EN
登录

共价探针平行跳跃绘制变构细胞周期蛋白E-CDK2位点

An allosteric cyclin E-CDK2 site mapped by paralog hopping with covalent probes

Nature 等信源发布 2024-09-18 19:28

可切换为仅中文


AbstractMore than half of the ~20,000 protein-encoding human genes have paralogs. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to subsets of paralogous proteins. Here we explore whether such covalent compound–cysteine interactions can be used to discover ligandable pockets in paralogs lacking the cysteine.

摘要在编码人类基因的约20000种蛋白质中,有一半以上具有旁系同源物。化学蛋白质组学发现了许多亲电子敏感的半胱氨酸,这些半胱氨酸是旁系同源蛋白亚群所独有的。在这里,我们探讨这种共价化合物-半胱氨酸相互作用是否可用于发现缺乏半胱氨酸的旁系同源物中的可连接口袋。

Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we substituted the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide–CCNE1-N112C interaction into in vitro NanoBRET (bioluminescence resonance energy transfer) and in cellulo activity-based protein profiling assays capable of identifying compounds that reversibly inhibit both the N112C mutant and wild-type CCNE1:CDK2 (cyclin-dependent kinase 2) complexes.

利用细胞周期蛋白CCNE2中C109的共价连接性,我们将旁系同源CCNE1中的相应残基替换为半胱氨酸(N112C),并通过基于活性的蛋白质分析发现该突变体与胰蛋白酶丙烯酰胺发生立体选择性和位点特异性反应。然后,我们将胰蛋白酶-丙烯酰胺-CCNE1-N112C相互作用转化为体外NanoBRET(生物发光共振能量转移)和基于纤维素活性的蛋白质分析测定,能够鉴定可逆抑制N112C突变体和野生型CCNE1的化合物:CDK2(细胞周期蛋白依赖性激酶2)复合物。

X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings, thus, show how electrophile–cysteine interactions mapped by chemical proteomics can extend the understanding of protein ligandability beyond covalent chemistry..

X射线晶体学显示,在与N112相邻的CCNE1:CDK2界面处有一个隐秘的变构口袋,该口袋与可逆抑制剂结合。因此,我们的发现表明,化学蛋白质组学绘制的亲电-半胱氨酸相互作用如何将对蛋白质可配体性的理解扩展到共价化学之外。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Covalent stereoprobes targeting CCNE2 and a CCNE1-N112C mutant.Fig. 2: NanoBRET assay for measuring stereoprobe interactions with CCNE1-N112C.Fig. 3: Characterizing engagement of the CCNE1:CDK2 complex by 2,6-diazaspiro[3.4]octane inhibitors.Fig. 4: Crystal structure of an I-198–CCNE1:CDK2 complex.Fig.

图1:靶向CCNE2和CCNE1-N112C突变体的共价立体探针。。图3:表征CCNE1:CDK2复合物与2,6-二氮杂螺[3.4]辛烷抑制剂的结合。图4:I-198–CCNE1:CDK2复合物的晶体结构。图。

5: Comparison of functional effects of 2,6-diazaspiro[3.4]octane and tryptoline acrylamide ligands on CCNE1-N112C:CDK2 complexes.Fig. 6: Cellular engagement and activity of 2,6-diazaspiro[3.4]octane inhibitors of CCNE1:CDK2 complexes..

5: 比较2,6-二氮杂螺[3.4]辛烷和色氨酸丙烯酰胺配体对CCNE1-N112C:CDK2复合物的功能作用。图6:CCNE1:CDK2复合物的2,6-二氮杂螺[3.4]辛烷抑制剂的细胞参与和活性。。

Data availability

数据可用性

Proteomic data are available from ProteomeXchange with identifiers PXD048328 and PXD053077. The atomic coordinates and structure factors were deposited to the PDB (www.pdb.org) under accession codes 8VQ3 (I-198–CCNE1:CDK2 structure) and 8VQ4 (I-125A–CCNE1:CKD2 structure)). Coding sequences of the DNA constructs used in this study are provided in Supplementary Table 1.

蛋白质组学数据可从ProteomeXchange获得,标识符为PXD048328和PXD053077。。补充表1提供了本研究中使用的DNA构建体的编码序列。

Source data are provided with this paper..

本文提供了源数据。。

ReferencesIbn-Salem, J., Muro, E. M. & Andrade-Navarro, M. A. Co-regulation of paralog genes in the three-dimensional chromatin architecture. Nucleic Acids Res. 45, 81–91 (2017).Article

。核酸研究45,81-91(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Man, O., Atarot, T., Sadot, A., Olender, T. & Lancet, D. From subgenome analysis to protein structure. Curr. Opin. Struct. Biol. 13, 353–358 (2003).Article

Man,O.,Atarot,T.,Sadot,A.,Olender,T。&Lancet,D。从亚基因组分析到蛋白质结构。。奥平。结构。生物学13353-358(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nat. Rev. Genet. 9, 938–950 (2008).Article

Conant,G.C.&Wolfe,K.H。将爱好转变为工作:重复基因如何发现新功能。Genet自然Rev。9938-950(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ryan, C. J., Mehta, I., Kebabci, N. & Adams, D. J. Targeting synthetic lethal paralogs in cancer. Trends Cancer 9, 397–409 (2023).Article

