商务合作
动脉网APP
可切换为仅中文
AbstractPatients with lung adenocarcinoma who have never smoked (NSLA) and lack key driver mutations, such as those in the EGFR and ALK genes, face limited options for targeted therapies. They also tend to have poorer outcomes with immune checkpoint inhibitors than lung cancer patients who have a history of smoking.
摘要从未吸烟(NSLA)且缺乏关键驱动突变(如EGFR和ALK基因突变)的肺腺癌患者面临有限的靶向治疗选择。与有吸烟史的肺癌患者相比,他们使用免疫检查点抑制剂的结果往往较差。
The proteogenomic profile of nonsmoking lung adenocarcinoma patients without these oncogenic driver mutations is poorly understood, which complicates the precise molecular classification of these cancers and highlights a significant area of unmet clinical need. This study analyzed the genome, transcriptome, and LC‒MS/MS-TMT-driven proteome data of tumors obtained from 99 Korean never-smoker lung adenocarcinoma patients.
没有这些致癌驱动突变的不吸烟肺腺癌患者的蛋白质基因组学特征知之甚少,这使这些癌症的精确分子分类复杂化,并突出了未满足临床需求的重要领域。这项研究分析了从99名韩国从不吸烟者肺腺癌患者获得的肿瘤的基因组,转录组和LC-MS/MS TMT驱动的蛋白质组数据。
NSLA tumors without EGFR or ALK driver oncogenes were classified into four proteogenomic subgroups: proliferation, angiogenesis, immune, and metabolism subgroups. These 4 molecular subgroups were strongly associated with distinct clinical outcomes. The proliferation and angiogenesis subtypes were associated with a poorer prognosis, while the immune subtype was associated with the most favorable outcome, which was validated in an external lung cancer dataset.
没有EGFR或ALK驱动癌基因的NSLA肿瘤分为四个蛋白质基因组亚组:增殖,血管生成,免疫和代谢亚组。这4个分子亚组与不同的临床结果密切相关。增殖和血管生成亚型与较差的预后相关,而免疫亚型与最有利的结果相关,这在外部肺癌数据集中得到了验证。
Genomic-wide impacts were analyzed, and significant correlations were found between copy number alterations and both the transcriptome and proteome for several genes, with enrichment in the ERBB, neurotrophin, insulin, and MAPK signaling pathways. Proteogenomic analyses suggested several targetable genes and proteins, including CDKs and ATR, as potential therapeutic targets in the proliferation subgroup.
分析了全基因组的影响,发现拷贝数改变与几个基因的转录组和蛋白质组之间存在显着相关性,并富集了ERBB,神经营养因子,胰岛素和MAPK信号通路。蛋白质基因组学分析表明,包括CDK和ATR在内的几种可靶向基因和蛋白质是增殖亚组的潜在治疗靶点。
Upregulated cytokines, such as CCL5 and CXCL13, in the immune subgroup may serve as potential targets for combination immunotherapy. Our comprehensive proteogenomic analysis revealed the .
免疫亚组中上调的细胞因子,如CCL5和CXCL13,可作为联合免疫治疗的潜在靶点。我们全面的蛋白质基因组学分析揭示了。
IntroductionLung cancer is the leading cause of cancer death, with an annual incidence of approximately 2 million cases worldwide1. While smoking remains the primary cause of lung cancer, never-smoker lung cancer is an increasingly concerning public health issue, particularly in Asian female populations, with its incidence steadily rising worldwide over the last several decades2.
引言肺癌是癌症死亡的主要原因,全世界每年发病率约为200万例1。虽然吸烟仍然是肺癌的主要原因,但从不吸烟的肺癌是一个越来越令人担忧的公共卫生问题,特别是在亚洲女性人群中,其发病率在过去几十年中在全球范围内稳步上升2。
Most of these cancers exhibit a biologically simple cancer network, often characterized by a single predominant oncogenic driver, such as an EGFR or ALK mutation. Blockade of these mutations by tyrosine kinase inhibitors (TKIs) typically results in an initial clinical response lasting several months2,3,4.
