商务合作
动脉网APP
可切换为仅中文
AbstractThe developing placenta, which in mice originates through the extraembryonic ectoderm (ExE), is essential for mammalian embryonic development. Yet unbiased characterization of the differentiation dynamics of the ExE and its interactions with the embryo proper remains incomplete. Here we develop a temporal single-cell model of mouse gastrulation that maps continuous and parallel differentiation in embryonic and extraembryonic lineages.
摘要发育中的胎盘起源于胚外外胚层(ExE),对哺乳动物胚胎发育至关重要。然而,ExE的分化动力学及其与胚胎本身的相互作用的无偏表征仍然不完整。在这里,我们开发了小鼠原肠胚形成的时间单细胞模型,该模型绘制了胚胎和胚外谱系中连续和平行的分化。
This is matched with a three-way perturbation approach to target signalling from the embryo proper, the ExE alone, or both. We show that ExE specification involves early spatial and transcriptional bifurcation of uncommitted ectoplacental cone cells and chorion progenitors. Early BMP4 signalling from chorion progenitors is required for proper differentiation of uncommitted ectoplacental cone cells and later for their specification towards trophoblast giant cells.
这与三向扰动方法相匹配,以靶向来自胚胎本身,单独的ExE或两者的信号。我们表明,ExE规范涉及未定型的胎盘外锥细胞和绒毛膜祖细胞的早期空间和转录分叉。绒毛膜祖细胞的早期BMP4信号传导是正确分化未定型的胎盘外锥细胞以及后来向滋养层巨细胞分化所必需的。
We also find biphasic regulation by BMP4 in the embryo. The early ExE-originating BMP4 signal is necessary for proper mesoendoderm bifurcation and for allantois and primordial germ cell specification. However, commencing at embryonic day 7.5, embryo-derived BMP4 restricts the primordial germ cell pool size by favouring differentiation of their extraembryonic mesoderm precursors towards an allantois fate.
我们还发现BMP4在胚胎中具有双相调节作用。早期ExE起源的BMP4信号对于正确的中胚层分叉以及尿囊和原始生殖细胞规格是必需的。然而,从胚胎第7.5天开始,胚胎衍生的BMP4通过促进其胚外中胚层前体向尿囊命运的分化来限制原始生殖细胞库的大小。
ExE and embryonic tissues are therefore entangled in time, space and signalling axes, highlighting the importance of their integrated understanding and modelling in vivo and in vitro..
因此,ExE和胚胎组织在时间,空间和信号轴上纠缠在一起,突出了它们在体内和体外综合理解和建模的重要性。。
MainThe mammalian embryo develops alongside the placenta, a transient organ that constitutes the core infrastructure of the fetomaternal interface that nurtures the embryo until parturition through a constant supply of nutrients and gases, hormone production and immune modulation1. In mice, the embryo and its placenta develop in sync, emerging from the post-implantation blastocyst’s inner cell mass and their adjacent polar trophectoderm cells, respectively2.
。在小鼠中,胚胎及其胎盘同步发育,分别从植入后胚泡的内细胞团及其相邻的极性滋养外胚层细胞中出现2。
The latter gives rise to the ExE lineage, which differentiates to form the stereotypical structure of the mature placenta (Fig. 1a). The most proximal part of the ExE, termed the ectoplacental cone (EPC), gives rise to the outermost regions of the placenta, encompassing the parietal trophoblast giant cells (TGCs), spiral artery TGCs and the spongiotrophoblast and glycogen-accumulating (SpT-Gly) cells situated above and within the junctional zone (JZ)1.
后者产生了ExE谱系,它分化形成成熟胎盘的定型结构(图1a)。ExE的最近端部分,称为胎盘外锥(EPC),产生胎盘的最外层区域,包括顶叶滋养层巨细胞(TGC),螺旋动脉TGC和海绵滋养层和糖原积累(SpT-Gly)位于交界区(JZ)1上方和内部的细胞。
The innermost placental compartment, the labyrinth, constitutes the fetomaternal exchange apparatus. It comprises mostly syncytiotrophoblast cells descendant of the ExE chorion lineage, but also of dilated maternal sinuses, an exclusive TGC cell type3. The labyrinth also features fetal vessels lined by endothelial cells of mesodermal origin4, connected to the fetus through the umbilical cord.
最内层的胎盘隔室迷宫构成胎儿母体交换装置。它主要包括ExE绒毛膜谱系后代的合体滋养层细胞,但也包括扩张的母体鼻窦,这是一种独特的TGC细胞类型3。迷路还具有胎儿血管,其内衬有中胚层起源的内皮细胞4,通过脐带与胎儿相连。
These structures trace their origins to the extraembryonic mesoderm (ExM) lineage.Fig. 1: A unified extraembryonic–embryonic temporal model for gastrulation.a, Illustration of a mature mouse haemochorial placenta, showing the different subcompartments. SpA-TGC, spiral artery TGC; p-TGC, parietal TGC.
