心脏缺血性损伤和梗死后左心室重塑中的作用。
Cells 11, 1553 (2022).Fernandez Rico, C. et al. Therapeutic peptides to treat myocardial ischemia-reperfusion injury. Front Cardiovasc Med. 9, 792885 (2022).Article .
细胞111553(2022)。Fernandez-Rico,C。等人。治疗心肌缺血再灌注损伤的治疗性肽。前心血管医学杂志9792885(2022)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vergès, B. et al. Protection against stroke with glucagon-like peptide-1 receptor agonists: A comprehensive review of potential mechanisms. Cardiovasc Diabetol. 21, 242 (2022).Article
Vergès,B.等人。胰高血糖素样肽-1受体激动剂对中风的保护作用:潜在机制的综合综述。心血管糖尿病。21242(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Helmstädter, J. et al. Endothelial GLP-1 (glucagon-like peptide-1) receptor mediates cardiovascular protection by liraglutide in mice with experimental arterial hypertension. Arterioscler Thromb. Vasc. Biol. 40, 145–158 (2020).Article
Helmstädter,J。等人。内皮GLP-1(胰高血糖素样肽-1)受体介导利拉鲁肽对实验性动脉高血压小鼠的心血管保护作用。动脉硬化血栓。Vasc。生物学40145-158(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Cai, Z. et al. Amelioration of endothelial dysfunction in diabetes: Role of Takeda G protein-coupled receptor 5. Front Pharm. 12, 637051 (2021).Article
Cai,Z.等。糖尿病内皮功能障碍的改善:武田G蛋白偶联受体5的作用。前药剂师12637051(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Heimbürger, S. M. et al. Glucose-dependent insulinotropic polypeptide (GIP) and cardiovascular disease. Peptides 125, 170174 (2020).Article
。肽125170174(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Liu, L. et al. Dipeptidyl peptidase 4 inhibitor sitagliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism. Hypertension 60, 833–841 (2012).Article
Liu,L。等人。二肽基肽酶4抑制剂西他列汀通过胰高血糖素样肽1依赖性机制保护高血压患者的内皮功能。高血压60833-841(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, D. et al. Glucagon-like peptide-1 protects against cardiac microvascular injury in diabetes via a cAMP/PKA/Rho-dependent mechanism. Diabetes 62, 1697–1708 (2013).Article
Wang,D。等人。胰高血糖素样肽-1通过cAMP/PKA/Rho依赖性机制保护糖尿病患者免受心脏微血管损伤。糖尿病621697-1708(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Noyan-Ashraf, M. H. et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58, 975–983 (2009).Article
Noyan Ashraf,M.H.等人GLP-1R激动剂利拉鲁肽激活细胞保护途径并改善小鼠实验性心肌梗死后的预后。糖尿病58975-983(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).Article
Marso,S.P.等人,利拉鲁肽与2型糖尿病的心血管结局。N、 英语。J、 医学375311-322(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buse, J. B. et al. Serum 1,5-anhydroglucitol (GlycoMark): a short-term glycemic marker. Diab Technol. Ther. 5, 355–363 (2003).Article
Buse,J.B.等人。血清1,5-脱水葡萄糖醇(GlycoMark):一种短期血糖标志物。静音技术。疗法。5, 355-363 (2003).文章
CAS
中科院
Google Scholar
谷歌学者
Marso, S. P., Holst, A. G. & Vilsbøll, T. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 376, 891–892 (2017).PubMed
Marso,S.P.,Holst,A.G.&Vilsbøll,T.Semaglutide和2型糖尿病患者的心血管结局。N、 英语。J、 医学376891-892(2017)。PubMed出版社