这些癌症中的大多数表现出生物学上简单的癌症网络,其特征通常是单一的主要致癌驱动因素,例如EGFR或ALK突变。酪氨酸激酶抑制剂(TKIs)阻断这些突变通常会导致持续数月的初始临床反应2,3,4。
However, a considerable proportion of never-smokers with lung cancer lack these identifiable major driver mutations, which poses a challenge for the application of targeted therapies.Recent clinical trials have reported markedly improved survival in lung cancer patients receiving immune checkpoint inhibitors (ICIs) either as monotherapy or in combination with cytotoxic chemotherapy5,6,7.
然而,相当一部分患有肺癌的从不吸烟者缺乏这些可识别的主要驱动突变,这对靶向治疗的应用提出了挑战。最近的临床试验报道,接受免疫检查点抑制剂(ICI)作为单一疗法或联合细胞毒性化疗的肺癌患者的生存率显着提高5,6,7。
While ICIs generally improve clinical outcomes in current- and former-smokers with lung cancer, never-smokers typically exhibit a lower tumor mutation burden (TMB) and a reduced presence of immune components, leading to limited clinical benefit from ICIs8. Never-smoker non-small cell lung cancer (NSCLC) patients often exhibit resistance to ICIs, even those with high PD-L1 expression levels.
虽然ICIs通常可以改善目前和以前吸烟者肺癌的临床结果,但从不吸烟者通常表现出较低的肿瘤突变负担(TMB)和免疫成分的减少,导致ICIs8的临床益处有限。从不吸烟的非小细胞肺癌(NSCLC)患者经常表现出对ICI的抵抗力,即使是那些PD-L1表达水平高的患者。
Despite the use of the TMB as an ICI efficacy biomarker, its clinical implementation faces challenges such as the need to acquire adequate tissue for sequencing, lengthy turnaround times, and high costs8. Moreover, an optimal cutoff value for the TMB as a predictive biomarker has yet to be determined9.In patients with never.
尽管使用TMB作为ICI功效生物标志物,但其临床实施仍面临挑战,例如需要获得足够的组织进行测序,周转时间长和成本高8。此外,TMB作为预测性生物标志物的最佳临界值尚未确定9。对于never患者。
Data availability
数据可用性
For the KNCC NSLA dataset, the raw genomic, transcriptomic, and epigenomic data were deposited in the Korean Nucleotide Archive (https://kobic.re.kr/kona) under accession IDs KAD2100075 and KAD2100133. All genomic and transcriptomic data are available from KoNA upon reasonable request. Processed datasets are provided in Supplementary Tables 1–3.
对于KNCC NSLA数据集,原始基因组、转录组和表观基因组数据保存在韩国核苷酸档案馆(https://kobic.re.kr/kona)根据登录号KAD2100075和KAD2100133。经合理要求,可从KoNA获得所有基因组和转录组数据。补充表1-3提供了经过处理的数据集。
All proteomic and phosphoproteomic data, including raw files, protein databases, and search results, were deposited in the Korea BioData Station (K-BDS) with the bioproject identifier PRJKA108675 and in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD033360.
所有蛋白质组学和磷酸化蛋白质组学数据,包括原始文件,蛋白质数据库和搜索结果,均以生物项目标识符PRJKA108675保存在韩国生物数据站(K-BDS)中,并通过PRIDE合作伙伴存储库以数据集标识符PXD033360保存在ProteomeXchange Consortium中。
The TCGA dataset was downloaded from the Genomic Data Common (GDC) data portal (https://portal.gdc.cancer.gov/) operated by the National Cancer Institute (NCI). The raw genomic, transcriptomic, and epigenomic data were deposited in the Korean Nucleotide Archive (https://kobic.re.kr/bps/kona) under accession ID PRJKA210029.
TCGA数据集是从基因组数据公共(GDC)数据门户下载的(https://portal.gdc.cancer.gov/)由国家癌症研究所(NCI)运营。原始基因组、转录组和表观基因组数据保存在韩国核苷酸档案馆(https://kobic.re.kr/bps/kona)根据登录号PRJKA21029。
All genomic and transcriptomic data for our cohort are available from the KoNA upon request. All proteomic data, including the raw files, protein databases, and search results, were deposited in the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD033360..