。趋势癌症9397-409(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xin, Y. & Zhang, Y. Paralog-based synthetic lethality: rationales and applications. Front. Oncol. 13, 1168143 (2023).Article

Xin,Y。&Zhang,Y。基于旁系同源物的合成致死率:原理和应用。正面。Oncol公司。131168143(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Muller, F. L. et al. Passenger deletions generate therapeutic vulnerabilities in cancer. Nature 488, 337–342 (2012).Article

Muller,F.L。等人。乘客缺失会在癌症中产生治疗脆弱性。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oike, T. et al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1. Cancer Res. 73, 5508–5518 (2013).Article

Oike,T。等人。一种基于合成致死率的策略,用于治疗染色质重塑因子BRG1遗传缺陷的癌症。癌症研究735508-5518(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Helming, K. C. et al. ARID1B is a specific vulnerability in ARID1A-mutant cancers. Nat. Med. 20, 251–254 (2014).Article

Helming,K.C。等人,ARID1B是ARID1A突变癌症的特定脆弱性。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Benedetti, L., Cereda, M., Monteverde, L., Desai, N. & Ciccarelli, F. D. Synthetic lethal interaction between the tumour suppressor STAG2 and its paralog STAG1. Oncotarget 8, 37619–37632 (2017).Article

Benedetti,L.,Cereda,M.,Monteverde,L.,Desai,N。&Ciccarelli,F.D。肿瘤抑制因子STAG2与其旁系同源物STAG1之间的合成致死相互作用。Oncotarget 837619–37632(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van der Lelij, P. et al. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. eLife 6, e26980 (2017).Article

van der Lelij,P。等人。粘着蛋白亚基STAG1和STAG2在不同癌症背景下的合成致死率。eLife 6,e26980(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Koferle, A. et al. Interrogation of cancer gene dependencies reveals paralog interactions of autosome and sex chromosome-encoded genes. Cell Rep. 39, 110636 (2022).Article

对癌症基因依赖性的询问揭示了常染色体和性染色体编码基因的旁系同源相互作用。Cell Rep.39110636(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

De Kegel, B., Quinn, N., Thompson, N. A., Adams, D. J. & Ryan, C. J. Comprehensive prediction of robust synthetic lethality between paralog pairs in cancer cell lines. Cell Syst. 12, 1144–1159 (2021).Article

De Kegel,B.,Quinn,N.,Thompson,N.A.,Adams,D.J。&Ryan,C.J。全面预测癌细胞系中旁系同源物对之间强大的合成致死率。细胞系统。121144-1159(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Parrish, P. C. R. et al. Discovery of synthetic lethal and tumor suppressor paralog pairs in the human genome. Cell Rep. 36, 109597 (2021).Article

Parrish,P.C.R.等人。在人类基因组中发现合成致死性和肿瘤抑制性旁系同源物对。Cell Rep.36109597(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Clark, J. D., Flanagan, M. E. & Telliez, J. B. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 57, 5023–5038 (2014).Article

Clark,J.D.,Flanagan,M.E。&Telliez,J.B。Janus激酶(JAK)抑制剂在炎症性疾病中的发现和发展。J、 医学化学。575023-5038(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, H. et al. PF-06651600, a dual JAK3/TEC family kinase inhibitor. ACS Chem. Biol. 14, 1235–1242 (2019).Article

Xu,H。等人,PF-06651600,一种双重JAK3/TEC家族激酶抑制剂。ACS化学。生物学141235-1242(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, C. et al. Discovery of BMS-986202: a clinical Tyk2 inhibitor that binds to Tyk2 JH2. J. Med. Chem. 64, 677–694 (2021).Article

Liu,C。等人。BMS-986202的发现:一种与Tyk2 JH2结合的临床Tyk2抑制剂。J、 医学化学。64677-694(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kavanagh, M. E. et al. Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine. Nat. Chem. Biol. 18, 1388–1398 (2022).Article

Kavanagh,M.E.等人。靶向同工型限制性变构半胱氨酸的JAK1选择性抑制剂。自然化学。生物学181388-1398(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Freeman-Cook, K. D. et al. Discovery of PF-06873600, a CDK2/4/6 Inhibitor for the Treatment of Cancer. J. Med. Chem. 64, 9056–9077 (2021).Article

Freeman Cook,K.D.等人发现了用于治疗癌症的CDK2/4/6抑制剂PF-06873600。J、 医学化学。649056-9077(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hagel, M. et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 5, 424–437 (2015).Article

Hagel,M.等人。第一个选择性FGFR4小分子抑制剂,用于治疗具有活化的FGFR4信号通路的肝细胞癌。癌症发现。5424-437(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Borsari, C. et al. Covalent proximity scanning of a distal cysteine to target PI3Kα. J. Am. Chem. Soc. 144, 6326–6342 (2022).Article

Borsari,C。等人。共价接近扫描远端半胱氨酸以靶向PI3Kα。J、 美国化学。Soc.1446326–6342(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kathman, S. G. et al. Remodeling oncogenic transcriptomes by small molecules targeting NONO. Nat. Chem. Biol. 19, 825–836 (2023).Article

Kathman,S.G.等人。通过靶向NONO的小分子重塑致癌转录组。自然化学。生物学19825-836(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).Article

Ostrem,J.M.,Peters,U.,Sos,M.L.,Wells,J.A。&Shokat,K.M.K-Ras(G12C)抑制剂变构控制GTP亲和力和效应子相互作用。自然503548-551(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).Article