这些结构可以追溯到胚外中胚层(ExM)谱系。图1:原肠胚形成的统一胚外-胚胎时间模型。A,成熟小鼠脉络膜胎盘的图示,显示了不同的小室。SpA TGC,螺旋动脉TGC;p-TGC,顶叶TGC。
b, UMAP (uniform manifold approximation and projection) of all embryonic and extraembryonic endoderm cells (n = 57,555 cells, excluding parietal endoderm). The small points represent.
b、 所有胚胎和胚外内胚层细胞(n=57555个细胞,不包括顶叶内胚层)的UMAP(均匀流形近似和投影)。小点代表。
Data availability
数据可用性
All sequencing data supporting the conclusions of this study have been meticulously archived and are publicly accessible through the NCBI Gene Expression Omnibus (GEO). These data are catalogued under the GEO Series accession number GSE267870. This ensures comprehensive availability and transparency of the data supporting our research findings.
所有支持这项研究结论的测序数据都经过精心存档,可以通过NCBI基因表达综合(GEO)公开获取。这些数据以GEO系列登录号GSE267870分类。这确保了支持我们研究结果的数据的全面可用性和透明度。
Source data are provided with this paper..
本文提供了源数据。。
Code availability
代码可用性
All custom scripts used in this study have been made openly accessible and can be found at GitHub (https://github.com/tanaylab/EmbExe). Moreover, these scripts have been deposited for permanent archiving and citation at Zenodo71 (https://doi.org/10.5281/zenodo.11240229). This ensures transparency and reproducibility of the computational methods employed in our research..
这项研究中使用的所有自定义脚本都可以公开访问,可以在GitHub上找到(https://github.com/tanaylab/EmbExe)。此外,这些脚本已保存在Zenodo71上进行永久存档和引用(https://doi.org/10.5281/zenodo.11240229)。这确保了我们研究中使用的计算方法的透明度和可重复性。。
ReferencesRai, A. & Cross, J. C. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev. Biol. 387, 131–141 (2014).Article
参考文献Rai,A。&Cross,J.C。通过内皮和血管生成拟态发展胎盘中的血绒毛膜母体血管空间。开发生物。387131-141(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rossant, J. & Tam, P. P. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136, 701–713 (2009).Article
。发展136701-713(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Marsh, B. & Blelloch, R. Single nuclei RNA-seq of mouse placental labyrinth development. eLife 9, e60266 (2020).Article
Marsh,B。&Blelloch,R。小鼠胎盘迷宫发育的单核RNA-seq。eLife 9,e60266(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Simmons, D. G. & Cross, J. C. Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev. Biol. 284, 12–24 (2005).Article
Simmons,D.G。&Cross,J.C。小鼠胎盘中滋养层谱系和细胞亚型规格的决定因素。开发生物。284,12-24(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Arnold, S. J. & Robertson, E. J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91–103 (2009).Article
Arnold,S.J.&Robertson,E.J.做出承诺:早期小鼠胚胎中的细胞谱系分配和轴模式。Nat。Rev。Mol。Cell Biol。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ben-Haim, N. et al. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev. Cell 11, 313–323 (2006).Article
通过激活素受体起作用的淋巴结前体通过维持其转化酶和BMP4的来源来诱导中胚层。Dev.Cell 11313–323(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lawson, K. A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999).Article
Lawson,K.A。等人,Bmp4是小鼠胚胎中原始生殖细胞产生所必需的。Genes Dev.13424–436(1999)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fujiwara, T., Dunn, N. R. & Hogan, B. L. Bone morphogenetic protein 4 in the extraembryonic mesoderm is required for allantois development and the localization and survival of primordial germ cells in the mouse. Proc. Natl Acad. Sci. USA 98, 13739–13744 (2001).Article
Fujiwara,T.,Dunn,N.R。&Hogan,B.L。胚外中胚层中的骨形态发生蛋白4是尿囊发育以及小鼠原始生殖细胞定位和存活所必需的。程序。国家科学院。科学。美国9813739-13744(2001)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
MacAuley, A., Cross, J. C. & Werb, Z. Reprogramming the cell cycle for endoreduplication in rodent trophoblast cells. Mol. Biol. Cell 9, 795–807 (1998).Article
MacAuley,A.,Cross,J.C。&Werb,Z。重新编程啮齿动物滋养层细胞中核内复制的细胞周期。分子生物学。细胞9795-807(1998)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nelson, A. C., Mould, A. W., Bikoff, E. K. & Robertson, E. J. Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy. Nat. Commun. 7, 11414 (2016).Article