我们队列的所有基因组和转录组数据均可应要求从KoNA获得。所有蛋白质组学数据,包括原始文件,蛋白质数据库和搜索结果,都通过PRIDE合作伙伴存储库保存在ProteomeXchange Consortium中,数据集标识符为PXD033360。。
ReferencesSung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).Article
ReferencesSung,H.等人,《2020年全球癌症统计:全球癌症协会对185个国家36种癌症的全球发病率和死亡率的估计》。CA Cancer J.Clin。71209-249(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, F. & Zhou, C. Lung cancer in never smokers-the East Asian experience. Transl. Lung Cancer Res. 7, 450–463 (2018).Article
Zhou,F。&Zhou,C。不吸烟者的肺癌东亚经验。翻译。肺癌研究7450-463(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).Article
Mok,T.S.等人。吉非替尼或卡铂-紫杉醇治疗肺腺癌。N、 英语。J、 。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Du, Z. & Lovly, C. M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer 17, 58 (2018).Article
Du,Z。&Lovly,C.M。癌症中受体酪氨酸激酶激活的机制。Mol.Cancer 17,58(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Naltet, C. & Besse, B. Immune checkpoint inhibitors in elderly patients treated for a lung cancer: a narrative review. Transl. Lung Cancer Res. 10, 3014–3028 (2021).Article
。翻译。肺癌研究103014-3028(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wilky, B. A. Immune checkpoint inhibitors: the linchpins of modern immunotherapy. Immunol. Rev. 290, 6–23 (2019).Article
Wilky,B.A。免疫检查点抑制剂:现代免疫疗法的关键。免疫。第290版,第6-23页(2019年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chyuan, I. T., Chu, C. L. & Hsu, P. N. Targeting the tumor microenvironment for improving therapeutic effectiveness in cancer immunotherapy: focusing on immune checkpoint inhibitors and combination therapies. Cancers 13, 1188 (2021).Article
Chyuan,I.T.,Chu,C.L。&Hsu,P.N。靶向肿瘤微环境以提高癌症免疫疗法的治疗效果:关注免疫检查点抑制剂和联合疗法。癌症131188(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, X. et al. Smoking history as a potential predictor of immune checkpoint inhibitor efficacy in metastatic non-small cell lung cancer. J. Natl Cancer Inst. 113, 1761–1769 (2021).Article
Wang,X。等人。吸烟史作为转移性非小细胞肺癌免疫检查点抑制剂疗效的潜在预测因子。J、 国家癌症研究所1131761-1769(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gainor, J. F. et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin. Cancer Res. 22, 4585–4593 (2016).Article
Gainor,J.F。等人。回顾性分析:EGFR突变和ALK重排与非小细胞肺癌对PD-1通路阻断的低反应率相关。临床。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).Article
Shaw,A.T.等人,克唑替尼与晚期ALK阳性肺癌的化疗对比。N、 英语。J、 医学3682385-2394(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, Y. J. et al. Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell 182, 226–244 e217 (2020).Article
Chen,Y.J.等人,《东亚非吸烟肺癌的蛋白质基因组学》描述了发病机制和进展的分子特征。细胞182226-244 e217(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gillette, M. A. et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182, 200–225.e235 (2020).Article
Gillette,M.A.等人。蛋白质基因组学表征揭示了肺腺癌的治疗脆弱性。细胞182200–225.e235(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, J. Y. et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell 182, 245–261.e217 (2020).Article
Xu,J.Y.等。人肺腺癌的综合蛋白质组学表征。细胞182245-261.e217(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Devarakonda, S. et al. Genomic profiling of lung adenocarcinoma in never-smokers. J. Clin. Oncol. 39, 3747–3758 (2021).Article
Devarakonda,S.等人。不吸烟者肺腺癌的基因组分析。J、 临床。Oncol公司。393747-3758(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, T. et al. Genomic and evolutionary classification of lung cancer in never smokers. Nat. Genet. 53, 1348–1359 (2021).Article