Google Scholar
谷歌学者
Ceriello, A. et al. Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes 61, 2993–2997 (2012).Article
Ceriello,A。等人的证据表明,在健康对照组和1型糖尿病患者中,低血糖恢复后的高血糖会使内皮功能恶化,并增加氧化应激和炎症。糖尿病612993-2997(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Monami, M. et al. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diab Obes. Metab. 16, 38–47 (2014).Article
Monami,M.等人,《胰高血糖素样肽-1受体激动剂对心血管风险的影响:随机临床试验的荟萃分析》。暗黑破坏神出窍。代谢。16,38-47(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e917 (2012).Article
Vrieze,A。等人。从瘦供体转移肠道微生物群可增加代谢综合征患者的胰岛素敏感性。胃肠病学143913-916.e917(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kelly, A. S. et al. Effects of exenatide vs. metformin on endothelial function in obese patients with pre-diabetes: a randomized trial. Cardiovasc Diabetol. 11, 64 (2012).Article
Kelly,A.S.等人。艾塞那肽与二甲双胍对肥胖糖尿病前期患者内皮功能的影响:一项随机试验。心血管糖尿病。11,64(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nauck, M. A., Quast, D. R., Wefers, J. & Meier, J. J. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol. Metab. 46, 101102 (2021).Article
Nauck,M.A.,Quast,D.R.,Wefers,J。&Meier,J.J。GLP-1受体激动剂治疗2型糖尿病-最先进的分子代谢。46101102(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jiménez, N. et al. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl. Environ. Microbiol 80, 2991–2997 (2014).Article
Jiménez,N.等人。一些植物乳杆菌菌株中存在的新型单宁酶对单宁的降解。应用。环境。微生物802991-2997(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moore, P. A., Cuddy, M. A., Cooke, M. R. & Sokolowski, C. J. Periodontal ligament and intraosseous anesthetic injection techniques: Alternatives to mandibular nerve blocks. J. Am. Dent. Assoc. 142, 13s–18s (2011).Article
Moore,P.A.,Cuddy,M.A.,Cooke,M.R。&Sokolowski,C.J。牙周韧带和骨内麻醉剂注射技术:下颌神经阻滞的替代方法。J、 上午,丹特。协会第14213S-18s号(2011年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ali, A., Yalçın, R. & Ünlüer-Gümüştaş, A. Cranial MR characteristics of Cerebral Palsy cases and correlation of findings with clinical results. Turk. J. Pediatr. 61, 525–537 (2019).Article
Ali,A.,Yalçın,R。和Ünlüer-Gümüştaş,A。脑瘫病例的头颅MR特征以及发现与临床结果的相关性。土耳其。J、 儿科。61525-537(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ridker, P. M., Thuren, T., Zalewski, A. & Libby, P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am. Heart J. 162, 597–605 (2011).Article
Ridker,P.M.,Thuren,T.,Zalewski,A。&Libby,P。白细胞介素-1β抑制和预防复发性心血管事件:Canakinumab抗炎血栓形成结果研究(CANTOS)的基本原理和设计。《美国心脏杂志》162597-605(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Everett, B. M. et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am. Heart J. 166, 199–207.e115 (2013).Libby, P., Ridker, P. M. & Hansson, G. K. Inflammation in atherosclerosis: from pathophysiology to practice.
心血管炎症减轻试验的基本原理和设计:动脉粥样硬化血栓形成炎症假说的检验。《美国心脏杂志》166199–207.e115(2013)。Libby,P.,Ridker,P.M。和Hansson,G.K。动脉粥样硬化中的炎症:从病理生理学到实践。
