商务合作
动脉网APP
可切换为仅中文
AbstractThe planarian Schmidtea mediterranea is being studied as a model species for regeneration, but the assembly of planarian genomes remains challenging. Here, we report a high-quality haplotype-phased, chromosome-scale genome assembly of the sexual S2 strain of S. mediterranea and high-quality chromosome-scale assemblies of its three close relatives, S.
摘要正在研究涡虫Schmidtea mediterranea作为再生的模式物种,但涡虫基因组的组装仍然具有挑战性。在这里,我们报告了S.mediterranea有性S2菌株的高质量单倍型阶段性染色体规模基因组组装及其三个近亲S的高质量染色体规模组装。
polychroa, S. nova, and S. lugubris. Using hybrid gene annotations and optimized ATAC-seq and ChIP-seq protocols for regulatory element annotation, we provide valuable genome resources for the planarian research community and a first comparative perspective on planarian genome evolution. Our analyses reveal substantial divergence in protein-coding sequences and regulatory regions but considerable conservation within promoter and enhancer annotations.
polychroa,S。nova和S。lugubris。使用杂交基因注释和优化的ATAC-seq和ChIP-seq协议进行调控元件注释,我们为涡虫研究界提供了有价值的基因组资源,并为涡虫基因组进化提供了第一个比较视角。我们的分析揭示了蛋白质编码序列和调控区的显着差异,但在启动子和增强子注释中具有相当大的保守性。
We also find frequent retrotransposon-associated chromosomal inversions and interchromosomal translocations within the genus Schmidtea and, remarkably, independent and nearly complete losses of ancestral metazoan synteny in Schmidtea and two other flatworm groups. Overall, our results suggest that platyhelminth genomes can evolve without syntenic constraints..
我们还发现Schmidtea属中频繁的反转录转座子相关染色体倒位和染色体间易位,并且在Schmidtea和其他两个扁形虫组中,祖先后生动物的同源性明显独立且几乎完全丧失。总的来说,我们的结果表明,platyhelminth基因组可以在没有同线性约束的情况下进化。。
IntroductionEvolution acts on genomic changes to bring about the diversity of life. For example, single nucleotide changes in coding gene sequences duplicate the goldfish tail fin1 or cause nose loss in humans2; changes in gene regulatory regions are associated with profound evolutionary body plan changes3,4, e.g., limb loss in snakes5, and gene loss is emerging as an important mechanism in trait evolution6,7.
。例如,编码基因序列中的单核苷酸变化会复制金鱼尾鳍1或导致人类鼻子脱落2;基因调控区的变化与深刻的进化身体计划变化有关3,4,例如蛇的肢体丢失5,基因丢失正在成为性状进化的重要机制6,7。
On the other hand, the rapidly increasing number of sequenced genomes indicates that genome structure may also be evolutionarily constrained.Synteny, the association of genes on a chromosome or linkage group, is deeply conserved among animals, with the Metazoan Ancestral Linkage Groups (MALG) being conserved in numerous animal phyla, including Sponges, Cnidarians, and Bilateria8,9,10.
另一方面,测序基因组数量的迅速增加表明基因组结构也可能受到进化限制。同线性是染色体或连锁群上基因的关联,在动物中是高度保守的,后生动物祖先连锁群(MALG)在许多动物门中都是保守的,包括海绵,刺胞动物和双侧8,9,10。
Other groups, including Nematodes and Drosophilids, have lost this ancestral synteny, but have replaced it with group-specific linkage groups11,12. The finding that the arrangement of genes in the genome at the mega-base scale is important for gene regulation13 provides a rationale for the evolutionary conservation of synteny.
其他群体,包括线虫和果蝇,已经失去了这种祖先的同线性,但已经用群体特异性连锁群11,12取代了它。基因组中基因在兆碱基规模上的排列对于基因调控很重要的发现13为同线性的进化保守性提供了理论基础。
Indeed, molecular studies have shown that gene regulation is influenced by hierarchical levels of chromatin organization14 and that the modulation of chromatin organization can lead to genetic disease15,16, cancer17,18, or even the origin of evolutionary novelty19,20,21. However, not all taxa exhibit consistent features of genomic organization or their significance remains unclear22.
事实上,分子研究表明,基因调控受染色质组织层次水平的影响14,染色质组织的调节可导致遗传疾病15,16,癌症17,18,甚至是进化新颖性的起源19,20,21。然而,并非所有分类群都表现出基因组组织的一致特征,或者它们的意义尚不清楚22。
This raises the possibility that certain taxonomic groups may display specific patterns of genome evolution and that the analysis of under-sampled clades may reveal novel patterns.Planarians are an example of a large and poorly sequenced group of animals. As an order (Tricladida) w.
这提高了某些分类群可能显示基因组进化的特定模式的可能性,并且对采样不足的进化枝的分析可能揭示新的模式。涡虫是大型且测序不良的动物群的一个例子。作为订单(Tricladida)w。
Schmidtea mediterranea reference genome improvementsThe current S. mediterranea reference genome (dd_Smes_g426) is a haploid consensus assembly containing 481 contigs and its recent scaffolding (referred to here as schMedS2) has revealed substantial haplotypic differences, especially on Chromosome 127.
Schmidtea mediterranea参考基因组改进目前的S.mediterranea参考基因组(dd\U Smes\U g426)是包含481个重叠群的单倍体共有组装体,其最近的支架(此处称为schMedS2)显示出显着的单倍型差异,特别是在127号染色体上。
To generate a haplotype-phased assembly and to close the remaining sequencing gaps, we re-sequenced the S. mediterranea genome using Pacific Biosciences’ HiFi reads and used Hi-C for scaffolding. The new assembly, designated S3, consists of two pseudo-haplotypes: S3h1 and S3h2, and a merged version of the two, referred to as S3BH for “S3 both haplotypes”.
为了产生单倍型阶段组装并缩小剩余的测序缺口,我们使用Pacific Biosciences的HiFi读数对地中海链球菌基因组进行了重新测序,并使用Hi-C进行了支架。命名为S3的新组件由两个伪单倍型组成:S3h1和S3h2,以及两者的合并版本,称为S3BH,表示“S3都是单倍型”。
The S3h1 (662 contigs) and S3h2 (432 contigs) assemblies are slightly larger than the previous dd_Smes_g4 assembly (Table 1, Supporting Information: Section 1.1). The N50 values of 270 Mb and 269 Mb indicate high contiguity with 95% and 96% of the total assembly contained in the four largest scaffolds that match the known karyology in size and number (1n = 4, Table 1).
S3h1(662个重叠群)和S3h2(432个重叠群)组件略大于之前的dd\U Smes\U g4组件(表1,支持信息:第1.1节)。270 Mb和269 Mb的N50值表示高连续性,四个最大支架中包含的总装配的95%和96%在大小和数量上与已知的核型相匹配(1n=4,表1)。
The Hi-C contact maps indicate high contiguity in both phases, thus justifying the designation “chromosome-scale” assembly (Fig. 1a). Nevertheless, not all scaffolds are capped by telomere repeats, and 662 and 432 unincorporated contigs remain for S3h1 and S3h2, respectively). The largest fraction of unincorporated contigs comprises various repeat sequences (satellite DNA, telomere repeats, rRNA clusters).
Hi-C接触图表明两个阶段都具有高度的连续性,因此证明了“染色体规模”组装的合理性(图1a)。然而,并非所有支架都被端粒重复序列覆盖,并且S3h1和S3h2分别保留了662和432个未结合的重叠群)。未合并重叠群的最大部分包含各种重复序列(卫星DNA,端粒重复序列,rRNA簇)。
Still, some contigs contain annotated genes (S3h1: 505 genes on 216 contigs, S3h2: 509 genes on 197 contigs), pointing towards remaining localized assembly ambiguities.Table 1 Summary statistics for the genome assemblies and annotations of the four Schmidtea speciesFull size tableFig. 1: Quality control metrics and description of the S.
尽管如此,一些重叠群包含注释基因(216个重叠群上的S3h1:505个基因,197个重叠群上的S3h2:509个基因),指向剩余的局部装配歧义。表1四种Schmidtea物种的基因组组装和注释的汇总统计全尺寸表图。1: 质量控制指标和S的描述。
mediterranea geno.