Zhang,T.等人。不吸烟者肺癌的基因组和进化分类。纳特·吉内特。531348-1359(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lehtio, J. et al. Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune evasion mechanisms. Nat. Cancer 2, 1224–1242 (2021).Article
Lehtio,J。等人。非小细胞肺癌的蛋白质基因组学揭示了与特定治疗靶点和免疫逃避机制相关的分子亚型。《自然癌症》21224-1242(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Soltis, A. R. et al. Proteogenomic analysis of lung adenocarcinoma reveals tumor heterogeneity, survival determinants, and therapeutically relevant pathways. Cell Rep. Med. 3, 100819 (2022).Article
Soltis,A.R.等人。肺腺癌的蛋白质基因组学分析揭示了肿瘤异质性,生存决定因素和治疗相关途径。细胞代表医学3100819(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article
Dobin,A。等人STAR:超快通用RNA-seq比对仪。生物信息学29,15-21(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, X. & Zhang, B. customProDB: an R package to generate customized protein databases from RNA-Seq data for proteomics search. Bioinformatics 29, 3235–3237 (2013).Article
Wang,X。&Zhang,B。customProDB:一个R包,用于从RNA-Seq数据生成定制的蛋白质数据库,用于蛋白质组学搜索。生物信息学293235-3237(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hundal, J. et al. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 8, 11 (2016).Article
Hundal,J。等人。pVAC-Seq:一种基因组引导的计算机识别肿瘤新抗原的方法。基因组医学8,11(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Favero, F. et al. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data. Ann. Oncol. 26, 64–70 (2015).Article
Favero,F。等人。Sequenza:来自肿瘤测序数据的等位基因特异性拷贝数和突变谱。安科。26,64-70(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4, 2612 (2013).Article
Yoshihara,K。等人。从表达数据推断肿瘤纯度以及基质和免疫细胞混合物。国家公社。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).Article
Lawrence,M.S.等人,《癌症中的突变异质性和寻找新的癌症相关基因》。自然499214-218(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, S. et al. Copy number signature analysis tool and its application in prostate cancer reveals distinct mutational processes and clinical outcomes. PLoS Genet. 17, e1009557 (2021).Article
Wang,S。等人。拷贝数特征分析工具及其在前列腺癌中的应用揭示了不同的突变过程和临床结果。PLoS Genet。17,e1009557(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 18, 248–262 (2017).Article
Charoentong,P。等人。泛癌免疫基因组学分析揭示了基因型-免疫表型关系和对检查点阻断反应的预测因子。Cell Rep.18248–262(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bagaev, A. et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 39, 845–865.e847 (2021).Article
Bagaev,A。等人。保守的泛癌微环境亚型预测对免疫疗法的反应。癌细胞39845-865.e847(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).Article
。核酸研究47,D607–D613(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Eid, S., Turk, S., Volkamer, A., Rippmann, F. & Fulle, S. KinMap: a web-based tool for interactive navigation through human kinome data. BMC Bioinforma. 18, 16 (2017).Article
Eid,S.,Turk,S.,Volkamer,A.,Rippmann,F。&Fulle,S。KinMap:一种基于网络的工具,用于通过人类kinome数据进行交互式导航。。18,16(2017)。文章
Google Scholar
谷歌学者
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e516 (2017).Article
Tshrenak,A。等人定义癌症依赖图。细胞170564-576.e516(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kortleve, D., Coelho, R. M. L., Hammerl, D. & Debets, R. Cancer germline antigens and tumor-agnostic CD8(+) T cell evasion. Trends Immunol. 43, 391–403 (2022).Article