J. Am. Coll. Cardiol. 54, 2129–2138 (2009).Article .
J、 美国科罗拉多州。心脏病。542129-2138(2009)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ross, R. Atherosclerosis–an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).Article
Ross,R。动脉粥样硬化-一种炎症性疾病。N、 英语。J、 医学340115-126(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nikolaidis, L. A. et al. Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J. Pharm. Exp. Ther. 312, 303–308 (2005).Article
Nikolaidis,L.A。等人,胰高血糖素样肽-1限制清醒犬短暂冠状动脉闭塞和再灌注后的心肌顿抑。J、 。312303-308(2005)。文章
CAS
中科院
Google Scholar
谷歌学者
Younce, C. W., Burmeister, M. A. & Ayala, J. E. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am. J. Physiol. Cell Physiol. 304, C508–518 (2013).Article
Younce,C.W.,Burmeister,M.A。&Ayala,J.E。Exendin-4通过抑制内质网应激和激活SERCA2a来减弱高糖诱导的心肌细胞凋亡。Am.J.Physiol。细胞生理学。304,C508–518(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Esser, N. et al. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diab Res Clin. Pr. 105, 141–150 (2014).Article
炎症是肥胖、代谢综合征和2型糖尿病之间的联系。糖尿病临床研究。Pr.105141–150(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Paton, J. F. et al. The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension 61, 5–13 (2013).Article
Paton,J.F.等人。颈动脉体作为治疗交感神经介导疾病的治疗靶点。高血压61,5-13(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pauza, A. G. et al. GLP1R attenuates sympathetic response to high glucose via carotid body inhibition. Circ. Res. 130, 694–707 (2022).Article
Pauza,A.G.等人GLP1R通过颈动脉体抑制减弱对高糖的交感神经反应。保监会。第130694-707号决议(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paton, J. F. et al. Revelations about carotid body function through its pathological role in resistant hypertension. Curr. Hypertens. Rep. 15, 273–280 (2013).Article
Paton,J.F.等人通过其在顽固性高血压中的病理作用揭示了颈动脉体功能。。高血压。代表15273–280(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).Article
Marso,S.P.等人,《Semaglutide与2型糖尿病患者的心血管结局》。N、 英语。J、 医学3751834-1844(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hernandez, A. F. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 392, 1519–1529 (2018).Article
Hernandez,A.F.等人,《阿尔比鲁肽与2型糖尿病和心血管疾病患者的心血管结局(和谐结局):一项双盲、随机安慰剂对照试验》。柳叶刀3921519-1529(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ban, K. et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117, 2340–2350 (2008).Article
胰高血糖素样肽1受体的心脏保护和血管舒张作用是通过胰高血糖素样肽1受体依赖性和非依赖性途径介导的。发行量1172340–2350(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).Article .
Kosiborod,M.N.等人,Semaglutide治疗射血分数和肥胖保留的心力衰竭患者。N、 英语。J、 医学3891069-1084(2023)。McMurray,J.J.V.等人,达格列净治疗心力衰竭和射血分数降低的患者。N、 英语。J、 医学3811995-2008(2019)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zelniker, T. A. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393, 31–39 (2019).Article
Zelniker,T.A.等。SGLT2抑制剂用于2型糖尿病心血管和肾脏结局的一级和二级预防:心血管结局试验的系统评价和荟萃分析。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).Article
Packer,M.等人。依帕列净治疗心力衰竭的心血管和肾脏结局。N、 英语。J、 医学3831413-1424(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Verma, S. & McMurray, J. J. V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia 61, 2108–2117 (2018).Article
Verma,S。&McMurray,J。J。V。SGLT2抑制剂和心血管益处机制:最新综述。糖尿病612108-2117(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sano, M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J. Cardiol. 71, 471–476 (2018).Article
Sano,M。一类治疗心力衰竭的新型药物:SGLT2抑制剂可减少交感神经过度活跃。J、 心脏病。71471-476(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dwibedi, C. et al. Randomized open-label trial of semaglutide and dapagliflozin in patients with type 2 diabetes of different pathophysiology. Nat. Metab. 6, 50–60 (2024).Article
Dwibedi,C.等人。semaglutide和dapagliflozin在不同病理生理学的2型糖尿病患者中的随机开放标签试验。自然代谢。6,50-60(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zannad, F. et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 396, 819–829 (2020).Article