地中海政策。
Schmidtea mediterranea genome annotation improvementsWe further sought to complement the new genome assembly with high-quality gene annotations. Encountering increasingly diminishing returns on investment with our previous de novo gene prediction approaches42, we developed a new hybrid approach that merges Oxford Nanopore long-reads (ONT), Illumina short-reads, and 3P-seq of transcription termination sites (TTS) data43 with genome-guided transcript assembly, thus leveraging the benefits of direct gene isoform evidence with the base pair accuracy of our genome assembly (Fig. 1f).
Schmidtea mediterranea基因组注释改进我们进一步寻求用高质量的基因注释来补充新的基因组组装。由于我们之前的从头基因预测方法42的投资回报日益减少,我们开发了一种新的混合方法,将牛津纳米孔长读数(ONT),Illumina短读数和3P-seq转录终止位点(TTS)数据43与基因组引导的转录本组装相结合,从而利用直接基因同工型证据的优势和我们基因组组装的碱基对准确性(图1f)。
We generated separate annotation sets for both haplotypes and further designated high-confidence (hconf) transcripts based on Open Reading Frame (ORF) length and/or a minimum coverage threshold (see Methods). With 58,739 and 58,551 gene loci and 21,401 and 21,310 hconf gene loci in S3h1 and S3h2, respectively, these annotations are in range with previous S.
我们根据开放阅读框(ORF)长度和/或最小覆盖阈值(请参见方法),为两种单倍型和进一步指定的高可信度(hconf)转录本生成了单独的注释集。在S3h1和S3h2中分别有58739和58551个基因位点以及21401和21310个hconf基因位点,这些注释与以前的S范围内。
mediterranea gene number estimates26,42,44. To analyze the overall quality of the new annotations, we carried out systematic benchmarking comparisons against previous transcriptomes or S. mediterranea gene model predictions. We first assessed BUSCO representation and completeness. S3BH had the highest number of complete BUSCOs (789) and the fewest missing BUSCOs (134) of all the annotations tested.
地中海基因数量估计26,42,44。为了分析新注释的总体质量,我们对以前的转录组或地中海链球菌基因模型预测进行了系统的基准比较。我们首先评估了BUSCO的代表性和完整性。在所有测试的注释中,S3BH具有最多的完整BUSCO(789)和最少的缺失BUSCO(134)。
Interestingly, the transcriptome or gene model-based BUSCO scores were consistently better than genome-mode BUSCO assessments (Fig. 1g, Supporting Information: Section 1.1), indicating that the detection method used by BUSCO is sub-optimal for planarian genomes. Moreover, the comparatively high number of “missing” BUSCOs reflects a high proportion of genuine gene losses in planarians (see below) and highlights the need for a group-specific BUSCO se.
有趣的是,基于转录组或基因模型的BUSCO评分始终优于基因组模式BUSCO评估(图1g,支持信息:第1.1节),表明BUSCO使用的检测方法对于涡虫基因组来说是次优的。此外,“缺失”的BUSCO数量相对较高,反映了涡虫中真正的基因丢失比例很高(见下文),并突出了对特定群体BUSCO se的需求。
To orthogonally verify our peak annotations, we turned to the principle that the sequences of important regulatory elements are often conserved over evolutionary time51. Since multiple lines of evidence indicate unusually high sequence divergence within planarians and between flatworms in general41,52,53,54,55, we sequenced the genomes of S.
为了正交验证我们的峰注释,我们转向了一个原则,即重要调控元件的序列通常在进化时间内是保守的51。由于多条证据表明涡虫内部和扁虫之间的序列差异异常高[41,52,53,54,55],我们对S的基因组进行了测序。
mediterranea’s three closest relatives, S. polychroa, S. nova, and S. lugubris (Fig. 3a). All sequenced strains were diploid and displayed the expected karyotypes with 3 or 4 chromosomes56,57,58,59. The Hi-C maps of the assemblies indicated similar scaffolding as for S. mediterranea (Fig. 3b). In addition, the BUSCO scores (Fig. 3c) suggested a comparable completeness to the S.
mediterranea的三个近亲,s.polychroa,s.nova和s.lugubris(图3a)。所有测序的菌株均为二倍体,并显示出预期的核型,具有3或4个染色体56,57,58,59。组件的Hi-C图显示了与S.mediterranea相似的脚手架(图3b)。此外,BUSCO分数(图3c)表明与S相当的完整性。
mediterranea S3 assembly (Fig. 1g). Interestingly, the assemblies of S. nova (1251 Mb) and S. lugubris (1499 Mb) were substantially larger than those of S. mediterranea (840 Mb) and S. polychroa (781 Mb) (Table 1).Fig. 3: Comparative ATAC-seq in the genus Schmidtea to assess regulatory element conservation.a Evolutionary distance of the analyzed Schmidtea species on the basis of 4-fold degenerate sites in the whole genome alignments.
mediterranea S3组件(图1g)。有趣的是,S.nova(1251 Mb)和S.lugubris(1499 Mb)的组装大大大于S.mediterranea(840 Mb)和S.polychroa(781 Mb)(表1)。图3:Schmidtea属的比较ATAC-seq,以评估调控元件的保守性。基于全基因组比对中4倍退化位点,分析的Schmidtea物种的进化距离。
Branch lengths indicate expected substitutions per site. The tree topology is based on a phylogenomic analyses of 930 single-copy genes and agrees with previous work59. b Hi-C contact maps of the genome assemblies of S. polychroa (schPol2), S. nova (schNov1), and S. lugubris (schLug1). c BUSCO completeness assessment of the genome assemblies (left three bars) and the corresponding annotations (right bars) of the new Schmidtea genomes.
分支长度表示每个站点的预期替代。该树拓扑结构基于930个单拷贝基因的系统发育基因组分析,并与以前的工作一致59。b S.polychroa(schPol2),S.nova(schNov1)和S.lugubris(schLug1)基因组组装的Hi-C接触图。。
Since the annotation assessment was run on the transcript level, the “Duplicate” and “Complete” category were combined for the visualization to avoid apparent duplication due to isoforms. d ATAC-seq.
由于注释评估是在转录本级别上进行的,因此将“重复”和“完整”类别结合起来进行可视化,以避免由于同工型而出现明显的重复。d ATAC序列。
Circular consensus sequences from ~30x coverage PacBio reads were called using pbccs (v6.0.0, https://github.com/nlhepler/pbccs) and reads with quality > 0.99 (Q20) were taken forward as “HiFi” reads. Additionally, we generated 1000 million Hi-C reads from extracted nuclei of whole animals using the Arima-HiC+ Kit.
使用pBCC(v6.0.0,https://github.com/nlhepler/pbccs)质量>0.99(Q20)的读数被视为“高保真”读数。此外,我们使用Arima HiC+试剂盒从整个动物的提取细胞核中产生了10亿个Hi-C读数。
PacBio HiFi and Hi-C reads were used to assemble phased contigs with hifiasm (v0.7,94). Next, Hi-C reads whose mapping quality no less than 10 (-q 10) were further utilized to scaffold the contigs from each haplotype by SALSA (v2,95) following the hic-pipeline (https://github.com/esrice/hic-pipeline), which includes filtering procedures such as removal of experimental artifacts from Hi-C alignments, fixing of Hi-C pair mates, and removal of PCR duplicates, etc.
PacBio HiFi和Hi-C读数用于组装具有hifiasm(v0.7,94)的相控重叠群。接下来,进一步利用映射质量不低于10(-q 10)的Hi-C读数,通过SALSA(v2,95)按照hic管道从每个单倍型中构建重叠群(https://github.com/esrice/hic-pipeline),其中包括过滤程序,例如从Hi-C比对中去除实验伪影,固定Hi-C配对,以及去除PCR重复序列等。
Four chromosome-level scaffolds could be observed in both haplotypes after scaffolding. However, Hi-C heatmap revealed evidence of misplacement of contigs in terms of positions and orientations. These errors were then manually curated based on the interaction frequency indicated by the intensity of Hi-C signals.
支架后,在两种单倍型中都可以观察到四个染色体水平的支架。然而,Hi-C热图揭示了重叠群在位置和方向方面错位的证据。然后根据Hi-C信号强度指示的相互作用频率手动策划这些错误。
To compare the haplotypes with each other and compare them to the schMedS2 assembly, we aligned them using minimap2 (-asm5, v2.24,96) and parsed the alignments using syri (v1.6.3,97).Genome assembly of S. polychroa, S. nova, and S. lugubris.