Canon,J。等人。临床KRAS(G12C)抑制剂AMG 510驱动抗肿瘤免疫。自然575217-223(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Guiley, K. Z. & Shokat, K. M. A small molecule reacts with the p53 somatic mutant Y220C to rescue wild-type thermal stability. Cancer Discov. 13, 56–69 (2023).Article

Guiley,K.Z。&Shokat,K.M。一种小分子与p53体细胞突变体Y220C反应以挽救野生型热稳定性。癌症发现。13,56-69(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vinogradova, E. V. et al. An activity-guided map of electrophile–cysteine interactions in primary human T cells. Cell 182, 1009–1026 (2020).Article

Vinogradova,E.V.等人。原代人T细胞中亲电子-半胱氨酸相互作用的活性引导图。细胞1821009-1026(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lazear, M. R. et al. Proteomic discovery of chemical probes that perturb protein complexes in human cells. Mol. Cell 83, 1725–1742 (2023).Article

Lazear,M.R.等人。蛋白质组学发现扰乱人类细胞中蛋白质复合物的化学探针。分子细胞831725-1742(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Njomen, E. et al. Multi-tiered chemical proteomic maps of tryptoline acrylamide–protein interactions in cancer cells. Nat. Chem. https://doi.org/10.1038/s41557-024-01601-1 (2024).Chu, C., Geng, Y., Zhou, Y. & Sicinski, P. Cyclin E in normal physiology and disease states. Trends Cell Biol.

Njomen,E.等人。癌细胞中胰蛋白酶-丙烯酰胺-蛋白质相互作用的多层化学蛋白质组学图谱。自然化学。https://doi.org/10.1038/s41557-024-01601-1(2024年)。Chu,C.,Geng,Y.,Zhou,Y。&Sicinski,P。细胞周期蛋白E在正常生理和疾病状态下。。

31, 732–746 (2021).Article .

31732-746(2021)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kirman, L. C. et al. CDK2 Inhibitors and methods of using the same. WIPO patent WO2022165513A1 (2022).Fagundes, R. & Teixeira, L. K. Cyclin E/CDK2: DNA replication, replication stress and genomic instability. Front. Cell Dev. Biol. 9, 774845 (2021).Article

Kirman,L.C.等人,CDK2抑制剂及其使用方法。WIPO专利WO2022165513A1(2022)。Fagundes,R。&Teixeira,L.K。细胞周期蛋白E/CDK2:DNA复制,复制应激和基因组不稳定性。正面。细胞开发生物学。9774845(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Taylor-Harding, B. et al. Cyclin E1 and RTK/RAS signaling drive CDK inhibitor resistance via activation of E2F and ETS. Oncotarget 6, 696–714 (2015).Article

Taylor Harding,B。等人。细胞周期蛋白E1和RTK/RAS信号通过激活E2F和ETS驱动CDK抑制剂抗性。Oncotarget 6696-714(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).Article

Tshrenak,A。等人定义癌症依赖图。细胞170564-576(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kanska, J., Zakhour, M., Taylor-Harding, B., Karlan, B. Y. & Wiedemeyer, W. R. Cyclin E as a potential therapeutic target in high grade serous ovarian cancer. Gynecol. Oncol. 143, 152–158 (2016).Article

Kanska,J.,Zakhour,M.,Taylor Harding,B.,Karlan,B.Y。&Wiedemeyer,W.R。细胞周期蛋白E作为高度浆液性卵巢癌的潜在治疗靶点。妇科。Oncol公司。143152-158(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Machleidt, T. et al. NanoBRET—a novel BRET platform for the analysis of protein–protein interactions. ACS Chem. Biol. 10, 1797–1804 (2015).Article

Machleidt,T。等人。NanoBRET-一种用于分析蛋白质-蛋白质相互作用的新型BRET平台。ACS化学。生物学101797-1804(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bachovchin, D. A., Brown, S. J., Rosen, H. & Cravatt, B. F. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat. Biotechnol. 27, 387–394 (2009).Article

Bachovchin,D.A.,Brown,S.J.,Rosen,H。&Cravatt,B.F。通过使用基于荧光活性的探针进行高通量筛选来鉴定未表征酶的选择性抑制剂。美国国家生物技术公司。27387-394(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Leung, D., Hardouin, C., Boger, D. L. & Cravatt, B. F. Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21, 687–691 (2003).Article

Leung,D.,Hardouin,C.,Boger,D.L。和Cravatt,B.F。在复杂蛋白质组中发现有效和选择性可逆的酶抑制剂。美国国家生物技术公司。21687-691(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yu, Y. et al. Accelerated discovery of macrocyclic CDK2 inhibitor QR-6401 by generative models and structure-based drug design. ACS Med. Chem. Lett. 14, 297–304 (2023).Article

Yu,Y.等人通过生成模型和基于结构的药物设计加速了大环CDK2抑制剂QR-6401的发现。ACS医学化学。利特。14297-304(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Freeman-Cook, K. et al. Expanding control of the tumor cell cycle with a CDK2/4/6 inhibitor. Cancer Cell 39, 1404–1421 (2021).Article

Freeman Cook,K。等人。用CDK2/4/6抑制剂扩大对肿瘤细胞周期的控制。癌细胞391404-1421(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Dietrich, C. et al. INX-315, a selective CDK2 inhibitor, induces cell cycle arrest and senescence in solid tumors. Cancer Discov. 14, 446–467 (2024).Article