Nelson,A.C.,Mold,A.W.,Bikoff,E.K。和Robertson,E.J。单细胞RNA-seq揭示了怀孕期间母胎界面的细胞类型特异性转录特征。国家公社。7111414(2016)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jiang, X. et al. A differentiation roadmap of murine placentation at single-cell resolution. Cell Discov. 9, 30 (2023).Article
Jiang,X。等人。单细胞分辨率下小鼠胎盘的分化路线图。细胞Discov。9,30(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mittnenzweig, M. et al. A single-embryo, single-cell time-resolved model for mouse gastrulation. Cell 184, 2825–2842 (2021).Article
Mittnenzweig,M.等人。小鼠原肠胚形成的单胚胎单细胞时间分辨模型。细胞1842825-2842(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baran, Y. et al. MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol. 20, 206 (2019).Article
Baran,Y。等人。MetaCell:使用K-nn图分区分析单细胞RNA-seq数据。基因组生物学。20206(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ben-Kiki, O., Bercovich, A., Lifshitz, A. & Tanay, A. Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seq analysis. Genome Biol 23, 100 (2022).Article
Ben Kiki,O.,Bercovich,A.,Lifshitz,A。&Tanay,A。Metacell-2:用于可扩展scRNA-seq分析的分而治之Metacell算法。基因组生物学23100(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Weberling, A. & Zernicka-Goetz, M. Trophectoderm mechanics direct epiblast shape upon embryo implantation. Cell Rep. 34, 108655 (2021).Article
Weberling,A。&Zernicka-Goetz,M。滋养外胚层力学指导胚胎植入时的外胚层形状。Cell Rep.34108655(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, D. & Cross, J. C. Development and function of trophoblast giant cells in the rodent placenta. Int. J. Dev. Biol. 54, 341–354 (2010).Article
Hu,D。&Cross,J.C。啮齿动物胎盘中滋养层巨细胞的发育和功能。Int.J.Dev.Biol。54341-354(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Scott, I. C., Anson-Cartwright, L., Riley, P., Reda, D. & Cross, J. C. The HAND1 basic helix-loop-helix transcription factor regulates trophoblast differentiation via multiple mechanisms. Mol. Cell. Biol. 20, 530–541 (2000).Article
Scott,I.C.,Anson-Cartwright,L.,Riley,P.,Reda,D。&Cross,J.C。HAND1碱性螺旋-环-螺旋转录因子通过多种机制调节滋养层分化。摩尔电池。生物学20530-541(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sung, D. C. et al. VE-cadherin enables trophoblast endovascular invasion and spiral artery remodeling during placental development. eLife 11, e77241 (2022).Article
Sung,D.C。等人,VE-钙粘蛋白在胎盘发育过程中使滋养层血管内侵袭和螺旋动脉重塑成为可能。eLife 11,e77241(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Simmons, D. G., Rawn, S., Davies, A., Hughes, M. & Cross, J. C. Spatial and temporal expression of the 23 murine prolactin/placental lactogen-related genes is not associated with their position in the locus. BMC Genom. 9, 352 (2008).Article
Simmons,D.G.,Rawn,S.,Davies,A.,Hughes,M。&Cross,J.C。23种鼠催乳素/胎盘催乳素相关基因的时空表达与其在基因座中的位置无关。BMC基因组。9352(2008)。文章
Google Scholar
谷歌学者
Latos, P. A. & Hemberger, M. From the stem of the placental tree: trophoblast stem cells and their progeny. Development 143, 3650–3660 (2016).Article
Latos,P.A。&Hemberger,M。来自胎盘树的茎:滋养层干细胞及其后代。发展1433650-3660(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nahaboo, W. et al. Keratin filaments mediate the expansion of extra-embryonic membranes in the post-gastrulation mouse embryo. EMBO J. 41, e108747 (2022).Article
Nahaboo,W。等人。角蛋白丝介导原肠胚形成后小鼠胚胎中胚外膜的扩张。EMBO J.41,e108747(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schulte, S. J., Fornace, M. E., Hall, J. K.,Shin, G. J. & Pierce, N. A. HCR spectral imaging: 10-plex, quantitative, high-resolution RNA and protein imaging in highly autofluorescent samples. Development 151, dev202307 (2024).Bouillot, S., Rampon, C., Tillet, E. & Huber, P. Tracing the glycogen cells with protocadherin 12 during mouse placenta development.
Schulte,S.J.,Fornace,M.E.,Hall,J.K.,Shin,G.J。&Pierce,N.A。HCR光谱成像:高度自发荧光样品中的10重,定量,高分辨率RNA和蛋白质成像。开发151,dev202307(2024)。Bouillot,S.,Rampon,C.,Tillet,E。&Huber,P。在小鼠胎盘发育过程中用原钙粘蛋白12追踪糖原细胞。
Placenta 27, 882–888 (2006).Article .