为了相互比较单倍型并将其与schMedS2组件进行比较,我们使用minimap2(-asm5,v2.24,96)对其进行了比对,并使用syri(v1.6.3,97)对比对进行了分析。S.polychroa,S.nova和S.lugubris的基因组组装。
Circular consensus sequences from PacBio reads were called using pbccs (v6.0.0) and reads with quality > 0.99 (Q20) were taken forward as “HiFi” reads. To create the initial contig assemblies for S. nova, canu v2.1 was used with parameters: maxInputCoverage=100 -pacbio-hifi. For S. polychroa and S. lugubris hifiasm (v0.14.2) was used to create initial contigs with purging parameter: -l 2.
使用pBCC(v6.0.0)调用来自PacBio读物的环状共有序列,并将质量>0.99(Q20)的读物作为“HiFi”读物前进。为了创建S.nova的初始重叠群组件,canu v2.1与参数一起使用:maxInputCoverage=100-pacbio hifi。对于S.polychroa和S.lugubris,使用hifiasm(v0.14.2)创建具有清除参数的初始重叠群:-l 2。
Next, alternative haplotigs were then removed using purge-dups (v1.2.3) using default parameters and cutoff as they were correctly estimated by the program. To initially scaffold the contigs into scaffolds, SALSA v2 (v2.2) was used after mapping Hi-C reads to the contigs. The VGP Arima mapping pipeline was followed: https://github.com/VGP/vgp-assembly/tree/master/pipeline/salsa using bwa-mem (v0.7.17), samtools (v0.10, v1.11) and Picard (v2.22.6).
接下来,使用purge dups(v1.2.3),使用默认参数和截止值删除替代的haplotigs,因为它们是由程序正确估计的。为了最初将重叠群支架到支架中,在将Hi-C读数映射到重叠群后使用SALSA v2(v2.2)。遵循VGP Arima映射管道:https://github.com/VGP/vgp-assembly/tree/master/pipeline/salsa使用bwa mem(v0.7.17)、samtools(v0.10,v1.11)和Picard(v2.22.6)。
False joins in the scaffolds were then broken and missed joins merged manually following the processing of Hi-C reads with pairtools (v0.3.0) and visualization matrices created with cooler (v0.8.11).Following scaffolding, the original PacBio subreads were mapped to the chromosomes using pbmm2 (v1.3.0, https://github.com/PacificBiosciences/pbmm2) with arguments: --preset SUBREAD -N 1 and regions +/− 2 kb around each gap were polished using gcpp’s arrow algorithm (v1.9.0).
然后,在用pairtools(v0.3.0)和用cooler(v0.8.11)创建的可视化矩阵处理Hi-C读数后,支架中的假连接被破坏,错过的连接被手动合并。搭建支架后,使用pbmm2(v1.3.0,https://github.com/PacificBiosciences/pbmm2)带有参数:-使用gcpp的箭头算法(v1.9.0)对每个间隙周围的预设子读数N 1和+/-2 kb区域进行了抛光。
Those regions in which gaps were closed and polished with all capital nucleotides (gcpp’s internal high confidence threshold) were then inserted into the assemblies as closed gaps.Lastly, the PacBio HiFi (CCS reads with a read quality exceeding 0.99) were aligned to the genomes using pbmm2 (v1.3.0) with the arguments --preset CCS -N 1.
然后将间隙封闭并用所有资本核苷酸(gcpp的内部高可信度阈值)抛光的区域作为闭合间隙插入组件中。最后,使用pbmm2(v1.3.0)将PacBio HiFi(读取质量超过0.99的CCS读取)与基因组进行比对,参数为预设CCS-N 1。
DeepVariant (v1.2.0,98) was used to detect variants in the alignments to the assembled sequence. Only the homozygous variants (GT = 1/1) that .
。只有纯合子变体(GT = 1/1)才能。
Data availability
数据可用性
The whole-genome, Hi-C, ATAC-seq, ChIP-seq, and RNA-Seq of Schmidtea mediterranea, Schmidtea polychroa, Schmidtea nova, and Schmidtea lugubris data generated in this study have been deposited in the NCBI database under accession code PRJNA1052007. The repetitive element annotation of Schmidtea genomes data generated in this study have been deposited in the Zenodo database under accession code 11004547.
本研究中产生的Schmidtea mediterranea,Schmidtea polychroa,Schmidtea nova和Schmidtea lugubris数据的全基因组,Hi-C,ATAC-seq,ChIP-seq和RNA-seq已保存在NCBI数据库中,登录号为PRJNA105207。本研究中产生的Schmidtea基因组数据的重复元素注释已保存在Zenodo数据库中,登录号为11004547。
The Clonorchis sinensis genome and annotation data used in this study are available in the NCBI database under accession code PRJNA386618. The Schistosoma mansoni genome and annotation data used in this study are available in the NCBI database under accession code PRJEA36577. The Taenia multiceps genome and annotation data used in this study are available in the NCBI database under accession code PRJNA307624.
本研究中使用的华支睾吸虫基因组和注释数据可在NCBI数据库中获得,登录号为PRJNA386618。本研究中使用的曼氏血吸虫基因组和注释数据可在NCBI数据库中获得,登录号为PRJEA36577。本研究中使用的多头绦虫基因组和注释数据可在NCBI数据库中获得,登录号为PRJNA307624。
The Hymenolepis microstoma genome and annotation data used in this study are available in the NCBI database under accession code PRJEB124. The Macrostomum hystrix gene annotation data used in this study are available in the Zenodo database under accession code 7861770. The Macrostomum hystrix genome data used in this study are available in the European Nucleotide Archive database under accession code GCA_950097015. Source data are provided with this paper..
本研究中使用的膜翅目微瘤基因组和注释数据可在NCBI数据库中以登录号PRJEB124获得。本研究中使用的Macrostomum hystrix基因注释数据可在Zenodo数据库中获得,登录号为7861770。本研究中使用的Macrostomum hystrix基因组数据可在欧洲核苷酸档案数据库中获得,登录号为GCA\U 950097015。本文提供了源数据。。
Code availability
代码可用性
The code used to conduct the analysis in this study is available at https://github.com/Jeremias-Brand/PlanarianGenomeAnalysis and has been archived in the Zenodo database under accession code 13123038.
本研究中用于进行分析的代码可在https://github.com/Jeremias-Brand/PlanarianGenomeAnalysis并已在Zenodo数据库中存档,登录号为13123038。
ReferencesKon, T. et al. The genetic basis of morphological diversity in domesticated goldfish. Curr. Biol. 30, 2260–2274.e6 (2020).CAS
参考文献Kon,T。等人。驯化金鱼形态多样性的遗传基础。货币。生物学302260–2274.e6(2020)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gordon, C. T. et al. De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. Nat. Genet. 49, 249–255 (2017).CAS
。纳特·吉内特。49249-255(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
King, M.-C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees: Their macromolecules are so alike that regulatory mutations may account for their biological differences. Science 188, 107–116 (1975).ADS
King,M.-C.&Wilson,A.C。人类和黑猩猩在两个层面上的进化:它们的大分子如此相似,以至于调控突变可能解释了它们的生物学差异。科学188107-116(1975)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Roscito, J. G. et al. Phenotype loss is associated with widespread divergence of the gene regulatory landscape in evolution. Nat. Commun. 9, 4737 (2018).ADS
Roscito,J.G.等人。表型丧失与进化中基因调控格局的广泛分歧有关。国家公社。94737(2018)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kvon, E. Z. et al. Progressive loss of function in a limb enhancer during snake evolution. Cell 167, 633–642.e11 (2016).CAS
Kvon,E.Z.等人。蛇进化过程中肢体增强剂的功能逐渐丧失。细胞167633-642.e11(2016)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Osipova, E. et al. Loss of a gluconeogenic muscle enzyme contributed to adaptive metabolic traits in hummingbirds. Science 379, 185–190 (2023).ADS
Osipova,E。等人。糖异生肌酶的丧失有助于蜂鸟的适应性代谢特征。科学379185-190(2023)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bontempo, M. & Luiza, A. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. Sci. Adv. 8, eabm6494 (2022).Simakov, O. et al. Deeply conserved synteny and the evolution of metazoan chromosomes. Sci. Adv. 8, eabi5884 (2022).ADS
Bontempo,M。和Luiza,A。普通吸血蝙蝠的基因丢失阐明了分子对血液喂养的适应。科学。Adv.8,eabm6494(2022)。Simakov,O.等人。深度保守的同线性和后生动物染色体的进化。科学。Adv.8,eabi5884(2022)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, S. et al. Scallop genome provides insights into evolution of bilaterian karyotype and development. Nat. Ecol. Evol. 1, 0120 (2017).PubMed
Wang,S。等人。扇贝基因组提供了对双边核型进化和发育的见解。自然生态。进化。10120(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schultz, D. T. et al. Ancient gene linkages support ctenophores as sister to other animals. Nature 1–8 (2023) https://doi.org/10.1038/s41586-023-05936-6.Bhutkar, A. et al. Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes. Genetics 179, 1657–1680 (2008).PubMed .