Kortleve,D.,Coelho,R.M.L.,Hammerl,D。&Debets,R。癌症种系抗原和肿瘤不可知的CD8(+)T细胞逃避。趋势免疫。43391-403(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).Article
Consortium,G.T。基因型组织表达(GTEx)项目。纳特·吉内特。45580-585(2013)。文章
Google Scholar
谷歌学者
Friedlaender, A. et al. EGFR and HER2 exon 20 insertions in solid tumours: from biology to treatment. Nat. Rev. Clin. Oncol. 19, 51–69 (2022).Article
Friedlaender,A。等人。实体瘤中的EGFR和HER2外显子20插入:从生物学到治疗。国家修订临床。Oncol公司。19,51-69(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, L., Guo, Z., Wang, F. & Fu, L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct. Target Ther. 6, 386 (2021).Article
Huang,L.,Guo,Z.,Wang,F。&Fu,L。KRAS突变:从癌症中的不可药物到可药物。。目标Ther。6386(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nyquist, M. D. et al. Combined TP53 and RB1 loss promotes prostate cancer resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep. 31, 107669 (2020).Article
Nyquist,M.D.等人将TP53和RB1的丢失结合起来,可促进前列腺癌对一系列治疗方法的抵抗力,并赋予其对复制应激的脆弱性。Cell Rep.31107669(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Offin, M. et al. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes. J. Thorac. Oncol. 14, 1784–1793 (2019).Article
Offin,M。等人同时发生的RB1和TP53改变定义了EGFR突变型肺癌的一个子集,这些肺癌有组织学转化和较差临床结果的风险。J、 胸部。Oncol公司。141784-1793(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Otto, W. et al. Microsatellite instability and manifestations of angiogenesis in stage IV of sporadic colorectal carcinoma. Medicine 98, e13956 (2019).Article
Otto,W。等。散发性结直肠癌IV期微卫星不稳定性和血管生成的表现。医学98,e13956(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sahu, A. et al. Discovery of targets for immune-metabolic antitumor drugs identifies estrogen-related receptor alpha. Cancer Discov. 13, 672–701 (2023).Article
免疫代谢抗肿瘤药物靶标的发现确定了雌激素相关受体α。癌症发现。13672-701(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tyagi, A., Agarwal, C. & Agarwal, R. Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb-E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: role in prostate cancer prevention. Mol. Cancer Ther. 1, 525–532 (2002).CAS .
Tyagi,A.,Agarwal,C。&Agarwal,R。在雄激素依赖性人前列腺癌LNCaP细胞中抑制丝氨酸位点的视网膜母细胞瘤蛋白(Rb)磷酸化和水飞蓟宾增加Rb-E2F复合物形成:在前列腺癌预防中的作用。分子癌症治疗。1525-532(2002)。CAS。
PubMed
PubMed
Google Scholar
谷歌学者
Gong, Q. et al. Restoration of thymocyte development and function in zap-70−/− mice by the Syk protein tyrosine kinase. Immunity 7, 369–377 (1997).Article
Gong,Q。等人。Syk蛋白酪氨酸激酶对zap-70-/-小鼠胸腺细胞发育和功能的恢复。豁免7369-377(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ferrara, R. et al. Single or combined immune checkpoint inhibitors compared to first-line platinum-based chemotherapy with or without bevacizumab for people with advanced non-small cell lung cancer. Cochrane Database Syst. Rev. 12, CD013257 (2020).PubMed
。Cochrane数据库系统。修订版12,CD013257(2020)。PubMed出版社
Google Scholar
谷歌学者
Balkwill, F. R. The chemokine system and cancer. J. Pathol. 226, 148–157 (2012).Article
Balkwill,F.R。趋化因子系统与癌症。J、 。226148-157(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jenkins, L. et al. Cancer-associated fibroblasts suppress CD8+ T-cell Infiltration and confer resistance to immune-checkpoint blockade. Cancer Res. 82, 2904–2917 (2022).Article