胎盘27882-888(2006)。。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aguilera-Castrejon, A. et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 593, 119–124 (2021).Article
Aguilera Castrejon,A。等人,从原肠胚形成前到晚期器官发生的子宫外小鼠胚胎发生。自然593119-124(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Donnison, M. et al. Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 132, 2299–2308 (2005).Article
Donnison,M。等人。Elf5突变体中胚外外胚层的丢失导致胚胎模式缺陷。发展1322299-2308(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pearton, D. J., Broadhurst, R., Donnison, M. & Pfeffer, P. L. Elf5 regulation in the trophectoderm. Dev. Biol. 360, 343–350 (2011).Article
Pearton,D.J.,Broadhurst,R.,Donnison,M。&Pfeffer,P.L。滋养外胚层中的Elf5调节。开发生物。360343-350(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Georgiades, P., Cox, B., Gertsenstein, M., Chawengsaksophak, K. & Rossant, J. Trophoblast-specific gene manipulation using lentivirus-based vectors. Biotechniques 42, 317–318 (2007).Article
Georgiades,P.,Cox,B.,Gertsenstein,M.,Chawengsaksophak,K。&Rossant,J。使用基于慢病毒的载体进行滋养层特异性基因操作。生物技术42317-318(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Donnison, M., Broadhurst, R. & Pfeffer, P. L. Elf5 and Ets2 maintain the mouse extraembryonic ectoderm in a dosage dependent synergistic manner. Dev. Biol. 397, 77–88 (2015).Article
Donnison,M.,Broadhurst,R。&Pfeffer,P.L。Elf5和Ets2以剂量依赖性协同方式维持小鼠胚外外外胚层。开发生物。397,77-88(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cheng, S. et al. The intrinsic and extrinsic effects of TET proteins during gastrulation. Cell 185, 3169–3185 (2022).Article
Cheng,S.等人。原肠胚形成过程中TET蛋白的内在和外在作用。细胞1853169-3185(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Scheibner, K. et al. Epithelial cell plasticity drives endoderm formation during gastrulation. Nat. Cell Biol. 23, 692–703 (2021).Article
Scheibner,K。等人。上皮细胞可塑性在原肠胚形成过程中驱动内胚层形成。自然细胞生物学。23692-703(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Probst, S. et al. Spatiotemporal sequence of mesoderm and endoderm lineage segregation during mouse gastrulation. Development 148, dev193789 (2021).Article
Probst,S。等人。小鼠原肠胚形成过程中胚层和内胚层谱系分离的时空序列。发展148,dev193789(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ginsburg, M., Snow, M. H. & McLaren, A. Primordial germ cells in the mouse embryo during gastrulation. Development 110, 521–528 (1990).Article
Ginsburg,M.,Snow,M.H。&McLaren,A。原肠胚形成过程中小鼠胚胎中的原始生殖细胞。发展110521-528(1990)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tam, P. P. & Zhou, S. X. The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev. Biol. 178, 124–132 (1996).Article
。开发生物。178124-132(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aramaki, S. et al. A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Dev. Cell 27, 516–529 (2013).Article
Aramaki,S。等人。中胚层因子T通过直接激活种系决定因子来指定小鼠生殖细胞的命运。Dev.Cell 27516–529(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mesnard, D., Filipe, M., Belo, J. A. & Zernicka-Goetz, M. The anterior-posterior axis emerges respecting the morphology of the mouse embryo that changes and aligns with the uterus before gastrulation. Curr. Biol. 14, 184–196 (2004).Article
Mesnard,D.,Filipe,M.,Belo,J.A。&Zernicka-Goetz,M。前后轴的出现与小鼠胚胎的形态有关,该胚胎在原肠胚形成之前与子宫发生变化并对齐。货币。生物学第14184-196页(2004年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Perea-Gomez, A. et al. Initiation of gastrulation in the mouse embryo is preceded by an apparent shift in the orientation of the anterior-posterior axis. Curr. Biol. 14, 197–207 (2004).Article
Perea-Gomez,A。等人。在小鼠胚胎中开始原肠胚形成之前,前后轴的方向发生了明显的变化。货币。生物学杂志14197-207(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rossant, J. & Tam, P. P. Emerging asymmetry and embryonic patterning in early mouse development. Dev. Cell 7, 155–164 (2004).Article
Rossant,J。&Tam,P。P。小鼠早期发育中出现的不对称性和胚胎模式。Dev.Cell 7155-164(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yu, P. B. et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol. 4, 33–41 (2008).Article
Yu,P.B.等人。Dorsomorphin抑制胚胎发生和铁代谢所需的BMP信号。自然化学。生物学杂志4,33-41(2008)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ohinata, Y. et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).Article
Ohinata,Y。等人Blimp1是小鼠生殖细胞谱系的关键决定因素。自然436207-213(2005)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vincent, S. D. et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132, 1315–1325 (2005).Article
Vincent,S.D.等人。锌指转录阻遏物Blimp1/Prdm1对于早期轴形成是不必要的,但对于小鼠原始生殖细胞的规范是必需的。发展1321315-1325(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ohinata, Y. et al. A signaling principle for the specification of the germ cell lineage in mice. Cell 137, 571–584 (2009).Article
Ohinata,Y。等人。小鼠生殖细胞谱系规范的信号原理。细胞137571-584(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kurimoto, K. et al. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes Dev. 22, 1617–1635 (2008).Article
Kurimoto,K。等人。由Blimp1协调的复杂全基因组转录动力学,用于指定小鼠生殖细胞谱系。Genes Dev.221617–1635(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lawson, K. A. & Hage, W. J. Clonal analysis of the origin of primordial germ cells in the mouse. Ciba Found. Symp. 182, 68–84 (1994).CAS