Zannad,F.等人,《射血分数降低的心力衰竭患者的SGLT2抑制剂:EMPERON REDUCTED和DAPA-HF试验的荟萃分析》。柳叶刀396819-829(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wright, A. K. et al. Primary prevention of cardiovascular and heart failure events With SGLT2 inhibitors, GLP-1 receptor agonists, and their combination in type 2 diabetes. Diab Care 45, 909–918 (2022).Article
Wright,A.K.等人。SGLT2抑制剂、GLP-1受体激动剂及其联合应用对2型糖尿病心血管和心力衰竭事件的一级预防。糖尿病护理45909-918(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Panico, C. et al. Pathophysiological basis of the cardiological benefits of SGLT-2 inhibitors: a narrative review. Cardiovasc Diabetol. 22, 164 (2023).Article
Panico,C.等人。SGLT-2抑制剂心脏益处的病理生理学基础:叙述性综述。心血管糖尿病。22164(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Giugliano, D. et al. GLP-1 receptor agonists vs. SGLT-2 inhibitors: the gap seems to be leveling off. Cardiovasc Diabetol. 20, 205 (2021).Article
Giugliano,D。等人。GLP-1受体激动剂与SGLT-2抑制剂:差距似乎趋于平衡。心血管糖尿病。2025(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Natali, A., Nesti, L., Tricò, D. & Ferrannini, E. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors on cardiac structure and function: a narrative review of clinical evidence. Cardiovasc Diabetol. 20, 196 (2021).Article
Natali,A.,Nesti,L.,Tricò,D。和Ferrannini,E。GLP-1受体激动剂和SGLT-2抑制剂对心脏结构和功能的影响:临床证据的叙述性综述。心血管糖尿病。20196年(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jhund, P. S. SGLT2 inhibitors and heart failure with preserved ejection fraction. Heart Fail Clin. 18, 579–586 (2022).Article
Jhund,P。S。SGLT2抑制剂和射血分数保留的心力衰竭。心力衰竭临床。18579-586(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lu, H., Shang, P. & Zhou, D. SGLT2 inhibitors for patients with heart failure with preserved ejection fraction in China: a cost-effectiveness study. Front Pharm. 14, 1155210 (2023).Article
Lu,H.,Shang,P。&Zhou,D。SGLT2抑制剂用于中国射血分数保留的心力衰竭患者:一项成本效益研究。前药剂师141155210(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Belli, M. et al. Treatment of HFpEF beyond the SGLT2-Is: Does the addition of GLP-1 RA improve cardiometabolic risk and outcomes in diabetic patients? Int. J. Mol. Sci. 23, 14598 (2022).Wan, W. et al. GLP-1R signaling and functional molecules in incretin therapy. Molecules. 28, 751 (2023).Kolczynska, K., Loza-Valdes, A., Hawro, I.
Belli,M.等人。SGLT2以外的HFpEF治疗是:添加GLP-1 RA是否能改善糖尿病患者的心脏代谢风险和预后?Int.J.Mol.Sci。2314598(2022)。Wan,W。等人。肠促胰岛素治疗中的GLP-1R信号传导和功能分子。分子。28751(2023)。科尔琴斯卡,K.,洛扎·瓦尔德斯,A.,哈罗,I。
& Sumara, G. Diacylglycerol-evoked activation of PKC and PKD isoforms in regulation of glucose and lipid metabolism: a review. Lipids Health Dis. 19, 113 (2020).Article .
&Sumara,G。二酰基甘油在调节葡萄糖和脂质代谢中诱发PKC和PKD同种型的激活:综述。脂质健康疾病。19113(2020)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carvalho, T. Efruxifermin combined with a GLP-1 receptor agonist reduces liver fat in NASH. Nat. Med. 29, 1881 (2023).Article
Carvalho,T。Efruxifermin与GLP-1受体激动剂联合使用可减少NASH中的肝脏脂肪。《自然医学》291881(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Burcelin, R. The incretins: a link between nutrients and well-being. Br. J. Nutr. 93, S147–156 (2005).Article
。英国营养学杂志。93,S147-156(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Esterházy, D. & Mucida, D. Gut immune cells have a role in food metabolism. Nature 566, 49–50 (2019).Article
Estherházy,D。&Mucida,D。肠道免疫细胞在食物代谢中起作用。自然566,49-50(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ma, X., Guan, Y. & Hua, X. Glucagon-like peptide 1-potentiated insulin secretion and proliferation of pancreatic β-cells. J. Diab 6, 394–402 (2014).Article
Ma,X.,Guan,Y。&Hua,X。胰高血糖素样肽1增强胰岛素分泌和胰腺β细胞增殖。J、 Diab 6394–402(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Ranganath, L. R. Incretins: pathophysiological and therapeutic implications of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1. J. Clin. Pathol. 61, 401–409 (2008).Article