Schultz,D.T.等人。古老的基因联系支持草鱼作为其他动物的姐妹。自然1-8(2023)https://doi.org/10.1038/s41586-023-05936-6.Bhutkar,A。等人。从12个果蝇基因组的比较推断出染色体重排。遗传学1791657-1680(2008)。PubMed。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tandonnet, S. et al. Chromosome-wide evolution and sex determination in the three-sexed nematode Auanema rhodensis. G3 GenesGenomesGenetics 9, 1211–1230 (2019).CAS
。G3 GenesGenomesGenetics 91211-1230(2019)。中科院
Google Scholar
谷歌学者
Rowley, M. J. & Corces, V. G. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19, 789–800 (2018).CAS
Rowley,M.J。和Corces,V.G。3D基因组结构的组织原则。。19789-800(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).CAS
。细胞1591665-1680(2014)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lupiáñez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).PubMed
Lupiáñez,D.G.等人。拓扑染色质结构域的破坏导致基因增强子相互作用的致病性重新连接。细胞1611012-1025(2015)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Franke, M. et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 538, 265–269 (2016).ADS
Franke,M。等人。新染色质结构域的形成决定了基因组重复的致病性。自然538265-269(2016)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Alekseyenko, A. A. et al. The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains. Genes Dev. 29, 1507–1523 (2015).CAS
Alekseyenko,A.A。等人。致癌BRD4-NUT染色质调节剂在大拓扑结构域内驱动异常转录。基因发展291507-1523(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Akdemir, K. C. et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat. Genet. 52, 294–305 (2020).CAS
Akdemir,K.C.等人。人类癌症中体细胞基因组重排对染色质折叠结构域的破坏。纳特·吉内特。52294-305(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Acemel, R. D. et al. A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat. Genet. 48, 336–341 (2016).CAS
文昌鱼的单个三维染色质区室表明脊椎动物Hox双峰调节的逐步进化。纳特·吉内特。48336-341(2016)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Letelier, J. et al. Evolutionary emergence of the rac3b / rfng / sgca regulatory cluster refined mechanisms for hindbrain boundaries formation. Proc. Natl. Acad. Sci. 115, (2018).Luo, X. et al. 3D Genome of macaque fetal brain reveals evolutionary innovations during primate corticogenesis.
Letelier,J。等人。rac3b/rfng/sgca调节簇的进化出现完善了后脑边界形成的机制。程序。纳特尔。阿卡德。科学。115,(2018)。Luo,X。等人。猕猴胎儿大脑的3D基因组揭示了灵长类动物皮质发生过程中的进化创新。
Cell 184, 723–740.e21 (2021).CAS .
细胞184723-740.e21(2021)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Hoencamp, C. et al. 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372, 984–989 (2021).CAS
Hoencamp,C。等人,《生命树的3D基因组学》揭示了凝聚素II是结构类型的决定因素。科学372984-989(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ivankovic, M. et al. Model systems for regeneration: planarians. Development 146, dev167684 (2019).CAS
Ivankovic,M.等人,《再生模型系统:涡虫》。发展146,dev167684(2019)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Reddien, P. W. The cellular and molecular basis for planarian regeneration. Cell 175, 327–345 (2018).CAS
Reddien,P.W。涡虫再生的细胞和分子基础。。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Robb, S. M. C., Gotting, K., Ross, E. & Sánchez Alvarado, A. SmedGD 2.0: The Schmidtea mediterranea genome database. Genesis 53, 535–546 (2015).CAS
Robb,S.M.C.,Gotting,K.,Ross,E.&Sánchez-Alvarado,A。SmedGD 2.0:施密特地中海基因组数据库。《创世纪》53535-546(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grohme, M. A. et al. The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature 554, 56–61 (2018).ADS
Grohme,M.A.等人。Schmidtea mediterranea的基因组和核心细胞机制的进化。自然554,56-61(2018)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guo, L. et al. Island-specific evolution of a sex-primed autosome in a sexual planarian. Nature 606, 329–334 (2022).ADS
郭,L。等。有性涡虫中性引发常染色体的岛屿特异性进化。自然606329-334(2022)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guo, L., Zhang, S., Rubinstein, B., Ross, E. & Alvarado, A. S. Widespread maintenance of genome heterozygosity in Schmidtea mediterranea. Nat. Ecol. Evol. 1, 1–10 (2016).
Guo,L.,Zhang,S.,Rubinstein,B.,Ross,E。&Alvarado,A.S。Schmidtea mediterranea基因组杂合性的广泛维持。自然生态。进化。1,1-10(2016)。
Google Scholar
谷歌学者
Tian, Q. et al. Whole-genome sequence of the planarian Dugesia japonica combining Illumina and PacBio data. Genomics 114, 110293 (2022).CAS
Tian,Q。等人。结合Illumina和PacBio数据的涡虫Dugesia japonica的全基因组序列。基因组学114110293(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Póti, Á., Szüts, D. & Vermezovic, J. Mutational profile of the regenerative process and de novo genome assembly of the planarian Schmidtea polychroa. Nucleic Acids Res. gkad1250 (2024) https://doi.org/10.1093/nar/gkad1250.An, Y. et al. Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians.
Póti,Á。,Szüts,D。&Vermezovic,J。涡虫Schmidtea polychroa再生过程和从头基因组组装的突变谱。核酸研究gkad1250(2024)https://doi.org/10.1093/nar/gkad1250.AnDugesia japonica的基因组草图提供了对涡虫脑限制基因nou darake保守调控元件的见解。
Zool. Lett. 4, 24 (2018).ADS .
佐尔。利特。4,24(2018)。广告。
Google Scholar
谷歌学者
Duncan, E. M., Chitsazan, A. D., Seidel, C. W. & Sánchez Alvarado, A. Set1 and MLL1/2 target distinct sets of functionally different genomic loci in vivo. Cell Rep. 13, 2741–2755 (2015).CAS
Duncan,E.M.,Chitsazan,A.D.,Seidel,C.W.&Sánchez-Alvarado,A.Set1和MLL1/2在体内靶向不同组的功能不同的基因组位点。Cell Rep.132741–2755(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dattani, A. et al. Epigenetic analyses of planarian stem cells demonstrate conservation of bivalent histone modifications in animal stem cells. Genome Res. 28, 1543–1554 (2018).CAS
Dattani,A。等人。涡虫干细胞的表观遗传学分析表明动物干细胞中二价组蛋白修饰的保守性。。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mihaylova, Y. et al. Conservation of epigenetic regulation by the MLL3/4 tumour suppressor in planarian pluripotent stem cells. Nat. Commun. 9, 3633 (2018).Gehrke, A. R. et al. Acoel genome reveals the regulatory landscape of whole-body regeneration. Science 363, eaau6173 (2019).CAS .
Mihaylova,Y。等人。涡虫多能干细胞中MLL3/4肿瘤抑制因子对表观遗传调控的保护。国家公社。93633(2018)。Gehrke,A.R.等人,Acoel基因组揭示了全身再生的调控景观。科学363,eaau6173(2019)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Li, D., Taylor, D. H. & Van Wolfswinkel, J. C. PIWI-mediated control of tissue-specific transposons is essential for somatic cell differentiation. Cell Rep. 37, 109776 (2021).CAS
Li,D.,Taylor,D.H。&Van Wolfswinkel,J.C。PIWI介导的组织特异性转座子的控制对于体细胞分化至关重要。细胞代表37109776(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Verma, P., Waterbury, C. K. M. & Duncan, E. M. Set1 targets genes with essential identity and tumor-suppressing functions in planarian stem cells. Genes 12, 1182 (2021).Neiro, J., Sridhar, D., Dattani, A. & Aboobaker, A. Identification of putative enhancer-like elements predicts regulatory networks active in planarian adult stem cells.