Lawson,K.A。&Hage,W.J。小鼠原始生殖细胞起源的克隆分析。汽巴找到了。症状。182,68-84(1994)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yeom, Y. I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894 (1996).Article
Yeom,Y.I.等人。Oct-4的种系调节元件,对胚胎细胞的全能周期具有特异性。发展122881-894(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Firulli, A. B., McFadden, D. G., Lin, Q., Srivastava, D. & Olson, E. N. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nat. Genet. 18, 266–270 (1998).Article
Firulli,A.B.,McFadden,D.G.,Lin,Q.,Srivastava,D。&Olson,E.N。缺乏bHLH转录因子Hand1的小鼠胚胎中的心脏和胚外中胚层缺陷。纳特·吉内特。18266-270(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Arora, R., del Alcazar, C. M., Morrisey, E. E., Naiche, L. A. & Papaioannou, V. E. Candidate gene approach identifies multiple genes and signaling pathways downstream of Tbx4 in the developing allantois. PLoS ONE 7, e43581 (2012).Article
Arora,R.,del Alcazar,C.M.,Morrisey,E.E.,Naiche,L.A。&Papaioannou,V.E。候选基因方法鉴定了发育中尿囊中Tbx4下游的多个基因和信号通路。PLoS ONE 7,e43581(2012)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Scotti, M. & Kmita, M. Recruitment of 5′ Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals. Development 139, 731–739 (2012).Article
Scotti,M。&Kmita,M。在尿囊中募集5'Hoxa基因对于胎盘哺乳动物的正常胚胎外功能至关重要。发展139731-739(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Downs, K. M. The mouse allantois: new insights at the embryonic-extraembryonic interface. Philos. Trans R Soc. Lond. B 377, 20210251 (2022).Article
Downs,K.M。小鼠尿囊:胚胎-胚外界面的新见解。菲洛斯。Trans R Soc.Lond公司。B 37720210251(2022)。文章
Google Scholar
谷歌学者
Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).Article
Saitou,M.,Barton,S.C。和Surani,M.A。一个用于指定小鼠生殖细胞命运的分子程序。自然418293-300(2002)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yamaji, M. et al. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat. Genet. 40, 1016–1022 (2008).Article
Yamaji,M。等人。Prdm14在小鼠生殖细胞谱系建立中的关键功能。纳特·吉内特。401016-1022(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Weber, S. et al. Critical function of AP-2gamma/TCFAP2C in mouse embryonic germ cell maintenance. Biol. Reprod. 82, 214–223 (2010).Article
Weber,S。等人。AP-2gamma/TCFAP2C在小鼠胚胎生殖细胞维持中的关键功能。生物修复。82214-223(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chan, M. M. et al. Molecular recording of mammalian embryogenesis. Nature 570, 77–82 (2019).Article
Chan,M.M.等人。哺乳动物胚胎发生的分子记录。自然570,77-82(2019)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).Article
。自然566490-495(2019)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Amadei, G. et al. Embryo model completes gastrulation to neurulation and organogenesis. Nature 610, 143–153 (2022).Article
Amadei,G。等人。胚胎模型完成原肠胚形成到神经形成和器官发生。自然610143-153(2022)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arias, A. M., Marikawa, Y. & Moris, N. Gastruloids: pluripotent stem cell models of mammalian gastrulation and embryo engineering. Dev. Biol. 488, 35–46 (2022).Article
Arias,A.M.,Marikawa,Y。&Moris,N。原肠胚:哺乳动物原肠胚形成和胚胎工程的多能干细胞模型。Dev。Biol。488,35-46(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lau, K. Y. C. et al. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development. Cell Stem Cell 29, 1445–1458 (2022).Article
Lau,K.Y.C.等人。完全来源于胚胎干细胞的小鼠胚胎模型经历神经形成和心脏发育。细胞干细胞291445-1458(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Oldak, B., Aguilera-Castrejon, A. & Hanna, J. H. Recent insights into mammalian natural and synthetic ex utero embryogenesis. Curr. Opin. Genet. Dev. 77, 101988 (2022).Article
Oldak,B.,Aguilera Castrejon,A。&Hanna,J.H。对哺乳动物自然和合成子宫外胚胎发生的最新见解。货币。奥平。。德文77101988(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tarazi, S. et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell 185, 3290–3306 (2022).Article
Tarazi,S。等人。原肠胚形成后,从小鼠幼稚胚胎干细胞子宫外产生的合成胚胎。细胞1853290-3306(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mayshar, Y. et al. Time-aligned hourglass gastrulation models in rabbit and mouse. Cell 186, 2610–2627 (2023).Article
Mayshar,Y.等人。兔和小鼠的时间对齐沙漏原肠胚形成模型。细胞1862610-2627(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Morgani, S. M. & Hadjantonakis, A. K. Quantitative analysis of signaling responses during mouse primordial germ cell specification. Biol. Open 10, bio058741 (2021).Article
Morgani,S.M。&Hadjantonakis,A.K。小鼠原始生殖细胞规格期间信号传导反应的定量分析。生物公开10,生物058741(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118, 1255–1266 (1993).Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).Article
Downs,K.M。&Davies,T。通过解剖显微镜中的形态学标志对原肠胚小鼠胚胎进行分期。发展1181255-1266(1993)。Platt,R.J。等人。CRISPR-Cas9敲入小鼠用于基因组编辑和癌症建模。细胞159440-455(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stemmer, M., Thumberger, T., Del Sol Keyer, M., Wittbrodt, J. & Mateo, J. L. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10, e0124633 (2015).Article
Stemmer,M.,Thumberger,T.,Del Sol-Keyer,M.,Wittbrodt,J。&Mateo,J.L。CCTop:一种直观,灵活和可靠的CRISPR/Cas9靶标预测工具。PLoS ONE 10,e0124633(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aparicio-Prat, E. et al. DECKO: Single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics 16, 846 (2015).Tiscornia, G., Singer, O. & Verma, I. Production and purification of lentiviral vectors. Nat. Protoc. 1, 241–245 (2006).Wu, Y. et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9.