Ranganath,L.R。肠促胰岛素:葡萄糖依赖性促胰岛素多肽和胰高血糖素样肽-1的病理生理学和治疗意义。J、 临床。病理学。61401-409(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Andreasen, C. R., Andersen, A. & Vilsbøll, T. The future of incretins in the treatment of obesity and non-alcoholic fatty liver disease. Diabetologia 66, 1846–1858 (2023).Article
Andreasen,C.R.,Andersen,A。&Vilsbøll,T。肠促胰岛素治疗肥胖和非酒精性脂肪肝疾病的未来。糖尿病学661846-1858(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dutta, D. et al. Impact of semaglutide on biochemical and radiologic measures of metabolic-dysfunction associated fatty liver disease across the spectrum of glycaemia: A meta-analysis. Diab Metab. Syndr. 16, 102539 (2022).Article
semaglutide对血糖谱中代谢功能障碍相关脂肪肝疾病的生化和放射学测量的影响:荟萃分析。糖尿病代谢。Syndr公司。16102539(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Sheka, A. C. et al. Nonalcoholic Steatohepatitis: A Review. Jama 323, 1175–1183 (2020).Article
Sheka,A.C.等人。非酒精性脂肪性肝炎:综述。Jama 3231175–1183(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pouwels, S. et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 22, 63 (2022).Article
非酒精性脂肪性肝病(NAFLD):病理生理学、临床管理和减肥效果的综述。BMC内分泌。混乱。22,63(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Traussnigg, S. et al. Challenges and management of liver cirrhosis: Practical issues in the therapy of patients with cirrhosis due to NAFLD and NASH. Dig. Dis. 33, 598–607 (2015).Article
Traussnigg,S.等人,《肝硬化的挑战和管理:NAFLD和NASH肝硬化患者治疗的实际问题》。挖掘。Dis。33598-607(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Westfall, E., Jeske, R. & Bader, A. R. Nonalcoholic fatty liver disease: Common questions and answers on diagnosis and management. Am. Fam. Physician 102, 603–612 (2020).PubMed
Westfall,E.,Jeske,R。&Bader,A.R。非酒精性脂肪肝病:诊断和管理的常见问题和答案。上午家人。医师102603-612(2020)。PubMed出版社
Google Scholar
谷歌学者
Pafili, K. & Roden, M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol. Metab. 50, 101122 (2021).Article
Pafili,K。&Roden,M。非酒精性脂肪性肝病(NAFLD)从人类的发病机制到治疗概念。分子代谢。5010122(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Patel Chavez, C., Cusi, K. & Kadiyala, S. The emerging role of glucagon-like peptide-1 receptor agonists for the management of NAFLD. J. Clin. Endocrinol. Metab. 107, 29–38 (2022).Article
Patel-Chavez,C.,Cusi,K。&Kadiyala,S。胰高血糖素样肽-1受体激动剂在NAFLD治疗中的新兴作用。J、 临床。内分泌。代谢。107,29-38(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ghazanfar, H. et al. Role of glucagon-like peptide-1 receptor agonists in the management of non-alcoholic steatohepatitis: A clinical review article. Cureus 13, e15141 (2021).PubMed
Ghazanfar,H。等人。胰高血糖素样肽-1受体激动剂在非酒精性脂肪性肝炎治疗中的作用:临床综述文章。Cureus 13,e15141(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kořínková, L. et al. Pathophysiology of NAFLD and NASH in experimental models: The role of food intake regulating peptides. Front Endocrinol. (Lausanne) 11, 597583 (2020).Article
Kořínková,L.等人。实验模型中NAFLD和NASH的病理生理学:食物摄入调节肽的作用。前内分泌。(洛桑)11597583(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dai, Y. et al. Comparison of the efficacy of glucagon-like peptide-1 receptor agonists in patients with metabolic associated fatty liver disease: Updated systematic review and meta-analysis. Front Endocrinol. (Lausanne) 11, 622589 (2020).Article
Dai,Y.等人。胰高血糖素样肽-1受体激动剂在代谢相关脂肪肝患者中的疗效比较:最新的系统评价和荟萃分析。前内分泌。(洛桑)11622589(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Petrovic, A. et al. The role of GLP1-RAs in direct modulation of lipid metabolism in hepatic tissue as determined using in vitro models of NAFLD. Curr. Issues Mol. Biol. 45, 4544–4556 (2023).Article
Petrovic,A。等人。使用NAFLD的体外模型确定GLP1-RAs在直接调节肝组织脂质代谢中的作用。。问题分子生物学。454544-4556(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Finck, B. N. Targeting metabolism, insulin resistance, and diabetes to treat nonalcoholic steatohepatitis. Diabetes 67, 2485–2493 (2018).Article