Jenkins,L。等人。癌症相关成纤维细胞抑制CD8+T细胞浸润并赋予对免疫检查点阻断的抗性。癌症研究822904-2917(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Suh, J., Kim, D. H., Lee, Y. H., Jang, J. H. & Surh, Y. J. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling. Mol. Carcinog. 59, 1028–1040 (2020).Article
Suh,J.,Kim,D.H.,Lee,Y.H.,Jang,J.H。&Surh,Y.J。来源于癌症相关成纤维细胞的成纤维细胞生长因子-2通过FGFR1信号传导刺激人乳腺癌细胞的生长和进展。分子癌症。591028-1040(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schajnovitz, A. et al. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat. Immunol. 12, 391–398 (2011).Article
Schajnovitz,A。等人。骨髓基质细胞分泌CXCL12依赖于细胞接触,并由连接蛋白43和连接蛋白45间隙连接介导。自然免疫。12391-398(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Funasaka, T., Raz, A. & Nangia-Makker, P. Galectin-3 in angiogenesis and metastasis. Glycobiology 24, 886–891 (2014).Article
Funasaka,T.,Raz,A。&Nangia-Makker,P。Galectin-3在血管生成和转移中的作用。糖生物学24886-891(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gopinathan, G. et al. Interleukin-6 stimulates defective angiogenesis. Cancer Res. 75, 3098–3107 (2015).Article
Gopinathan,G。等人。白细胞介素-6刺激有缺陷的血管生成。癌症研究753098-3107(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Natori, T. et al. G-CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells. Biochem. Biophys. Res. Commun. 297, 1058–1061 (2002).Article
G-CSF刺激血管生成并促进肿瘤生长:骨髓来源的内皮祖细胞的潜在贡献。生物化学。生物物理。公共资源。2971058-1061(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Skara, L. et al. Prostate cancer-focus on cholesterol. Cancers 13, 4696 (2021).Article
Skara,L。等人。前列腺癌关注胆固醇。癌症134696(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, J. et al. CERS4 predicts positive anti-PD-1 response and promotes immunomodulation through Rhob-mediated suppression of CD8+Tim3+ exhausted T cells in non-small cell lung cancer. Pharm. Res. 194, 106850 (2023).Article
Wang,J。等人。CERS4预测抗PD-1阳性反应,并通过Rhob介导的抑制非小细胞肺癌中CD8+Tim3+耗竭的T细胞来促进免疫调节。Pharm.Res.194106850(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Tucci, S., Alatibi, K. I. & Wehbe, Z. Altered metabolic flexibility in inherited metabolic diseases of mitochondrial fatty acid metabolism. Int J. Mol. Sci. 22, 3799 (2021).Article
Tucci,S.,Alatibi,K.I。&Wehbe,Z。改变了线粒体脂肪酸代谢遗传性代谢疾病的代谢灵活性。。223799(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).Article
Barretina,J。等人,《癌细胞系百科全书》能够对抗癌药物敏感性进行预测建模。自然483603-607(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Siegmund, D., Wagner, J. & Wajant, H. TNF receptor associated factor 2 (TRAF2) signaling in cancer. Cancers 14, 4055 (2022).Article
Siegmund,D.,Wagner,J。&Wajant,H。癌症中的TNF受体相关因子2(TRAF2)信号传导。癌症14055(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matas-Rico, E. et al. Autotaxin impedes anti-tumor immunity by suppressing chemotaxis and tumor infiltration of CD8+ T cells. Cell Rep. 37, 110013 (2021).Article
Matas Rico,E。等人。Autotaxin通过抑制CD8+T细胞的趋化性和肿瘤浸润来阻止抗肿瘤免疫。Cell Rep.37110013(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mirzaei Bavil, F. et al. Ghrelin decreases angiogenesis, HIF-1alpha and VEGF protein levels in chronic hypoxia in lung tissue of male rats. Adv. Pharm. Bull. 5, 315–320 (2015).Article
Mirzaei-Bavil,F。等人。生长素释放肽降低雄性大鼠肺组织慢性缺氧时的血管生成,HIF-1α和VEGF蛋白水平。Adv.Pharm.Bull公司。5315-320(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mrozik, H. et al. 4-amino-6-(trichloroethenyl)-1,3-benzenedisulfonamide, a new, potent fasciolicide. J. Med Chem. 20, 1225–1227 (1977).Article