Aparicio Prat,E。等人DECKO:基因组元件的单寡核苷酸,双CRISPR缺失,包括长的非编码RNA。。Tisconia,G.,Singer,O。&Verma,I。慢病毒载体的生产和纯化。自然协议。1241-245(2006)。Wu,Y。等人。通过使用CRISPR-Cas9纠正小鼠的遗传疾病。
Cell Stem Cell 13, 659–662 (2013).Article .
细胞干细胞13659-662(2013)。。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, W. et al. Bmp4 signaling is required for outflow-tract septation and branchial-arch artery remodeling. Proc. Natl Acad. Sci. USA 101, 4489–4494 (2004).Article
Liu,W。等人。流出道分隔和鳃弓动脉重塑需要Bmp4信号传导。程序。国家科学院。科学。美国1014489-4494(2004)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).Article
McGinnis,C.S.,Murrow,L.M。&Gartner,Z.J。DoubletFinder:使用人工最近邻在单细胞RNA测序数据中进行双重检测。细胞系统。8329-337(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).Article
Stuart,T。等人。单细胞数据的综合集成。细胞1771888-1902(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Keren-Shaul, H. et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat. Protoc. 14, 1841–1862 (2019).Hadas, R. Code for ‘Temporal BMP4 effects on mouse embryonic and extraembryonic development’. Zenodo https://doi.org/10.5281/zenodo.11240229 (2024).Download referencesAcknowledgementsWe thank the Tanay and Stelzer group members for discussions and advice; and G.
Keren Shaul,H.等人,《MARS-seq2.0:用于索引分选和单细胞RNA测序相结合的实验和分析管道》。自然协议。141841-1862(2019)。Hadas,R。编码“时间BMP4对小鼠胚胎和胚外发育的影响”。泽诺多https://doi.org/10.5281/zenodo.11240229(2024年)。下载参考文献致谢我们感谢Tanay和Stelzer小组成员的讨论和建议;和G。
J. Shin, S. J. Schulte and N. A. Pierce for support using multiplex HCR–RNA-FISH. Y.S. is the incumbent of the Louis and Ida Rich Career Development Chair and a member of the European Molecular Biology Organization Young Investigator Program. Research in the Stelzer laboratory is supported by a research grant from the Estate of Betty Weneser, European Research Council (ERC_StG 852865), Helen and Martin Kimmel Stem Cell Institute, ISF (1610/18), Weizmann–Caltech Schwartz/Reisman Collaborative Science Program and Abisch Frenkel Foundation.
J、 Shin,S。J。Schulte和N。A。Pierce使用多重HCR-RNA-FISH进行支持。Y、 美国现任路易斯和艾达·里奇职业发展主席,也是欧洲分子生物学组织青年研究员计划的成员。Stelzer实验室的研究得到了Betty Weneser、欧洲研究理事会(ERC\U StG 852865)、Helen and Martin Kimmel干细胞研究所、ISF(1610/18)、Weizmann-Caltech-Schwartz/Reisman合作科学计划和Abisch-Frenkel基金会的研究资助。
This research was also supported by B. and J. Lang, the Hadar Impact Fund, the Lord Sieff of Brimpton Memorial Fund, J. and S. Anixter, J. Silva, Maurice and the Vivienne Wohl Biology Endowment, and the Lester and Edward Anixter Family. Work in the lab of M.B.E. was supported by US National Institutes of Health grant R01 HD075335A and by the Paul G.