Verma,P.,Waterbury,C。K。M。和Duncan,E。M。Set1靶向涡虫干细胞中具有基本身份和肿瘤抑制功能的基因。基因121182(2021)。Neiro,J.,Sridhar,D.,Dattani,A。&Aboobaker,A。鉴定推定的增强子样元件可预测涡虫成体干细胞中活跃的调控网络。
eLife 11, e79675 (2022).CAS .
eLife 11,e79675(2022)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pascual-Carreras, E. et al. Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration. Nat. Commun. 14, 298 (2023).ADS
Pascual-Carreras,E。等人。在涡虫再生过程中,极特异性染色质重塑需要Wnt/β-连环蛋白信号传导。国家公社。14298(2023)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Poulet, A., Kratkiewicz, A. J., Li, D. & van Wolfswinkel, J. C. Chromatin analysis of adult pluripotent stem cells reveals a unique stemness maintenance strategy. Sci. Adv. 9, eadh4887 (2023).CAS
。科学。Adv.9,eadh4887(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vila-Farré, M. et al. Evolutionary dynamics of whole-body regeneration across planarian flatworms. Nat. Ecol. Evol. 1–17 (2023) https://doi.org/10.1038/s41559-023-02221-7.Rozanski, A. et al. PlanMine 3.0—improvements to a mineable resource of flatworm biology and biodiversity. Nucleic Acids Res.
Vila Farré,M.等人。涡虫全身再生的进化动力学。自然生态。进化。https://doi.org/10.1038/s41559-023-02221-7.Rozanski,A.等人。PlanMine 3.0-扁形虫生物学和生物多样性可开采资源的改进。核酸研究。
47, D812–D820 (2019).CAS .
47,D812–D820(2019)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Lakshmanan, V. et al. Genome-wide analysis of polyadenylation events in Schmidtea mediterranea. G3 GenesGenomesGenetics 6, 3035–3048 (2016).CAS
Lakshmanan,V。等人。Schmidtea mediterranea多腺苷酸化事件的全基因组分析。G3 GenesGenomesGenetics 63035-3048(2016)。中科院
Google Scholar
谷歌学者
Blythe, M. J. et al. A dual platform approach to transcript discovery for the planarian Schmidtea mediterranea to establish RNAseq for stem cell and regeneration biology. PLOS ONE 5, e15617 (2010).ADS
Blythe,M.J.等人。一种双平台方法来发现涡虫Schmidtea mediterranea的转录本,以建立用于干细胞和再生生物学的RNAseq。PLOS ONE 5,e15617(2010)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
García-Castro, H. et al. ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol. 22, 89 (2021).PubMed
。基因组生物学。22,89(2021)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).CAS
Corces,M.R.等人。改进的ATAC-seq协议减少了背景并能够询问冷冻组织。自然方法14959-962(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol. 21, 22 (2020).PubMed
Yan,F.,Powell,D.R.,Curtis,D.J。&Wong,N.C。从阅读到洞察:ATAC-seq数据分析的搭便车指南。基因组生物学。21、22(2020年)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).CAS
Shlyueva,D.,Stampfel,G。&Stark,A。转录增强子:从特性到全基因组预测。。15272-286(2014)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).ADS
Santos Rosa,H。等人。活性基因在组蛋白H3的K4处被三甲基化。自然419407-411(2002)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. 107, 21931–21936 (2010).ADS
Creyghton,M.P。等人。组蛋白H3K27ac将活性增强子与稳定增强子分离并预测发育状态。程序。国家科学院。科学。10721931-21936(2010)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Visel, A., Bristow, J. & Pennacchio, L. A. Enhancer identification through comparative genomics. Semin. Cell Dev. Biol. 18, 140–152 (2007).CAS
Visel,A.,Bristow,J。&Pennacchio,L.A。通过比较基因组学鉴定增强子。塞米。细胞开发生物学。18140-152(2007)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Egger, B. et al. A Transcriptomic-Phylogenomic analysis of the evolutionary relationships of flatworms. Curr. Biol. 25, 1347–1353 (2015).CAS
Egger,B。等人。扁形虫进化关系的转录组系统发育基因组学分析。货币。生物学251347-1353(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Laumer, C. E., Hejnol, A. & Giribet, G. Nuclear genomic signals of the ‘microturbellarian’ roots of Platyhelminth evolutionary innovation. eLife 4, e05503 (2015).PubMed
Laumer,C.E.,Hejnol,A。&Giribet,G。Platyhelminth进化创新的“微涡虫”根的核基因组信号。eLife 4,e05503(2015)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martín-Durán, J. M., Ryan, J. F., Vellutini, B. C., Pang, K. & Hejnol, A. Increased taxon sampling reveals thousands of hidden orthologs in flatworms. Genome Res. 27, 1263–1272 (2017).PubMed
Martín-Durán,J.M.,Ryan,J.F.,Vellutini,B.C.,Pang,K。&Hejnol,A。增加的分类群采样揭示了扁形虫中数千个隐藏的直系同源物。基因组研究271263-1272(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brand, J. N., Viktorin, G., Wiberg, R. A. W., Beisel, C. & Schärer, L. Large-scale phylogenomics of the genus Macrostomum (Platyhelminthes) reveals cryptic diversity and novel sexual traits. Mol. Phylogenet. Evol. 166, 107296 (2022).CAS
Brand,J.N.,Viktorin,G.,Wiberg,R.A.W.,Beisel,C.&Schärer,L。巨口线虫属(Platyhelminthes)的大规模系统发育基因组学揭示了神秘的多样性和新颖的性特征。分子系统发育。进化。166107296(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Benazzi, M., Puccinelli, I. & Papa, R. D. The planarians of the Dugesia lugubris-polychroa group: taxonomic inferences based on cytogenetic and morphologic data. Accad. Natl Dei Lincei Ser. VIII 48, 369–376 (1970).
Benazzi,M.,Puccinelli,I。&Papa,R.D。Dugesia lugubris polychroa组的涡虫:基于细胞遗传学和形态学数据的分类学推断。Accad公司。国家林业局。VIII 48369-376(1970)。
Google Scholar
谷歌学者
Benazzi, M., Baguná, J., Ballester, R., Puccinelli, I. & Papa, R. D. Further contribution to the taxonomy of the «Dugesia lugubris-polychroa Group» with description of Dugesia mediterranea n.sp. (tricladida, paludicola). Bolletino Zool. 42, 81–89 (1975).
Benazzi,M.,Baguná,J.,Ballester,R.,Puccinelli,I。&Papa,R.D。对“Dugesia lugubris polychroa Group”的分类学的进一步贡献,并描述了Dugesia mediterranea n.sp。(tricladida,paludicola)。博莱蒂诺动物园。42,81-89(1975)。
Google Scholar
谷歌学者
Benazzi, M. & Puccinelli, I. A Robertsonian translocation in the fresh-water triclad Dugesia lugubris: Karyometric analysis and evolutionary inferences. Chromosoma 40, 193–198 (1972).
Benazzi,M。&Puccinelli,I。淡水triclad Dugesia lugubris中的罗伯逊易位:核型分析和进化推断。染色体40193-198(1972)。
Google Scholar
谷歌学者
Leria, L., Sluys, R. & Riutort, M. Diversification and biogeographic history of the Western Palearctic freshwater flatworm genus Schmidtea (Tricladida: Dugesiidae), with a redescription of Schmidtea nova. J. Zool. Syst. Evol. Res. 56, 335–351 (2018).
Leria,L.,Sluys,R。&Riucort,M。西古北淡水扁形虫属Schmidtea(Tricladida:Dugesiidae)的多样化和生物地理历史,并对Schmidtea nova进行了重新描述。J、 佐尔。系统。进化。第56335-351号决议(2018年)。
Google Scholar
谷歌学者
Kirilenko, B. M. et al. Integrating gene annotation with orthology inference at scale. Science 380, eabn3107 (2023).CAS
Kirilenko,B.M.等人,在规模上将基因注释与正畸推断相结合。科学380,eabn3107(2023)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cebrià, F. et al. FGFR-related gene nou-darake restricts brain tissues to the head region of planarians. Nature 419, 620–624 (2002).ADS
与FGFR相关的基因nou darake将脑组织限制在涡虫的头部区域。自然419620-624(2002)。广告
PubMed
PubMed
Google Scholar
谷歌学者
Gurley, K. A., Rink, J. C. & Alvarado, A. S. β-Catenin defines head versus tail identity during planarian regeneration and homeostasis. Science 319, 323–327 (2008).ADS
Gurley,K.A.,Rink,J.C。&Alvarado,A.S。β-连环蛋白定义了涡虫再生和体内平衡过程中的头尾身份。科学319323-327(2008)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 11, e78526 (2022).CAS
Lovell,J.T.等人的GENESPACE追踪多个基因组中感兴趣的区域和基因拷贝数变异。。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Startek, M. et al. Genome-wide analyses of LINE–LINE-mediated nonallelic homologous recombination. Nucleic Acids Res. 43, 2188–2198 (2015).CAS
Startek,M.等人。LINE介导的非等位基因同源重组的全基因组分析。核酸研究432188-2198(2015)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nowotarski, S. H. et al. Planarian Anatomy Ontology: a resource to connect data within and across experimental platforms. Development 148, dev196097 (2021).Davies, E. L. et al. Embryonic origin of adult stem cells required for tissue homeostasis and regeneration. eLife 6, 4756–4769 (2017).Fincher, C.