Dietrich,C。等人INX-315是一种选择性CDK2抑制剂,可诱导实体瘤细胞周期停滞和衰老。癌症发现。14446-467(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Robers, M. B. et al. Single tracer-based protocol for broad-spectrum kinase profiling in live cells with NanoBRET. STAR Protoc. 2, 100822 (2021).Article

Robers,M.B.等人。基于单一示踪剂的方案,用于使用NanoBRET在活细胞中进行广谱激酶分析。STAR Protoc。2100822(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Honda, R. et al. The structure of cyclin E1/CDK2: implications for CDK2 activation and CDK2-independent roles. EMBO J. 24, 452–463 (2005).Article

Honda,R。等人。细胞周期蛋白E1/CDK2的结构:对CDK2激活和CDK2非依赖性作用的影响。EMBO J.24452–463(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oruganty, K., Talathi, N. S., Wood, Z. A. & Kannan, N. Identification of a hidden strain switch provides clues to an ancient structural mechanism in protein kinases. Proc. Natl Acad. Sci. USA 110, 924–929 (2013).Article

Oruganty,K.,Talathi,N.S.,Wood,Z.A。&Kannan,N。鉴定隐藏的菌株开关为蛋白激酶的古老结构机制提供了线索。程序。国家科学院。科学。美国110924–929(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brown, N. R., Noble, M. E., Endicott, J. A. & Johnson, L. N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat. Cell Biol. 1, 438–443 (1999).Article

。自然细胞生物学。1438-443(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ramharter, J. et al. One atom makes all the difference: getting a foot in the door between SOS1 and KRAS. J. Med. Chem. 64, 6569–6580 (2021).Article

Ramharter,J.等人,《一个原子产生了巨大的差异:在SOS1和KRAS之间迈出了一步》。J.医学化学。646569-6580(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bock, A. & Bermudez, M. Allosteric coupling and biased agonism in G protein-coupled receptors. FEBS J. 288, 2513–2528 (2021).Article

Bock,A。&Bermudez,M。G蛋白偶联受体中的变构偶联和偏向激动作用。FEBS J.2882513–2528(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sadowsky, J. D. et al. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc. Natl Acad. Sci. USA 108, 6056–6061 (2011).Article

Sadowsky,J.D.等人通过二硫键捕获从单个变构位点打开或关闭蛋白激酶。程序。国家科学院。科学。美国1086056–6061(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jahnke, W. et al. Binding or bending: distinction of allosteric Abl kinase agonists from antagonists by an NMR-based conformational assay. J. Am. Chem. Soc. 132, 7043–7048 (2010).Article

Jahnke,W。等人。结合或弯曲:通过基于NMR的构象测定区分变构Abl激酶激动剂和拮抗剂。J、 美国化学。Soc.1327043–7048(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pines, J. Cell cycle: reaching for a role for the Cks proteins. Curr. Biol. 6, 1399–1402 (1996).Article

Pines,J。细胞周期:达到Cks蛋白的作用。。生物学61399-1402(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McGrath, D. A. et al. Cks confers specificity to phosphorylation-dependent CDK signaling pathways. Nat. Struct. Mol. Biol. 20, 1407–1414 (2013).Article

McGrath,D.A。等人的Cks赋予磷酸化依赖性CDK信号通路特异性。自然结构。分子生物学。201407-1414(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Al-Rawi, A., Kaye, E., Korolchuk, S., Endicott, J. A. & Ly, T. Cyclin A and Cks1 promote kinase consensus switching to non-proline-directed CDK1 phosphorylation. Cell Rep. 42, 112139 (2023).Article

Al-Rawi,A.,Kaye,E.,Korolchuk,S.,Endicott,J.A。&Ly,T。细胞周期蛋白A和Cks1促进激酶共识转换为非脯氨酸定向的CDK1磷酸化。细胞代表42112139(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bourne, Y. et al. Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell 84, 863–874 (1996).Article

Bourne,Y.等人。具有细胞周期调节蛋白CksHs1的人CDK2激酶复合物的晶体结构和突变分析。细胞84863-874(1996)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jafari, R. et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).Article

Jafari,R。等人。用于评估细胞中药物-靶标相互作用的细胞热位移测定。自然协议。92100-2122(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Thorarensen, A. et al. Design of a Janus kinase 3 (JAK3) specific inhibitor 1-((2S,5R)-5-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) allowing for the interrogation of JAK3 signaling in humans. J. Med. Chem. 60, 1971–1993 (2017).Article .