这项研究也得到了B.和J.Lang、Hadar冲击基金、布里姆顿纪念基金会的Sieff勋爵、J.和S.Anixter、J.Silva、Maurice和Vivienne Wohl生物基金会以及Lester和Edward Anixter家族的支持。M.B.E.实验室的工作得到了美国国立卫生研究院拨款R01 HD075335A和Paul G。
Allen Frontiers Group and Prime Awarding Agency under award no. UWSC10142. M.Z.-G. is a Bren Professor of Biology and Biological Engeneering and Nomis Foundation Distinguish Fellow and this research in her laboratory was supported by the US National Institutes of Health (R01 HD101489A and DP1 HD104575A).
艾伦边疆集团(Allen Frontiers Group)和主要奖项授予机构,奖项编号为UWSC10142。M、 Z.-G.是布伦生物学和生物工程教授以及诺米斯基金会杰出研究员,她的实验室研究得到了美国国立卫生研究院(R01 HD101489A和DP1 HD104575A)的支持。
The J.H.H. laboratory is funded by Pascal and Ilana Mantoux, the Flight Attendant Medical Research Institute (FAMRI) and the European Union (ERC-CO.
J。H、 H.实验室由Pascal和Ilana Mantoux、空乘医学研究所(FAMRI)和欧盟(ERC-CO)资助。
PubMed Google ScholarHernan RubinsteinView author publicationsYou can also search for this author in
PubMed谷歌学者Hernan RubinsteinView作者出版物您也可以在
PubMed Google ScholarMarkus MittnenzweigView author publicationsYou can also search for this author in
PubMed Google ScholarMarkus MittnenzweigView作者出版物您也可以在
PubMed Google ScholarYoav MaysharView author publicationsYou can also search for this author in
PubMed谷歌学术评论MaysharView作者出版物您也可以在
PubMed Google ScholarRaz Ben-YairView author publicationsYou can also search for this author in
PubMed Google Scholaraz Ben YairView作者出版物您也可以在
PubMed Google ScholarSaifeng ChengView author publicationsYou can also search for this author in
PubMed Google ScholarSaifeng ChengView作者出版物您也可以在
PubMed Google ScholarAlejandro Aguilera-CastrejonView author publicationsYou can also search for this author in
PubMed Google ScholarAlejandro Aguilera CastrejonView作者出版物您也可以在
PubMed Google ScholarNetta ReinesView author publicationsYou can also search for this author in
PubMed Google ScholarNetta ReinesView作者出版物您也可以在
PubMed Google ScholarAyelet-Hashahar OrenbuchView author publicationsYou can also search for this author in
PubMed Google ScholarAyelet Hashahar OrenbuchView作者出版物您也可以在
PubMed Google ScholarAviezer LifshitzView author publicationsYou can also search for this author in
PubMed Google ScholarAviezer LifshitzView作者出版物您也可以在
PubMed Google ScholarDong-Yuan ChenView author publicationsYou can also search for this author in
PubMed Google ScholarMichael B. ElowitzView author publicationsYou can also search for this author in
PubMed Google Scholarmamichael B.ElowitzView作者出版物您也可以在
PubMed Google ScholarMagdalena Zernicka-GoetzView author publicationsYou can also search for this author in
PubMed Google ScholarMagdalena Zernicka GoetzView作者出版物您也可以在
PubMed Google ScholarJacob H. HannaView author publicationsYou can also search for this author in
PubMed谷歌学者Jacob H.HannaView作者出版物您也可以在
PubMed Google ScholarAmos TanayView author publicationsYou can also search for this author in
PubMed Google ScholarAmos TanayView作者出版物您也可以在
PubMed Google ScholarYonatan StelzerView author publicationsYou can also search for this author in
PubMed Google ScholarYonatan StelzerView作者出版物您也可以在
PubMed Google ScholarContributionsR.H., H.R., M.M., A.T. and Y.S. conceived and designed the experiments and performed data analysis and its interpretation. S.C., Y.M. and R.B.-Y. assisted in the collection of single cells from individual embryos and N.R. prepared scRNA-seq libraries.
PubMed谷歌学术贡献。H、 ,H.R.,M.M.,A.T.和Y.S.构思并设计了实验,并进行了数据分析及其解释。S、 C.,Y.M.和R.B.-Y.协助从单个胚胎和N.R.制备的scRNA-seq文库中收集单细胞。
A.L. contributed tools and advice with computational analysis. A.A.C. performed ex utero culture experiments. R.B.-Y. assisted in spatial analysis and microscopy. R.H., A.-H.O. and Y.M. performed transgenic manipulation and animal handling. M.Z.-G. and M.B.E contributed tools and advice with HCR experiments.
A、 L.为计算分析提供了工具和建议。A、 A.C.进行了子宫外培养实验。R、 B.-Y.协助进行空间分析和显微镜检查。R、 H.,A.-H.O.和Y.M.进行了转基因操作和动物处理。M、 Z.-G.和M.B.E为HCR实验提供了工具和建议。
J.H.H. contributed tools and advice with ex utero culture experiments. R.H., H.R., M.M., A.T. and Y.S. wrote the manuscript with input from all of the authors.Corresponding authorsCorrespondence to.