Mrozik,H.等人,4-氨基-6-(三氯乙烯)-1,3-苯二磺酰胺,一种新的强效糖苷。医学化学杂志。20, 1225–1227 (1977).文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Seo, W. et al. Runx-mediated regulation of CCL5 via antagonizing two enhancers influences immune cell function and anti-tumor immunity. Nat. Commun. 11, 1562 (2020).Article
Seo,W。等人。Runx通过拮抗两种增强子介导的CCL5调节影响免疫细胞功能和抗肿瘤免疫力。国家公社。11562(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ren, J. et al. CXCL13 as a novel immune checkpoint for regulatory b cells and its role in tumor metastasis. J. Immunol. 208, 2425–2435 (2022).Article
Ren,J。等人。CXCL13作为调节性b细胞的新型免疫检查点及其在肿瘤转移中的作用。J、 免疫。2082425-2435(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vredevoogd, D. W. et al. Augmenting immunotherapy impact by lowering tumor TNF cytotoxicity threshold. Cell 178, 585–599.e515 (2019).Article
Vredevoogd,D.W.等人。通过降低肿瘤TNF细胞毒性阈值来增强免疫治疗的影响。细胞178585-599.e515(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shirakawa, R. & Horiuchi, H. Ral GTPases: crucial mediators of exocytosis and tumourigenesis. J. Biochem. 157, 285–299 (2015).Article
Shirakawa,R。&Horiuchi,H。Ral GTPases:胞吐作用和肿瘤发生的关键介质。J、 生物化学。157285-299(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
La Fleur, L. et al. Mutation patterns in a population-based non-small cell lung cancer cohort and prognostic impact of concomitant mutations in KRAS and TP53 or STK11. Lung Cancer 130, 50–58 (2019).Article
La Fleur,L。等人。基于人群的非小细胞肺癌队列中的突变模式以及KRAS和TP53或STK11伴随突变的预后影响。肺癌130,50-58(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was conducted under the auspices of a Memorandum of Understanding between the Korea Institute of Science and Technology and the U.S. National Cancer Institute’s International Cancer Proteogenome Consortium (ICPC). The ICPC encourages international cooperation among institutions and nations in proteogenomic cancer research in which proteogenomic datasets are made available to the public.FundingThis study was supported by grants from the Ministry of Science and ICT through the National Research Foundation (NRF) Korea (No.
下载参考文献致谢这项工作是在韩国科学技术研究所和美国国家癌症研究所国际癌症蛋白质基因组联盟(ICPC)之间的谅解备忘录的支持下进行的。ICPC鼓励机构和国家在蛋白质基因组癌症研究方面进行国际合作,向公众提供蛋白质基因组数据集。资助这项研究得到了科学和信息通信技术部通过韩国国家研究基金会(NRF)的资助。
1731530), a grant from NRF (2021R1A2C2014410), grants from the National Cancer Center (Nos. 2211750, 2110140, 2110470, 2410921), and grants from the National Research Foundation of Korea (NRF-2017M3A9F9030559).Author informationAuthor notesThese authors contributed equally: Hyondeog Kim, Wonyeop Lee, Youngwook Kim.Authors and AffiliationsGraduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi-do, Republic of KoreaHyondeog Kim & Youngwook KimAnticancer Resistance Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of KoreaWonyeop Lee & Ji-Youn HanDivision of Cancer Data Science, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of KoreaYoungwook KimImmuno-oncology Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of KoreaSang-Jin LeeCancer Molecular Biology Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of KoreaWonyoung ChoiCancer Diagnostics Branch, Research Institute of National Cancer Center, Goyang, Gyeonggi-do, Republic of KoreaGeon Kook LeeKorea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of KoreaSeung-Jin .