Thorarensen,A。等人设计了Janus激酶3(JAK3)特异性抑制剂1-((2S,5R)-5-((7H-吡咯并[2,3-d]嘧啶-4-基)氨基)-2-甲基哌啶-1-基)丙-2-烯-1-酮(PF-06651600),允许在人体中询问JAK3信号传导。J、 医学化学。601971-1993(2017)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hanan, E. J. et al. Discovery of GDC-0077 (inavolisib), a highly selective inhibitor and degrader of mutant PI3Kα. J. Med. Chem. 65, 16589–16621 (2022).Article

Hanan,E.J.等人发现GDC-0077(inavolisib),一种突变PI3Kα的高选择性抑制剂和降解剂。J、 医学化学。6516589-16621(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tokarski, J. S. et al. Tyrosine kinase 2-mediated signal transduction in T lymphocytes is blocked by pharmacological stabilization of its pseudokinase domain. J. Biol. Chem. 290, 11061–11074 (2015).Article

。J、 生物。化学。29011061-11074(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Erlanson, D. A. et al. Site-directed ligand discovery. Proc. Natl Acad. Sci. USA 97, 9367–9372 (2000).Article

Erlandson,D.A。等人。定点配体发现。程序。国家科学院。科学。美国979367–9372(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Garske, A. L., Peters, U., Cortesi, A. T., Perez, J. L. & Shokat, K. M. Chemical genetic strategy for targeting protein kinases based on covalent complementarity. Proc. Natl Acad. Sci. USA 108, 15046–15052 (2011).Article

Garske,A.L.,Peters,U.,Cortesi,A.T.,Perez,J.L。&Shokat,K.M。基于共价互补性靶向蛋白激酶的化学遗传策略。程序。国家科学院。科学。美国10815046–15052(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kung, A. et al. A chemical-genetic approach to generate selective covalent inhibitors of protein kinases. ACS Chem. Biol. 12, 1499–1503 (2017).Article

Kung,A。等人。一种产生蛋白激酶选择性共价抑制剂的化学遗传学方法。ACS化学。生物学121499-1503(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barkovich, K. J., Moore, M. K., Hu, Q. & Shokat, K. M. Chemical genetic inhibition of DEAD-box proteins using covalent complementarity. Nucleic Acids Res. 46, 8689–8699 (2018).Article

Barkovich,K.J.,Moore,M.K.,Hu,Q。&Shokat,K.M。使用共价互补对DEAD-box蛋白进行化学遗传抑制。核酸研究468689-8699(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gentile, D. R. et al. Ras binder induces a modified switch-II pocket in GTP and GDP states. Cell Chem. Biol. 24, 1455–1466 (2017).Article

Gentile,D.R.等人,Ras binder在GTP和GDP状态下诱导了一个改进的switch II口袋。细胞化学。生物学241455-1466(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cohen, M. S., Zhang, C., Shokat, K. M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308, 1318–1321 (2005).Article

Cohen,M.S.,Zhang,C.,Shokat,K.M。&Taunton,J。基于结构生物信息学的选择性不可逆激酶抑制剂设计。科学3081318-1321(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hardy, J. A. & Wells, J. A. Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol. 14, 706–715 (2004).Article

Hardy,J.A。&Wells,J.A。在酶中寻找新的变构位点。。奥平。结构。生物学14706-715(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nussinov, R. & Tsai, C. J. The design of covalent allosteric drugs. Annu. Rev. Pharmacol. Toxicol. 55, 249–267 (2015).Article

Nussinov,R。&Tsai,C.J。共价变构药物的设计。年。药理学杂志。毒理学。55249-267(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).Article

Backus,K.M.等人。天然生物系统中蛋白质组范围的共价配体发现。自然534570-574(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bar-Peled, L. et al. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171, 696–709 (2017).Article

Bar-Peled,L。等人。化学蛋白质组学鉴定了遗传定义的癌症中的药物脆弱性。细胞171696-709(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boatner, L. M., Palafox, M. F., Schweppe, D. K. & Backus, K. M. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. Cell Chem. Biol. 30, 683–698 (2023).Article

Boatner,L.M.,Palafox,M.F.,Schweppe,D.K。&Backus,K.M.CysDB:基于实验定量化学蛋白质组学的人半胱氨酸数据库。细胞化学。生物学30683-698(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kuljanin, M. et al. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat. Biotechnol. 39, 630–641 (2021).Article

Kuljanin,M.等人。重新构建反应性半胱氨酸的高通量分析,用于基于细胞的大型亲电子文库筛选。美国国家生物技术公司。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maurais, A. J. & Weerapana, E. Reactive-cysteine profiling for drug discovery. Curr. Opin. Chem. Biol. 50, 29–36 (2019).Article

Maurais,A.J。和Weerapana,E。用于药物发现的反应性半胱氨酸分析。。奥平。化学。生物学50,29-36(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Spradlin, J. N., Zhang, E. & Nomura, D. K. Reimagining druggability using chemoproteomic platforms. Acc. Chem. Res. 54, 1801–1813 (2021).Article

Spradlin,J.N.,Zhang,E。和Nomura,D.K。使用化学蛋白质组学平台重新想象药物的可药性。根据化学。第54号决议,1801-1813(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bathla, P., Mujawar, A., De, A. & Sandanaraj, B. S. Development of noninvasive activity-based protein profiling–bioluminescence resonance energy transfer platform technology enables target engagement studies with absolute specificity in living systems. ACS Pharmacol. Transl. Sci. 7, 375–383 (2024).Article .