J、 H.H.为子宫外培养实验提供了工具和建议。R、 H.,H.R.,M.M.,A.T.和Y.S.在所有作者的投入下撰写了手稿。通讯作者通讯。
Amos Tanay or Yonatan Stelzer.Ethics declarations
Amos Tanay或Yonatan Stelzer。道德宣言
Competing interests
相互竞争的利益
M.B.E. is a co-founder, scientific advisory board member, or consultant at TeraCyte, Primordium Labs, Spatial Genomics, and Asymptote Genetic Medicines. J.H.H. is an inventor on patents and patent applications related to ex utero embryogenesis, and a co-founder and chief scientific advisor of Renewal Bio, which has licensed the latter technologies.
M、 B.E.是TeraCyte、Primordium Labs、Spatial Genomics和渐近线遗传药物的联合创始人、科学顾问委员会成员或顾问。J、 H.H.是与子宫外胚胎发生有关的专利和专利申请的发明人,也是Renewal Bio的联合创始人和首席科学顾问,Renewal Bio已授权后者的技术。
The other authors declare no competing interests..
其他作者声明没有利益冲突。。
Peer review
同行评审
Peer review information
同行评审信息
Nature thanks Manu Setty and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Nature感谢Manu Setty和另一位匿名审稿人为这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 A single-embryo, single cell atlas of mouse gastrulation.a, Bright-field images of all embryos from E5.5-E8.5 used to construct the ExE-Embryo atlas (Nembryos = 251) ordered by their morphological rank, annotated by their dissected age (top, E#) and morphological stage (TS#; Theiler stages, bottom).
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据图和表扩展数据图1小鼠原肠胚形成的单胚胎,单细胞图谱。A,来自E5.5-E8.5的所有胚胎的明场图像,用于构建ExE胚胎图谱(Nembryos=251),按其形态等级排序,由其解剖年龄(顶部,E#)和形态阶段(TS#;Theiler阶段,底部)注释。
Scale bar 100 µm. b, Bright-field images of two batches of flushed E4.5 blastocysts used for differential expression (Fig. 1g). Data represents 11 biologically independent samples over two experiments. Scale bar 100 µm. c, Embryonic (left) and ExE (right) cell count per embryo over each embryo’s transcriptional rank (p < 0.001, Wilcoxon rank test).
比例尺100微米。b、 用于差异表达的两批冲洗的E4.5胚泡的明场图像(图1g)。数据代表两个实验中的11个生物学独立样本。比例尺100微米。c、 胚胎(左)和ExE(右)细胞计数超过每个胚胎的转录等级(p<0.001,Wilcoxon等级检验)。
d, Metacell gene-gene expression (log2 absolute expression) of Col4a1 over Rhox5 showing transcriptional separation of ExE from embryonic and extraembryonic endoderm cell states. e, Embryo-embryo transcriptional similarity matrix, embryos are annotated based on embryonic age groups (see legend below, same as in Fig.
d、 Col4a1在Rhox5上的Metacell基因表达(log2绝对表达),显示ExE与胚胎和胚外内胚层细胞状态的转录分离。e、 胚胎-胚胎转录相似性矩阵,胚胎基于胚胎年龄组进行注释(见下面的图例,与图1相同)。
1c). f, Developmental time (Et, left) and morphological rank (right) over embryo rank, annotated by age group.Source DataExtended Data Fig. 2 A unified extraembryonic/embryonic time-resolved model for gastrulation.a, Embryonic network flow model of differentiation (left). The model consists of metacells (nodes in rows, corresponding to the 16 embryonic age groups in Fig.
1c)。f、 发育时间(Et,左)和形态等级(右)超过胚胎等级,由年龄组注释。源数据扩展数据图2原肠胚形成的统一胚外/胚胎时间分辨模型。A,分化的胚胎网络流模型(左)。该模型由元细胞(行中的节点,对应于图1中的16个胚胎年龄组)组成。
1c) distributed over Et (x axis), and flows (edges) linking metacells between adjacent age groups. The first time point represents an artificial common source for all metacells. Right, Marker heatmap of relative expression (log2 scale, negative v.
1c)分布在Et(x轴)上,流动(边缘)连接相邻年龄组之间的元细胞。第一个时间点代表所有元细胞的人工共同来源。右,相对表达的标记热图(log2标度,负v。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleHadas, R., Rubinstein, H., Mittnenzweig, M. et al. Temporal BMP4 effects on mouse embryonic and extraembryonic development.
转载和许可本文引用本文Hadas,R.,Rubinstein,H.,Mittnenzweig,M。等人。时间BMP4对小鼠胚胎和胚外发育的影响。
Nature (2024). https://doi.org/10.1038/s41586-024-07937-5Download citationReceived: 12 July 2022Accepted: 09 August 2024Published: 18 September 2024DOI: https://doi.org/10.1038/s41586-024-07937-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《自然》(2024)。https://doi.org/10.1038/s41586-024-07937-5Download引文收到日期:2022年7月12日接受日期:2024年8月9日发布日期:2024年9月18日OI:https://doi.org/10.1038/s41586-024-07937-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。