。糖尿病672485-2493(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nogueira, J. P. & Cusi, K. Role of insulin resistance in the development of nonalcoholic fatty liver disease in people with type 2 diabetes: From bench to patient care. Diab Spectr. 37, 20–28 (2024).Article
Nogueira,J.P。&Cusi,K。胰岛素抵抗在2型糖尿病患者非酒精性脂肪肝发展中的作用:从替补到患者护理。Diab光谱。37,20-28(2024)。文章
Google Scholar
谷歌学者
Song, C., Long, X., He, J. & Huang, Y. Recent evaluation about inflammatory mechanisms in nonalcoholic fatty liver disease. Front Pharm. 14, 1081334 (2023).Article
Song,C.,Long,X.,He,J。&Huang,Y。最近对非酒精性脂肪性肝病炎症机制的评估。前药剂师141081334(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Myint, M. et al. Inflammatory signaling in NASH driven by hepatocyte mitochondrial dysfunctions. J. Transl. Med 21, 757 (2023).Article
Myint,M。等人。由肝细胞线粒体功能障碍驱动的NASH中的炎症信号传导。J、 翻译。医学杂志21757(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fang, C. et al. The AMPK pathway in fatty liver disease. Front Physiol. 13, 970292 (2022).Article
Fang,C。等人。脂肪肝疾病中的AMPK途径。前沿生理学。13970292(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Long, J. K., Dai, W., Zheng, Y. W. & Zhao, S. P. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol. Med. 25, 26 (2019).Article
Long,J.K.,Dai,W.,Zheng,Y.W。&Zhao,S.P。miR-122通过靶向非酒精性脂肪性肝病中的Sirt1来抑制LKB1/AMPK途径来促进肝脏脂肪生成。分子医学25,26(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aslam, M. & Ladilov, Y. Emerging role of cAMP/AMPK signaling. Cells 11, 308 (2022).Targher, G., Mantovani, A. & Byrne, C. D. Mechanisms and possible hepatoprotective effects of glucagon-like peptide-1 receptor agonists and other incretin receptor agonists in non-alcoholic fatty liver disease.
Aslam,M。&Ladilov,Y。cAMP/AMPK信号传导的新兴作用。细胞11308(2022)。Targher,G.,Mantovani,A。&Byrne,C.D。胰高血糖素样肽-1受体激动剂和其他肠促胰岛素受体激动剂在非酒精性脂肪性肝病中的机制和可能的保肝作用。
Lancet Gastroenterol. Hepatol. 8, 179–191 (2023).Article .
柳叶刀胃肠病学。肝病。8179-191(2023)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Wang, X. C., Gusdon, A. M., Liu, H. & Qu, S. Effects of glucagon-like peptide-1 receptor agonists on non-alcoholic fatty liver disease and inflammation. World J. Gastroenterol. 20, 14821–14830 (2014).Article
Wang,X.C.,Gusdon,A.M.,Liu,H。&Qu,S。胰高血糖素样肽-1受体激动剂对非酒精性脂肪性肝病和炎症的影响。世界J.胃肠病学。2014821-14830(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nevola, R. et al. GLP-1 Receptor agonists in non-alcoholic fatty liver disease: Current evidence and future perspectives. Int. J. Mol. Sci. 24, 1703 (2023).Sofogianni, A. et al. Glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: An update. World J. Hepatol.
Nevola,R。等。GLP-1受体激动剂在非酒精性脂肪肝病中的作用:当前证据和未来展望。Int.J.Mol.Sci。241703(2023)。Sofogianni,A。等。胰高血糖素样肽-1受体激动剂在非酒精性脂肪肝病中的应用:最新进展。世界J.Hepatol。
12, 493–505 (2020).Article .
12493-505(2020)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rahman, S. & Islam, R. Mammalian Sirt1: insights on its biological functions. Cell Commun. Signal 9, 11 (2011).Article
Rahman,S。&Islam,R。哺乳动物Sirt1:对其生物学功能的见解。细胞通讯。信号9、11(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, X. SIRT1 and energy metabolism. Acta Biochim Biophys. Sin. (Shanghai) 45, 51–60 (2013).Article
Li,X。SIRT1和能量代谢。生物化学学报。罪恶。(上海)45,51-60(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Varghese, B. et al. SIRT1 activation promotes energy homeostasis and reprograms liver cancer metabolism. J. Transl. Med. 21, 627 (2023).Article
。J、 翻译。医学21627(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kojima, M. et al. Glucagon-like peptide-1 receptor agonist prevented the progression of hepatocellular carcinoma in a mouse model of nonalcoholic Steatohepatitis. Int. J. Mol. Sci. 21, 5722 (2020).Ma, B. et al. High glucose promotes the progression of colorectal cancer by activating the BMP4 signaling and inhibited by glucagon-like peptide-1 receptor agonist.