Bathla,P.,Mujawar,A.,De,A。&Sandanaraj,B.S。基于无创活性的蛋白质分析-生物发光共振能量转移平台技术的开发使目标参与研究在生命系统中具有绝对的特异性。。翻译。科学。7375-383(2024)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ostrem, J. M. & Shokat, K. M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov. 15, 771–785 (2016).Article

Ostrem,J.M。&Shokat,K.M。KRAS的直接小分子抑制剂:从结构见解到基于机制的设计。《药物目录》修订版。15771-785(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat. Med. 28, 2171–2182 (2022).Article

Hallin,J.等人。一种有效的选择性非共价KRAS(G12D)抑制剂的抗肿瘤功效。《自然医学》282171-2182(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).Article

Rees,H.A。&Liu,D.R。碱基编辑:活细胞基因组和转录组的精确化学。Genet自然Rev。19770-788(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ribeiro, A. A. & Ortiz, V. A chemical perspective on allostery. Chem. Rev. 116, 6488–6502 (2016).Article

Ribeiro,A.A。&Ortiz,V。关于变构的化学观点。化学。修订版1166488–6502(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shpakov, A. O. Allosteric regulation of G-protein-coupled receptors: from diversity of molecular mechanisms to multiple allosteric sites and their ligands. Int. J. Mol. Sci. 24, 6187 (2023).Article

Shpakov,A.O。G蛋白偶联受体的变构调节:从分子机制的多样性到多个变构位点及其配体。Int.J.Mol.Sci。246187(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zha, J. et al. AlloReverse: multiscale understanding among hierarchical allosteric regulations. Nucleic Acids Res. 51, W33–W38 (2023).Article

Zha,J。等人。AlloReverse:分层变构调节之间的多尺度理解。核酸研究51,W33-W38(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schreiber, S. L. A chemical biology view of bioactive small molecules and a binder-based approach to connect biology to precision medicines. Isr. J. Chem. 59, 52–59 (2019).Article

Schreiber,S.L。生物活性小分子的化学生物学观点以及将生物学与精密药物联系起来的基于粘合剂的方法。Isr公司。J、 化学。59,52-59(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schoepfer, J. et al. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J. Med. Chem. 61, 8120–8135 (2018).Article

Schoepfer,J.等人发现了asciminib(ABL001),它是BCR-ABL1酪氨酸激酶活性的变构抑制剂。J、 医学化学。618120-8135(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002).Article

Rostovtsev,V.V.,Green,L.G.,Fokin,V.V。和Sharpless,K.B。逐步Huisgen环加成过程:铜(I)催化的叠氮化物和末端炔烃的区域选择性“连接”。。化学。国际英语。412596-2599(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).Article

Tornoe,C.W.,Christensen,C。&Meldal,M。固相上的肽三唑[1,2,3]-三唑,通过区域特异性铜(I)催化的末端炔烃与叠氮化物的1,3-偶极环加成。J、 组织化学。673057-3064(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, P. et al. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol. Cancer Ther. 15, 2273–2281 (2016).Article

Chen,P。等人。CDK药物相互作用的频谱和程度可预测临床表现。分子癌症治疗。152273-2281(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D 67, 293–302 (2011).Article

Vonrhein,C.等人。使用autoPROC工具箱进行数据处理和分析。晶体学报。D 67293-302(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tickle, I. J. et al. STARANISO (Global Phasing Ltd., 2018).McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).Article

Tickle,I.J.等人,STARANISO(Global Phasing Ltd.,2018)。McCoy,A.J.等人,Phaser晶体学软件。J、 应用。晶体学。40658-674(2007)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D 75, 861–877 (2019).Article

Liebschner,D.等人,《利用X射线、中子和电子测定大分子结构:Phenix的最新进展》。晶体学报D 75861-877(2019)。文章

CAS

中科院

Google Scholar

谷歌学者

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr D 66, 486–501 (2010).Article

Emsley,P.,Lohkamp,B.,Scott,W.G。和Cowtan,K。Coot的特征和发展。晶体学报D 66486-501(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by the National Cancer Institute (R35 CA231991) and Pfizer. We thank Y.-A. He for purification of recombinant CCNE1:CDK2 complexes used for crystallography and R. A. Ferre for development of the CCNE1:CDK2 crystallization conditions.

下载参考文献致谢这项工作得到了美国国家癌症研究所(R35 CA231991)和辉瑞公司的支持。我们感谢Y.-A.He纯化用于晶体学的重组CCNE1:CDK2复合物,感谢R.A.Ferre开发CCNE1:CDK2结晶条件。

We thank T. J. Matthewson for preparing compound plates for the NanoBRET high-throughput screen. Use of the IMCA-CAT beamline 17-ID (or 17-BM) at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute.

我们感谢T.J.Matthewson为NanoBRET高通量筛选制备复合板。通过与Hauptman Woodward医学研究所签订的合同,工业大分子晶体学协会的公司支持在高级光子源上使用IMCA-CAT光束线17-ID(或17-BM)。

This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.Author informationAuthor notesSherry NiessenPresent address: Belharra Therapeutics, San Diego, CA, USAMatthew M.

这项研究使用了先进光子源的资源,这是美国能源部(DOE)科学办公室用户设施,由阿贡国家实验室根据合同号DE-AC02-06CH11357为DOE科学办公室运营。作者信息作者注释Sherry NiessenPresent地址:Belharra Therapeutics,San Diego,CA,USAMatthew M。

HaywardPresent address: Magnet Biomedicine, Boston, MA, USAAuthors and AffiliationsDepartment of Chemistry, The Scripps Research Institute, La Jolla, CA, USAYuanjin Zhang, Zhonglin Liu, Sang Joon Won, Divya Bezwada, Bruno Melillo & Benjamin F. CravattMedicine Design, Pfizer Research and Development, Pfizer, Inc., La Jolla, CA, USAMarscha Hirschi, Oleg Brodsky, Eric Johnson, Asako Nagata & Al E.