1731530),NRF(2021R1A2C2014410)的资助,国家癌症中心(2211750、2110140、21104702410921)的资助,以及韩国国家研究基金会(NRF-2017M3A9F9030559)的资助。作者信息作者注意到这些作者做出了同样的贡献:Hyondog Kim,Wonyeop Lee,Youngwook Kim。作者和附属机构韩国国家癌症中心癌症科学与政策研究生院,韩国京畿道Goyang Kim&Youngwook KimAnticancer Resistance Branch,韩国国家癌症中心研究所,韩国京畿道Goyang,韩国京畿道共和国癌症数据科学研究所,韩国国家癌症中心研究所,韩国京畿道Goyang,韩国京畿道共和国国家癌症中心研究所免疫肿瘤学分会,韩国国家癌症中心研究所,韩国京畿道Goyang Jin Lee癌症分子生物学分会,韩国国家癌症中心研究所,Goyang韩国京畿道国家癌症中心研究所韩国京畿道国家癌症中心研究所韩国京畿道韩国生物科学与生物技术研究所韩国大田市癌症诊断科。
PubMed Google ScholarWonyeop LeeView author publicationsYou can also search for this author in
PubMed Google ScholarWonyeop LeeView作者出版物您也可以在
PubMed Google ScholarYoungwook KimView author publicationsYou can also search for this author in
PubMed Google ScholarYoungwook KimView作者出版物您也可以在
PubMed Google ScholarSang-Jin LeeView author publicationsYou can also search for this author in
PubMed Google ScholarSang Jin LeeView作者出版物您也可以在
PubMed Google ScholarWonyoung ChoiView author publicationsYou can also search for this author in
PubMed Google ScholarWonyoung ChoiView作者出版物您也可以在
PubMed Google ScholarGeon Kook LeeView author publicationsYou can also search for this author in
PubMed Google ScholarGeon Kook LeeView作者出版物您也可以在
PubMed Google ScholarSeung-Jin ParkView author publicationsYou can also search for this author in
PubMed Google ScholarSeung Jin ParkView作者出版物您也可以在
PubMed Google ScholarShinyeong JuView author publicationsYou can also search for this author in
PubMed Google ScholarShinyeong JuView作者出版物您也可以在
PubMed Google ScholarSeon-Young KimView author publicationsYou can also search for this author in
PubMed Google ScholarSeon Young KimView作者出版物您也可以在
PubMed Google ScholarCheolju LeeView author publicationsYou can also search for this author in
PubMed Google ScholarCheolju LeeView作者出版物您也可以在
PubMed Google ScholarJi-Youn HanView author publicationsYou can also search for this author in
PubMed Google ScholarJi Youn HanView作者出版物您也可以在
PubMed Google ScholarContributionsStudy conception and design: H.D.K., Y.W.K., S.J.L., and J.Y.H. Data analysis: H.D.K., W.Y.L., Y.W.K., W.Y.C., S.J.L., and J.Y.H. Data collection: W.Y.L., Y.W.K., S.J.L., and J.Y.H. Manuscript preparation: H.D.K., W.Y.L., Y.W.K., W.Y.C., S.J.L., and J.Y.H.
PubMed谷歌学术贡献研究概念与设计:H.D.K.,Y.W.K.,S.J.L。和J.Y.H.数据分析:H.D.K.,W.Y.L.,Y.W.K.,W.Y.C.,S.J.L。和J.Y.H.数据收集:W.Y.L.,Y.W.K.,S.J.L。和J.Y.H.手稿准备:H.D.K.,W.Y.L.,Y.W.K.,W.Y.C.,S.J.L。和J.Y.H.(笑声)。
Interpretation of results and editing: all authorsCorresponding authorsCorrespondence to.
结果解释和编辑:所有作者通讯作者通讯。
Youngwook Kim or Ji-Youn Han.Ethics declarations
Youngwook Kim或Ji Youn Han。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationSupplementary Table 1-12Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息补充表1-12权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleKim, H., Lee, W., Kim, Y. et al. Proteogenomic characterization identifies clinical subgroups in EGFR and ALK wild-type never-smoker lung adenocarcinoma.
转载和许可本文引用本文Kim,H.,Lee,W.,Kim,Y。等人。蛋白质基因组学表征确定了EGFR和ALK野生型从不吸烟者肺腺癌的临床亚组。
Exp Mol Med (2024). https://doi.org/10.1038/s12276-024-01320-0Download citationReceived: 12 April 2024Revised: 13 June 2024Accepted: 24 June 2024Published: 19 September 2024DOI: https://doi.org/10.1038/s12276-024-01320-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Exp Mol Med(2024)。https://doi.org/10.1038/s12276-024-01320-0Download引文收到日期:2024年4月12日修订日期:2024年6月13日接受日期:2024年6月24日发布日期:2024年9月19日OI:https://doi.org/10.1038/s12276-024-01320-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供