Nowotarski,S.H.等人,《涡虫解剖学本体论:连接实验平台内和跨实验平台数据的资源》。发展148,dev196097(2021)。Davies,E.L.等人。组织稳态和再生所需的成体干细胞的胚胎起源。eLife 64756–4769(2017)。芬奇,C。
T., Wurtzel, O., de Hoog, T., Kravarik, K. M. & Reddien, P. W. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736 (2018).PubMed .
T、 ,Wurtzel,O.,de Hoog,T.,Kravarik,K.M。和Reddien,P.W。涡虫Schmidtea mediterranea的细胞类型转录组图谱。科学360,eaaq1736(2018)。PubMed。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360, eaaq1723 (2018).Baguñà, J. et al. From morphology and karyology to molecules. New methods for taxonomical identification of asexual populations of freshwater planarians.
。科学360,eaaq1723(2018)。Baguñà,J.等人,从形态学和核型学到分子。淡水涡虫无性种群分类学鉴定的新方法。
A tribute to Professor Mario Benazzi. Ital. J. Zool. 66, 207–214 (1999)..
向马里奥·贝纳齐教授致敬。意大利。J、 佐尔。66207-214(1999年)。。
Google Scholar
谷歌学者
Hill, J. et al. Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of Lepidopteran chromosome evolution. Sci. Adv. 5, eaau3648 (2019).ADS
Hill,J.等人对全着丝粒染色体的前所未有的重组为鳞翅目染色体进化之谜提供了见解。科学。Adv.5,eaau3648(2019)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hofstatter, P. G. et al. Repeat-based holocentromeres influence genome architecture and karyotype evolution. Cell 185, 3153–3168.e18 (2022).CAS
Hofstatter,P.G。等人。基于重复序列的全着丝粒影响基因组结构和核型进化。细胞1853153-3168.e18(2022)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tsai, I. J. et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 496, 57–63 (2013).CAS
Tsai,I.J.等人。四种绦虫的基因组揭示了对寄生的适应。《自然》496,57-63(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
The Evolution of Parasitism: A Phylogenetic Perspective. (Academic Press, San Diego, 2003).Coghlan, A. et al. Comparative genomics of the major parasitic worms. Nat. Genet. 51, 163–174 (2019).
寄生的进化:系统发育的观点。(学术出版社,圣地亚哥,2003年)。Coghlan,A。等人。主要寄生虫的比较基因组学。纳特·吉内特。51163-174(2019)。
Google Scholar
谷歌学者
Simakov, O. et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820–830 (2020).PubMed
Simakov,O。等人。高度保守的同线性解决了脊椎动物进化中的早期事件。自然生态。进化。4820-830(2020)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zimmermann, B. et al. Topological structures and syntenic conservation in sea anemone genomes. Nat. Commun. 14, 8270 (2023).ADS
Zimmermann,B。等人。海葵基因组中的拓扑结构和同线性保守性。国家公社。148270(2023)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liao, I. J.-Y., Lu, T.-M., Chen, M.-E. & Luo, Y.-J. Spiralian genomics and the evolution of animal genome architecture. Brief. Funct. Genomics elad029 (2023) https://doi.org/10.1093/bfgp/elad029.Sawh, A. N. & Mango, S. E. Chromosome organization in 4D: insights from C. elegans development.
Liao,I.J.-Y.,Lu,T.-M.,Chen,M.-E.&Luo,Y.-J.螺旋基因组学和动物基因组结构的进化。简介。函数。基因组学elad029(2023)https://doi.org/10.1093/bfgp/elad029.Sawh,A.N。和Mango,S.E。4D中的染色体组织:来自秀丽隐杆线虫发育的见解。
Curr. Opin. Genet. Dev. 75, 101939 (2022).CAS .
Curr。打开。遗传的。1939年12月75日(2022年)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).ADS
Crane,E.等人。在剂量补偿过程中,凝聚素驱动的X染色体拓扑结构重塑。《自然》523240–244(2015)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Plessy, C. et al. Extreme Genome Scrambling in Cryptic Oikopleura Dioica Species. (2023) https://doi.org/10.1101/2023.05.09.539028.Salvetti, A. et al. Adult stem cell plasticity: Neoblast repopulation in non-lethally irradiated planarians. Dev. Biol. 328, 305–314 (2009).CAS
Plessy,C.等人。隐蔽的Oikopleura Dioica物种中的极端基因组扰乱。(2023年)https://doi.org/10.1101/2023.05.09.539028.Salvetti,A。等人。成体干细胞可塑性:未经致命照射的涡虫中的新生细胞再生。开发生物。328305-314(2009)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
De Mulder, K. et al. Potential of Macrostomum lignano to recover from γ-ray irradiation. Cell Tissue Res 339, 527–542 (2010).ADS
De Mulder,K。等人。木脂大孢子从γ射线照射中恢复的潜力。细胞组织研究339527-542(2010)。广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Collins III, J. J. et al. Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 494, 476–479 (2013).ADS
Collins III,J.J.等人。人体寄生虫曼氏血吸虫中的成体干细胞。自然494476-479(2013)。广告
Google Scholar
谷歌学者
Koziol, U., Rauschendorfer, T., Zanon Rodríguez, L., Krohne, G. & Brehm, K. The unique stem cell system of the immortal larva of the human parasite Echinococcus multilocularis. EvoDevo 5, 10 (2014).PubMed
Koziol,U.,Rauschendorfer,T.,Zanon Rodríguez,L.,Krohne,G。&Brehm,K。人类寄生虫多房棘球绦虫永生幼虫的独特干细胞系统。EvoDevo 5,10(2014)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Richardson, C. & Jasin, M. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol. Cell. Biol. 20, 9068–9075 (2000).CAS
Richardson,C。&Jasin,M。双链断裂的同源和非同源修复偶联保留了哺乳动物细胞的基因组完整性。摩尔电池。生物学杂志209068-9075(2000)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Boboila, C. et al. Alternative end-joining catalyzes robust IgH locus deletions and translocations in the combined absence of ligase 4 and Ku70. Proc. Natl Acad. Sci. USA. 107, 3034–3039 (2010).ADS
Boboila,C。等人。替代末端连接在不存在连接酶4和Ku70的情况下催化强大的IgH基因座缺失和易位。程序。国家科学院。科学。美国1073034–3039(2010)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramsden, D. A. & Nussenzweig, A. Mechanisms driving chromosomal translocations: Lost in time and space. Oncogene 40, 4263–4270 (2021).CAS
Ramsden,D.A。和Nussenzweig,A。驱动染色体易位的机制:在时间和空间上丢失。癌基因404263-4270(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Howe, J., Rink, J. C., Wang, B. & Griffin, A. S. Multicellularity in animals: The potential for within-organism conflict. Proc. Natl Acad. Sci. 119, e2120457119 (2022).CAS
Howe,J.,Rink,J.C.,Wang,B。&Griffin,A.S。动物的多细胞性:生物体内冲突的可能性。程序。国家科学院。科学。119,e2120457119(2022)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Merryman, M. S., Alvarado, A. S. & Jenkin, J. C. Culturing planarians in the laboratory. in Planarian regeneration: Methods and protocols 241–258 (Springer New York, New York, NY, 2018).Cohen, S. S. & Lichtenstein, J. The isolation of deoxyribonucleic acid from bacterial extracts by precipitation with streptomycin.