Hayward目前地址:美国马萨诸塞州波士顿Magnet Biomedicine作者和附属机构加利福尼亚州拉霍亚斯克里普斯研究所化学系张元金,刘中林,桑俊元,Divya Bezwada,Bruno Melillo&Benjamin F.CravattMedicine Design,辉瑞研发,辉瑞公司,加利福尼亚州拉霍亚,USAMarscha Hirschi,Oleg Brodsky,Eric Johnson,Asako Nagata&Al E。

StewartOncology Research and Development, Pfizer, Inc., La Jolla, CA, USAMatthew D. Petroski, Sherry Niessen, Todd VanArsdale & Andrew R. NagerDiscovery Sciences, Pfizer Research and Development, Pfizer, Inc., Cambridge, MA, USAJaimeen D. MajmudarDiscovery Sciences, Pfizer Research and Development, Pfizer, Inc., Groton, CT, USAAdam M.

StewartOncology Research and Development,辉瑞公司(Pfizer,Inc.),加利福尼亚州拉霍亚(La Jolla),美国马修(USAMATHEW D.Petroski),雪莉·尼森(Sherry Niessen),托德·瓦那斯代尔(Todd VanArsdale)和安德鲁·纳格尔迪斯科维尔(Andrew R.NagerDiscovery Sciences),辉瑞公司(Pfizer Research and Development),辉瑞公司(Pfizer,Inc.),马萨诸塞州剑桥(Cambridge),美国贾伊明(。

Gilbert & Matthew M. HaywardAuthorsYuanjin ZhangView author publicationsYou c.

Gilbert&Matthew M.HaywardAuthorsYuanjin ZhangView作者出版物You c。

PubMed Google ScholarZhonglin LiuView author publicationsYou can also search for this author in

PubMed Google ScholarZhonglin LiuView作者出版物您也可以在

PubMed Google ScholarMarscha HirschiView author publicationsYou can also search for this author in

PubMed Google ScholarMarscha HirschiView作者出版物您也可以在

PubMed Google ScholarOleg BrodskyView author publicationsYou can also search for this author in

PubMed Google ScholarOleg BrodskyView作者出版物您也可以在

PubMed Google ScholarEric JohnsonView author publicationsYou can also search for this author in

PubMed谷歌学者JohnsonView作者出版物您也可以在

PubMed Google ScholarSang Joon WonView author publicationsYou can also search for this author in

PubMed Google ScholarSang Joon WonView作者出版物您也可以在

PubMed Google ScholarAsako NagataView author publicationsYou can also search for this author in

PubMed Google ScholarAsako NagataView作者出版物您也可以在

PubMed Google ScholarDivya BezwadaView author publicationsYou can also search for this author in

PubMed Google ScholarDivya BezwadaView作者出版物您也可以在

PubMed Google ScholarMatthew D. PetroskiView author publicationsYou can also search for this author in

PubMed Google ScholarMatthew D.PetroskiView作者出版物您也可以在

PubMed Google ScholarJaimeen D. MajmudarView author publicationsYou can also search for this author in

PubMed Google ScholarJaimeen D.MajmudarView作者出版物您也可以在

PubMed Google ScholarSherry NiessenView author publicationsYou can also search for this author in

PubMed Google ScholarSherry NiessenView作者出版物您也可以在

PubMed Google ScholarTodd VanArsdaleView author publicationsYou can also search for this author in

PubMed Google ScholarAdam M. GilbertView author publicationsYou can also search for this author in

PubMed Google ScholarAdam M.GilbertView作者出版物您也可以在

PubMed Google ScholarMatthew M. HaywardView author publicationsYou can also search for this author in

PubMed Google ScholarMatthew M.HaywardView作者出版物您也可以在

PubMed Google ScholarAl E. StewartView author publicationsYou can also search for this author in

PubMed Google ScholarAl E.StewartView作者出版物您也可以在

PubMed Google ScholarAndrew R. NagerView author publicationsYou can also search for this author in

PubMed Google ScholarAndrew R.NagerView作者出版物您也可以在

PubMed Google ScholarBruno MelilloView author publicationsYou can also search for this author in

PubMed Google ScholarBruno MelilloView作者出版物您也可以在

PubMed Google ScholarBenjamin F. CravattView author publicationsYou can also search for this author in

PubMed Google ScholarBenjamin F.CravattView作者出版物您也可以在

PubMed Google ScholarContributionsY.Z. and B.F.C. conceptualized the study and wrote the paper. Y.Z. designed and performed the gel-ABPP, NanoBRET, ADP-Glo, IP–MS and cell biology experiments. Y.Z. and D.B. designed and performed the protein-directed ABPP experiments. O.B. and S.J.W.

PubMed谷歌学术贡献。Z、 B.F.C.将研究概念化并撰写了论文。Y、 。Y、 Z.和D.B.设计并进行了蛋白质导向的ABPP实验。O、 B.和S.J.W。

purified relevant CCNE1:CDK2 complexes. M.H. and E.J. led the efforts in resolving the I-125A-bound and I-198-bound CCNE1:CDK2 cocrystal structures. Z.L. and B.M. led the efforts in chemical synthesis. Y.Z., Z.L., M.H., O.B., E.J., A.N., D.B., M.D.P., J.D.M., S.N., T.V., A.M.G., M.M.H., A.E.S., A.R.N., B.M.