Kojima,M。等人。胰高血糖素样肽-1受体激动剂在非酒精性脂肪性肝炎小鼠模型中阻止肝细胞癌的进展。Int.J.Mol.Sci。215722(2020)。Ma,B。等人。高糖通过激活BMP4信号传导促进结直肠癌的进展,并被胰高血糖素样肽-1受体激动剂抑制。
BMC Cancer 23, 594 (2023).Article .
BMC癌症23594(2023)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, H. et al. Activation of glucagon-like peptide-1 receptor inhibits tumourigenicity and metastasis of human pancreatic cancer cells via PI3K/Akt pathway. Diab Obes. Metab. 16, 850–860 (2014).Article
Zhao,H。等人。胰高血糖素样肽-1受体的激活通过PI3K/Akt途径抑制人胰腺癌细胞的致瘤性和转移。暗黑破坏神出窍。代谢。。文章
CAS
中科院
Google Scholar
谷歌学者
Nagendra, L., Bg, H., Sharma, M. & Dutta, D. Semaglutide and cancer: A systematic review and meta-analysis. Diab Metab. Syndr. 17, 102834 (2023).Article
Nagendra,L.,Bg,H.,Sharma,M。&Dutta,D。Semaglutide和癌症:系统评价和荟萃分析。糖尿病代谢。Syndr公司。17102834(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Yen, F. S. et al. Effects of glucagon-like peptide-1 receptor agonists on liver-related and cardiovascular mortality in patients with type 2 diabetes. BMC Med. 22, 8 (2024).Article
Yen,F.S.等人。胰高血糖素样肽-1受体激动剂对2型糖尿病患者肝脏相关死亡率和心血管死亡率的影响。BMC医学杂志22,8(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arvanitakis, K., Koufakis, T., Kotsa, K. & Germanidis, G. How far beyond diabetes can the benefits of glucagon-like peptide-1 receptor agonists go? A review of the evidence on their effects on hepatocellular carcinoma. Cancers (Basel). 14, 4651 (2022).Körner, M., Stöckli, M., Waser, B.
Arvanitakis,K.,Koufakis,T.,Kotsa,K。&Germandis,G。胰高血糖素样肽-1受体激动剂的益处可以超越糖尿病多远?关于它们对肝细胞癌影响的证据综述。癌症(巴塞尔)。144651(2022)。科尔纳,M.,Stöckli,M.,Waser,B。
& Reubi, J. C. GLP-1 receptor expression in human tumors and human normal tissues: Potential for in vivo targeting. J. Nucl. Med. 48, 736–743 (2007).Article .
&Reubi,J.C。GLP-1受体在人类肿瘤和人类正常组织中的表达:体内靶向的潜力。J、 核。医学48736-743(2007)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Hunt, J. E., Holst, J. J., Jeppesen, P. B. & Kissow, H. GLP-1 and intestinal diseases. Biomedicines. 9, 383 (2021).Alobaid, S. M. et al. Liraglutide attenuates diabetic cardiomyopathy via the ILK/PI3K/AKT/PTEN signaling pathway in rats with streptozotocin-induced type 2 diabetes mellitus.
Hunt,J.E.,Holst,J.J.,Jeppesen,P.B。&Kissow,H.GLP-1和肠道疾病。生物医学。9383(2021)。Alobaid,S.M.等人利拉鲁肽通过链脲佐菌素诱导的2型糖尿病大鼠的ILK/PI3K/AKT/PTEN信号通路减轻糖尿病性心肌病。
Pharmaceuticals (Basel). 17, 374 (2024).Yang, Z. et al. GLP-1 receptor agonist-associated tumor adverse events: A real-world study from 2004 to 2021 based on FAERS. Front Pharmacol. 13, 925377 (2022).Article .