Merryman,M.S.,Alvarado,A.S。和Jenkin,J.C。在实验室培养涡虫。在涡虫再生:方法和协议241-258(Springer New York,New York,NY,2018)。Cohen,S.S。&Lichtenstein,J。通过链霉素沉淀从细菌提取物中分离脱氧核糖核酸。
J. Biol. Chem. 235, PC55–PC56 (1960).CAS .
J.生物学。化学。第55页至第56页(1960年)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Oxenburgh, M. S. & Snoswell, A. M. Use of Streptomycin in the Separation of Nucleic Acids from Protein in a Bacterial Extract. Nature 207, 1416–1417 (1965).ADS
Oxenburgh,M.S.&Snoswell,A.M.使用链霉素从细菌提取物中的蛋白质中分离核酸。自然2071416-1417(1965)。广告
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Deguchi, T., Ishi, A. & Tanaka, M. Binding of aminoglycoside antibiotics to acidic mucopolysaccharides. J. Antibiot. 31, 150–155 (1978)..Lis, J. T. & Schleif, R. Size fractionation of double-stranded DNA by precipitation with polyethylene glycol. Nucleic Acids Res. 2, 383–389 (1975).CAS .
Deguchi,T.,Ishi,A。&Tanaka,M。氨基糖苷类抗生素与酸性粘多糖的结合。J、 抗生素。31150-155(1978年)。。Lis,J.T。&Schleif,R。通过用聚乙二醇沉淀对双链DNA进行大小分级。核酸研究2383-389(1975)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).CAS
Cheng,H.,Concepcion,G.T.,Feng,X.,Zhang,H。&Li,H。单倍型使用具有hifiasm的阶段组装图解析从头组装。自然方法18170-175(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ghurye, J., Pop, M., Koren, S., Bickhart, D. & Chin, C.-S. Scaffolding of long read assemblies using long range contact information. BMC Genomics 18, 527 (2017).PubMed
Ghurye,J.,Pop,M.,Koren,S.,Bickhart,D。&Chin,C.-S。使用远程联系信息对长读组件进行支架。BMC基因组学18527(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).CAS
Li,H。提高minimap2对齐精度的新策略。生物信息学374572-4574(2021)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).PubMed
Goel,M.,Sun,H.,Jiao,W.-B.&Schneeberger,K.SyRI:从全基因组组装中发现基因组重排和局部序列差异。基因组生物学。20277(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).CAS
Poplin,R。等人。使用深度神经网络的通用SNP和小indel变体调用者。美国国家生物技术公司。36983-987(2018)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ou, S. et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 20, 275 (2019).CAS
Ou,S.等人。基准测试转座因子注释方法,以创建简化的综合管道。基因组生物学。。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Neumann, P., Novák, P., Hoštáková, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA 10, 1 (2019).PubMed
Neumann,P.,Novák,P.,Hoštáková,N。&Macas,J。植物LTR反转录转座子的系统调查阐明了它们的多蛋白结构域的系统发育关系,并为元素分类提供了参考。暴徒。DNA 10,1(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 15, 3745–3776 (2020).PubMed
。自然协议。153745-3776(2020)。PubMed出版社
Google Scholar
谷歌学者
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed
Kearse,M。等人。Geneious Basic:用于组织和分析序列数据的集成和可扩展桌面软件平台。生物信息学281647-1649(2012)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Y., Chu, J., Cheng, H. & Li, H. De novo reconstruction of satellite repeat units from sequence data. ArXiv arXiv:2304.09729v1 (2023).Kokot, M., Długosz, M. & Deorowicz, S. KMC 3: counting and manipulating k -mer statistics. Bioinformatics 33, 2759–2761 (2017).CAS
Zhang,Y.,Chu,J.,Cheng,H。&Li,H。从序列数据从头重建卫星重复单元。ArXiv ArXiv:2304.09729v1(2023)。Kokot,M.,Długosz,M。&Deorowicz,S。KMC 3:计数和操纵k-mer统计。生物信息学332759-2761(2017)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, S.-Y. & Rink, J. C. Total RNA Isolation from Planarian Tissues. 1774 (Humana Press, New York, NY, 2018).Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).CAS .
Liu,S.-Y.&Rink,J.C。从涡虫组织中分离总RNA。1774(Humana出版社,纽约,纽约,2018)。Kim,D.,Paggi,J.M.,Park,C.,Bennett,C。&Salzberg,S.L。基于图形的基因组比对和HISAT2和HISAT基因型的基因分型。美国国家生物技术公司。37907-915(2019)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).CAS
Kovaka,S.等人。来自与StringTie2的长读RNA-seq比对的转录组组装。基因组生物学。20278(2019)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).ADS
Tang,A.D.等人。慢性淋巴细胞白血病中SF3B1突变的全长转录本表征揭示了保留内含子的下调。国家公社。111438(2020)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gleeson, J. et al. Accurate expression quantification from nanopore direct RNA sequencing with NanoCount. Nucleic Acids Res 50, e19 (2022).CAS
Gleeson,J。等人。使用NanoCount从纳米孔直接RNA测序进行准确的表达定量。。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: A method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).PubMed
Buenrostro,J.D.,Wu,B.,Chang,H.Y。&Greenleaf,W.J。ATAC-seq:一种测定全基因组染色质可及性的方法。货币。普罗托克。分子生物学。109、21.29.1–21.29.9(2015)。PubMed出版社
Google Scholar
谷歌学者
Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).PubMed
Zhang,Y.等人。ChIP-Seq(MACS)的基于模型的分析。基因组生物学。9,R137(2008)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Crusoe, M. R. et al. The khmer software package: enabling efficient nucleotide sequence analysis. F1000Res. 4, 900 (2015).Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383 (2015).CAS .
。F1000Res。4900(2015)。Yu,G.,Wang,L.-G.&He,Q.-Y.ChIPseeker:用于芯片峰注释,比较和可视化的R/生物导体封装。生物信息学312382-2383(2015)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44, W160–W165 (2016).PubMed
。核酸Res 44,W160–W165(2016)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kurtenbach, S. & Harbour, J. W. SparK: A publication-quality NGS visualization tool. Preprint at https://doi.org/10.1101/845529 (2019).Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS
Kurtenbach,S。和Harbor,J。W。SparK:一种出版物质量的NGS可视化工具。预印于https://doi.org/10.1101/845529(2019年)。。生物信息学26841-842(2010)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
。生物信息学302114-2120(2014)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS
Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ou, J. et al. ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. BMC Genomics 19, 169 (2018).PubMed
Ou,J。等人。ATACseqQC:用于ATAC-seq数据对齐后质量评估的生物导体包。BMC基因组学19169(2018)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Newell, R. et al. ChIP-R: Assembling reproducible sets of ChIP-seq and ATAC-seq peaks from multiple replicates. Genomics 113, 1855–1866 (2021).CAS
Newell,R。等人。ChIP-R:从多个重复中组装可重复的ChIP-seq和ATAC-seq峰集。基因组学1131855-1866(2021)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed
Emms,D。M。和Kelly,S。OrthoFinder:比较基因组学的系统发育正交推断。基因组生物学。20238(2019)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS
Katoh,K。&Standley,D.M。MAFFT多序列比对软件版本7:性能和可用性的改进。分子生物学。进化。30772-780(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, Avon & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS
Kalyanamoorthy,S.,Minh,B.Q.,Wong,T.K.F.,Haeseler,Avon&Jermiin,L.S.ModelFinder:用于准确系统发育估计的快速模型选择。自然方法14587-589(2017)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS
Minh,B.Q.等人,《IQ-TREE 2:基因组时代系统发育推断的新模型和有效方法》。分子生物学。进化。371530-1534(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).ADS
Armstrong,J。等人。渐进仙人掌是千基因组时代的多基因组比对仪。《自然》587246-251(2020)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, X., Kaplow, I. M., Wirthlin, M., Park, T. Y. & Pfenning, A. R. HALPER facilitates the identification of regulatory element orthologs across species. Bioinformatics 36, 4339–4340 (2020).CAS
Zhang,X.,Kaplow,I.M.,Wirthlin,M.,Park,T.Y。&Pfenning,A.R。HALPER有助于鉴定物种间的调控元件直系同源物。生物信息学364339–4340(2020)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics 29, 1341–1342 (2013).CAS
Hickey,G.,Paten,B.,Earl,D.,Zerbino,D。&Haussler,D。HAL:用于存储和分析多个基因组比对的分层格式。生物信息学291341-1342(2013)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).ADS
Wang,Y。et al。MCScanX:用于基因同线性和共线性检测和进化分析的工具包。核酸Res.40,e49(2012)。广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).PubMed
Simão,F.A.,Waterhouse,R.M.,Ioannidis,P.,Kriventseva,E.V。&Zdobnov,E.M.BUSCO:使用单拷贝直系同源物评估基因组组装和注释完整性。生物信息学313210-3212(2015)。PubMed出版社
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank Heino Andreas, Rick Kluivert, Jens Krull, and the MPI-NAT animal services staff for worm care and the maintenance of the species collection. We thank Tobias Boothe for picture acquisition. We thank Juliana G. Roscito for sequencing support and close collaboration during method development.