纯化的相关CCNE1:CDK2复合物。M、 H.和E.J.领导了解决I-125A结合和I-198结合CCNE1:CDK2共晶结构的努力。Z、 L.和B.M.领导了化学合成的努力。Y、 Z.,Z.L.,M.H.,O.B.,E.J.,A.N.,D.B.,M.D.P.,J.D.M.,S.N.,T.V.,A.M.G.,M.M.H.,A.E.S.,A.R.N.,B.M。

and B.F.C. contributed to data analysis and interpretation. A.N., M.D.P., J.D.M., S.N., T.V., A.M.G., M.M.H., A.E.S. and A.R.N. provided administrative, technical or material support. All authors edited and approved the paper. B.F.C. supervised the study.Corresponding authorCorrespondence to.

B.F.C.为数据分析和解释做出了贡献。A、 N.,M.D.P.,J.D.M.,S.N.,T.V.,A.M.G.,M.M.H.,A.E.S.和A.R.N.提供了行政,技术或物质支持。所有作者都编辑并批准了这篇论文。B、 F.C.监督了这项研究。对应作者对应。

Benjamin F. Cravatt.Ethics declarations

本杰明·F·克拉瓦特。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Chemical Biology thanks Nathanael Gray, Matthew Robers and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

自然化学生物学感谢Nathanel Gray,Matthew Robers和另一位匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Cancer Dependency Map data for the CCNE1 and CCNE2 genes.Cancer Dependency Map data for the CCNE1 and CCNE2 genes, indicating the number of human cancer cell lines showing gene effect scores < −1.0, reflecting strong dependency on the gene32.Source dataExtended Data Fig.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1 CCNE1和CCNE2基因的癌症依赖图数据。CCNE1和CCNE2基因的癌症依赖性图谱数据,表明显示基因效应得分 <-1.0的人类癌细胞系的数量,反映了对基因32的强烈依赖性。

2 Gel-ABPP of a focused library of tryptoline acrylamides for reactivity with an N112C-CCNE1:CDK2 complex.a, Structures of alkyne-modified tryptoline acrylamides screened for reactivity with an N112C-CCNE1:CDK1 complex. b, Gel-ABPP data showing reactivity of alkyne-modified tryptoline acrylamides (5 µM, 1 h) with purified N112C-CCNE1:CDK2 or WT-CCNE1:CDK2 complexes (1 µM).

2胰高血糖素丙烯酰胺聚焦文库的凝胶ABPP与N112C-CCNE1:CDK2复合物的反应性。a,炔烃修饰的胰高血糖素丙烯酰胺的结构筛选与N112C-CCNE1:CDK1复合物的反应性。b、 凝胶ABPP数据显示炔烃修饰的胰蛋白酶丙烯酰胺(5μM,1小时)与纯化的N112C-CCNE1:CDK2或WT-CCNE1:CDK2复合物(1μM)的反应性。

Gel-ABPP analysis was performed as described in Fig. 1d. Coomassie blue signals correspond to N112C- or WT-CCNE1. Red box marks profile of WX-02-520, which reacted with N112C-CCNE1 in a stereoselective (compared to enantiomer WX-02-521) and site-specific (compared to WT-CCNE1) manner. Data are from a single experiment.Source dataExtended Data Fig.

如图1d所述进行凝胶ABPP分析。考马斯蓝信号对应于N112C或WT-CCNE1。红色框标记了WX-02-520的图谱,该图谱以立体选择性(与对映体WX-02-521相比)和位点特异性(与WT-CCNE1相比)方式与N112C-CCNE1反应。数据来自单个实验。源数据扩展数据图。

3 N112C-CCNE1 and WT-CCNE2 show differential reactivity profiles with tryptoline acrylamides.a, Gel-ABPP data showing concentration-dependent, stereoselective blockade of WX-02-520 engagement of purified N112C-CCNE1 by WX-02-308 in comparison to enantiomer WX-02-326. Purified N112C-CCNE1:CDK2 complex (1 µM) was pre-treated with the indicated concentrations of WX-02-308 or WX-02-326 (2 h) followed by WX-02-520 (1 µM) and gel-ABPP analysis.

3 N112C-CCNE1和WT-CCNE2显示出与色氨酸丙烯酰胺的不同反应性曲线。a,凝胶ABPP数据显示WX-02-308对纯化的N112C-CCNE1的浓度依赖性立体选择性阻断与对映体WX-02-326相比。纯化的N112C-CCNE1:CDK2复合物(1μM)用指定浓度的WX-02-308或WX-02-326(2小时)预处理,然后用WX-02-520(1μM)和凝胶ABPP分析。

Data are from a single experiment representative of two independent experiments with similar results. b, Gel-ABPP data showing stereoselective engagement of WT-CCNE2, b.

数据来自代表两个独立实验的单个实验,结果相似。b、 凝胶ABPP数据显示WT-CCNE2的立体选择性接合,b。

Nat Chem Biol (2024). https://doi.org/10.1038/s41589-024-01738-7Download citationReceived: 21 January 2024Accepted: 20 August 2024Published: 18 September 2024DOI: https://doi.org/10.1038/s41589-024-01738-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

。https://doi.org/10.1038/s41589-024-01738-7Download引文接收日期:2024年1月21日接受日期:2024年8月20日发布日期:2024年9月18日OI:https://doi.org/10.1038/s41589-024-01738-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供