制药(巴塞尔)。17374(2024)。Yang,Z.等人,《GLP-1受体激动剂相关的肿瘤不良事件:基于FAERS的2004年至2021年的现实世界研究》。Front Pharmacol。13925377(2022)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis study was performed with the support of the National Natural Science Foundation of China (82002339, 81820108020), Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System (BJ1-9000-22-4002). BioRender (https://www.biorender.com/) was used to create the Fig.
下载参考文献致谢本研究得到了国家自然科学基金(8200233981820108200),上海骨骼系统退化与再生前沿科学中心(BJ1-9000-22-4002)的支持。BioRender公司(https://www.biorender.com/)被用来创建Fig。
2.Author informationAuthor notesThese authors contributed equally: Zhikai Zheng, Yao ZongAuthors and AffiliationsDepartment of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, ChinaZhikai Zheng, Yiyang Ma, Yucheng Tian, Yidan Pang, Changqing Zhang & Junjie GaoInstitute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, ChinaZhikai Zheng, Yiyang Ma, Yucheng Tian, Yidan Pang, Changqing Zhang & Junjie GaoCentre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, AustraliaYao ZongAuthorsZhikai ZhengView author publicationsYou can also search for this author in.
2.作者信息作者注意到,这些作者做出了同样的贡献:郑志凯,姚宗浩及其附属医院上海交通大学医学院附属上海第六人民医院骨科,上海,200233,中国郑志凯,马益阳,田玉成,彭义丹,张长庆和高俊杰四肢显微外科研究所,上海交通大学医学院附属上海第六人民医院骨科,上海,200233,中国郑志凯,马益阳,田玉成,彭义丹,张长庆和高俊杰骨科研究中心西澳大利亚大学医学院,内德兰兹,华盛顿州,6009,澳大利亚Ayao ZongAuthorsZhikai ZhengView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarYao ZongView author publicationsYou can also search for this author in
PubMed Google ScholarYao ZongView作者出版物您也可以在
PubMed Google ScholarYiyang MaView author publicationsYou can also search for this author in
PubMed谷歌学术评论MaView作者出版物您也可以在
PubMed Google ScholarYucheng TianView author publicationsYou can also search for this author in
PubMed Google ScholarYucheng TianView作者出版物您也可以在
PubMed Google ScholarYidan PangView author publicationsYou can also search for this author in
PubMed Google ScholarYidan PangView作者出版物您也可以在
PubMed Google ScholarChangqing ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarChangqing ZhangView作者出版物您也可以在
PubMed Google ScholarJunjie GaoView author publicationsYou can also search for this author in
PubMed谷歌学者Junjie GaoView作者出版物您也可以在
PubMed Google ScholarContributionsZ.Z., Y.Z. and J.G. drafted and conceived the initial manuscript. J.G. and C.Z. provided the essential assistant for our final manuscript. Z.Z., Y.M., Y.T., Y.Z. and Y.P. drew the figures and arranged the tables. All authors have read and approved the article.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献。Z、 ,Y.Z.和J.G.起草并构思了初稿。J、 G.和C.Z.为我们的最终手稿提供了必不可少的助手。Z、 Z.,Y.M.,Y.T.,Y.Z.和Y.P.绘制了数字并安排了表格。。对应作者对应。
Junjie Gao.Ethics declarations
高俊杰。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Rights and permissions
权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleZheng, Z., Zong, Y., Ma, Y. et al. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy.
转载和许可本文引用本文Zheng,Z.,Zong,Y.,Ma,Y。等人。胰高血糖素样肽-1受体:治疗机制和进展。
Sig Transduct Target Ther 9, 234 (2024). https://doi.org/10.1038/s41392-024-01931-zDownload citationReceived: 18 February 2024Revised: 17 June 2024Accepted: 16 July 2024Published: 18 September 2024DOI: https://doi.org/10.1038/s41392-024-01931-zShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sig Transduct Target Ther 9234(2024)。https://doi.org/10.1038/s41392-024-01931-zDownload引文收到日期:2024年2月18日修订日期:2024年6月17日接受日期:2024年7月16日发布日期:2024年9月18日OI:https://doi.org/10.1038/s41392-024-01931-zShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供