下载参考文献致谢我们感谢Heino Andreas,Rick Kluivert,Jens Krull和MPI-NAT动物服务人员对蠕虫的护理和物种收集的维护。我们感谢Tobias Boothe的图片采集。我们感谢Juliana G.Roscito在方法开发过程中提供的测序支持和密切合作。
We thank Hanh Vu for access to S. mediterranea RNA-seq data. We thank the following facilities for their support: the DRESDEN Concept Genome Center, part of the MPI-CBG and the technology platform of the CMCB at the TU Dresden, supported by DFG (INST 269/768-1); the Genomics Core Facility of the European Molecular Biology Laboratory in Heidelberg; and the IIT Genomics Facility.
我们感谢Hanh Vu访问S.mediterranea RNA-seq数据。我们感谢以下设施的支持:德累斯顿概念基因组中心(MPI-CBG的一部分)和德累斯顿大学CMCB的技术平台,由DFG(INST 269/768-1)支持;海德堡欧洲分子生物学实验室基因组学核心设施;和IIT基因组学设施。
We are grateful to Diego Vozzi, Yeraldin Castillo Spelorzi, and Edoardo Henzen for their technical support of the Nanopore sequencing experiments. JCR received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement number 649024), from the German Research Foundation (project RI 2449/51), from the Behrens-Weise Foundation, and from the Max Planck Society.
我们感谢Diego Vozzi,Yeraldin Castillo Spelorzi和Edoardo Henzen对纳米孔测序实验的技术支持。JCR获得了欧盟地平线2020研究与创新计划(授权协议号649024)下欧洲研究理事会(ERC)的资助,德国研究基金会(RI 2449/51项目),贝伦斯·韦斯基金会和马克斯·普朗克学会的资助。
JNB was supported by Swiss National Science Foundation Grant P500PB_206673. LP, AC and SG were supported by intramural funding of the Istituto Italiano di Tecnologia. AP was supported by the SPP2202 Priority program (Project No. 422389065).FundingOpen Access funding enabled and organized by Projekt DEAL.Author informationAuthor notesThese authors contributed equally: Mario Ivanković, Jeremias N.
。LP、AC和SG得到了意大利技术研究所(Istituto Italiano di Tecnologia)的校内资助。AP得到了SPP2202优先项目(项目编号422389065)的支持。资金开放获取资金由Projekt交易启用和组织。作者信息作者注意到这些作者做出了同样的贡献:Mario Ivanković,Jeremias N。
Brand.Authors and AffiliationsDepartment of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, GermanyMario Ivanković, Jeremias N. Brand, Andrei Rozanski, Til Schubert, Miquel Vila-F.
品牌。作者和附属机构马克斯·普朗克多学科科学研究所组织动力学与再生系,哥廷根,GermanyMario Ivanković,Jeremias N.Brand,Andrei Rozanski,Til Schubert,Miquel Vila-F。
PubMed Google ScholarJeremias N. BrandView author publicationsYou can also search for this author in
PubMed谷歌学者Jeremias N.BrandView作者出版物您也可以在
PubMed Google ScholarLuca PandolfiniView author publicationsYou can also search for this author in
PubMed Google ScholarLuca PandolfiniView作者出版物您也可以在
PubMed Google ScholarThomas BrownView author publicationsYou can also search for this author in
PubMed Google ScholarThomas BrownView作者出版物您也可以在
PubMed Google ScholarMartin PippelView author publicationsYou can also search for this author in
PubMed Google ScholarMartin PippelView作者出版物您也可以在
PubMed Google ScholarAndrei RozanskiView author publicationsYou can also search for this author in
PubMed Google ScholarAndrei RozanskiView作者出版物您也可以在
PubMed Google ScholarTil SchubertView author publicationsYou can also search for this author in
PubMed Google ScholarTil SchubertView作者出版物您也可以在
PubMed Google ScholarMarkus A. GrohmeView author publicationsYou can also search for this author in
PubMed Google ScholarMarkus A.GrohmeView作者出版物您也可以在
PubMed Google ScholarSylke WinklerView author publicationsYou can also search for this author in
PubMed Google ScholarSylke WinklerView作者出版物您也可以在
PubMed Google ScholarLaura RobledilloView author publicationsYou can also search for this author in
PubMed Google ScholarLaura RobledilloView作者出版物您也可以在
PubMed Google ScholarMeng ZhangView author publicationsYou can also search for this author in
PubMed Google Scholarmang ZhangView作者出版物您也可以在
PubMed Google ScholarAzzurra CodinoView author publicationsYou can also search for this author in
PubMed Google ScholarAzzurra CodinoView作者出版物您也可以在
PubMed Google ScholarStefano GustincichView author publicationsYou can also search for this author in
PubMed Google ScholarStefano GustincichView作者出版物您也可以在
PubMed Google ScholarMiquel Vila-FarréView author publicationsYou can also search for this author in
PubMed Google ScholarMiquel Vila FarréView作者出版物您也可以在
PubMed Google ScholarShu ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarShu ZhangView作者出版物您也可以在
PubMed Google ScholarArgyris PapantonisView author publicationsYou can also search for this author in
PubMed Google ScholarArgyris PapantonisView作者出版物您也可以在
PubMed Google ScholarAndré MarquesView author publicationsYou can also search for this author in
PubMed Google ScholarAndréMarquesView作者出版物您也可以在
PubMed Google ScholarJochen C. RinkView author publicationsYou can also search for this author in
PubMed基金会谷歌奖学金Jochen C.Rink查看作者出版物您也可以在
PubMed Google ScholarContributionsM.I., J.N.B, and J.C.R designed the study and wrote the manuscript. T.B., M.P., M.Z., and A.M. performed genome assembly. L.P., A.R., L. R., and J.N.B performed genome annotation. T.S. and M.A.G. developed and applied DNA extraction protocols.
PubMed谷歌学术贡献。一、 ,J.N.B和J.C.R设计了这项研究并撰写了手稿。T、 B.,M.P.,M.Z。和A.M.进行了基因组组装。五十、 P.,A.R.,L.R。和J.N.B进行了基因组注释。T、 。
M.I. designed, developed, performed, and analyzed ATAC-seq and ChIP-seq experiments. S.W. performed method development and application of HiFi sequencing. M.I. performed Hi-C experiments. S.Z. and A.P. supported and performed some of the Hi-C experiments. L.P., A.C., and S.G. performed nanopore sequencing.
M、 I.设计,开发,执行和分析ATAC-seq和ChIP-seq实验。S、 W.进行了高保真测序的方法开发和应用。M、 I.进行了Hi-C实验。S、 Z.和A.P.支持并执行了一些Hi-C实验。五十、 P.,A.C。和S.G.进行了纳米孔测序。
M.V.F. and J.C.R. collected and identified S. nova, S. polychroa, and S. lugubris. J.N.B. performed genome alignment, phylogenetics, and comparative genomics analyses. J.C.R. received funding and supervised the research.Corresponding authorCorrespondence to.
M、 V.F.和J.C.R.收集并鉴定了S.nova,S.polychroa和S.lugubris。J.N.B.进行了基因组比对,系统发育和比较基因组学分析。J、 C.R.获得了资金并监督了这项研究。对应作者对应。
Jochen C. Rink.Ethics declarations
Jochen C.Rink。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Yi-Jyun Luo, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢Yi Jyun Luo和另一位匿名审稿人为这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription Of Additional Supplementary FilesSupplementary Data 1-15Reporting summarySource dataSource DataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1-15报告摘要源数据源数据权限和权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleIvanković, M., Brand, J.N., Pandolfini, L. et al. A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence.
转载和许可本文引用本文Ivanković,M.,Brand,J.N.,Pandolfini,L。等人。对涡虫基因组的比较分析揭示了面对快速结构分化的监管保守性。
Nat Commun 15, 8215 (2024). https://doi.org/10.1038/s41467-024-52380-9Download citationReceived: 20 January 2024Accepted: 30 August 2024Published: 19 September 2024DOI: https://doi.org/10.1038/s41467-024-52380-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Commun 158215(2024)。https://doi.org/10.1038/s41467-024-52380-9Download引文收到日期:2024年1月20日接受日期:2024年8月30日发布日期:2024年9月19日OI:https://doi.org/10.1038/s41467-024-52380-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。