EN
登录

人类代谢组学中的基因组尺度模型

Genome-scale models in human metabologenomics

Nature 等信源发布 2024-09-19 21:25

可切换为仅中文


AbstractMetabologenomics integrates metabolomics with other omics data types to comprehensively study the genetic and environmental factors that influence metabolism. These multi-omics data can be incorporated into genome-scale metabolic models (GEMs), which are highly curated knowledge bases that explicitly account for genes, transcripts, proteins and metabolites.

摘要代谢组学将代谢组学与其他组学数据类型相结合,以全面研究影响代谢的遗传和环境因素。这些多组学数据可以整合到基因组规模的代谢模型(GEM)中,这些模型是高度精选的知识库,可以明确解释基因,转录本,蛋白质和代谢物。

By including all known biochemical reactions catalysed by enzymes and transporters encoded in the human genome, GEMs analyse and predict the behaviour of complex metabolic networks. Continued advancements to the scale and scope of GEMs — from cells and tissues to microbiomes and the whole body — have helped to design effective treatments and develop better diagnostic tools for metabolic diseases.

GEMs通过包括人类基因组中编码的酶和转运蛋白催化的所有已知生化反应,分析和预测复杂代谢网络的行为。从细胞和组织到微生物组和整个身体,GEM的规模和范围不断进步,有助于设计有效的治疗方法,并开发更好的代谢疾病诊断工具。

Furthermore, increasing amounts of multi-omics data are incorporated into GEMs to better identify the underlying mechanisms, biomarkers and potential drug targets of metabolic diseases..

此外,越来越多的多组学数据被纳入GEM,以更好地确定代谢疾病的潜在机制,生物标志物和潜在药物靶标。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Reconstructing global human and cell- and tissue-specific GEMs.Fig. 2: Whole-body metabolic modelling accounting for the host and microbiome interactions.Fig. 3: Interpretation of multi-omics data using systems biology and AI.Fig. 4: Multi-omics data throughout life.

图1:重建全球人类和细胞和组织特异性GEM。图2:考虑宿主和微生物组相互作用的全身代谢模型。。

ReferencesSaklayen, M. G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 20, 12 (2018).Article

参考文献Saklayen,M.G。代谢综合征的全球流行。货币。高血压。代表20,12(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).Article

Martínez-Reyes,I。&Chandel,N.S。癌症代谢:展望。《国家癌症评论》21669-680(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Xu, Y. et al. An atlas of genetic scores to predict multi-omic traits. Nature 616, 123–131 (2023).Article

Xu,Y.等人。预测多组学性状的遗传评分图谱。自然616123-131(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aaltonen, L. A. et al. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).Article

Aaltonen,L.A.等人。全基因组的泛癌分析。自然578,82-93(2020)。文章

Google Scholar

谷歌学者

Mardinoglu, A. & Nielsen, J. Systems medicine and metabolic modelling. J. Intern. Med. 271, 142–154 (2012). An extensive review of the use of GEMs in systems medicine-based applications.Article

Mardinoglu,A。&Nielsen,J。系统医学和代谢建模。J、 实习生。医学271142-154(2012)。广泛回顾了GEM在基于系统医学的应用中的使用。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hyduke, D. R., Lewis, N. E. & Palsson, B. Ø. Analysis of omics data with genome-scale models of metabolism. Mol. Biosyst. 9, 167–174 (2013).Article

Hyduke,D.R.,Lewis,N.E。和Palsson,B。用基因组规模的代谢模型分析组学数据。摩尔生物系统。9167-174(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).Article

Hasin,Y.,Seldin,M。&Lusis,A。疾病的多组学方法。基因组生物学。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Palsson, B. & Zengler, K. The challenges of integrating multi-omic data sets. Nat. Chem. Biol. 6, 787–789 (2010).Article

Palsson,B。&Zengler,K。整合多组学数据集的挑战。自然化学。生物学杂志6787-789(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mardinoglu, A., Boren, J., Smith, U., Uhlen, M. & Nielsen, J. Systems biology in hepatology: approaches and applications. Nat. Rev. Gastroenterol. Hepatol. 15, 365–377 (2018). An extensive review of the studies that use biological networks for integration of multiomics data for complex liver diseases.Article .

Mardinoglu,A.,Boren,J.,Smith,U.,Uhlen,M。&Nielsen,J。肝病学中的系统生物学:方法和应用。胃肠病学国家修订版。肝病。15365-377(2018)。对使用生物网络整合复杂肝病的多组学数据的研究进行了广泛的回顾。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bajwa, J., Munir, U., Nori, A. & Williams, B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc. J. 8, e188–e194 (2021).Article

Bajwa,J.,Munir,U.,Nori,A。&Williams,B。医疗保健中的人工智能:改变医学实践。未来健康C。J、 8,e188–e194(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oberhardt, M. A., Palsson, B. Ø. & Papin, J. A. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 5, 320 (2009).Article

奥伯哈特(Oberhardt),马萨诸塞州帕尔森(Palsson)Papin,J.A。基因组规模代谢重建的应用。分子系统。生物学5320(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mardinoglu, A., Gatto, F. & Nielsen, J. Genome-scale modeling of human metabolism — a systems biology approach. Biotechnol. J. 8, 985–996 (2013). An extensive review of the algorithms for the reconstruction of cell- and tissue- type specific GEMs.Article

Mardinoglu,A.,Gatto,F。&Nielsen,J。人类代谢的基因组规模建模-系统生物学方法。生物技术。J、 8985-996(2013)。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).Article

O'Brien,E.J.,Monk,J.M。和Palsson,B.O。使用基因组规模模型来预测生物能力。细胞161971-987(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nielsen, J. Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab. 25, 572–579 (2017).Article

Nielsen,J。代谢系统生物学:发展个性化和精准医学的驱动力。细胞代谢。25572-579(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wagner, A. et al. Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell 184, 4168–4185.e21 (2021).Article

Wagner,A。等人。单个Th17细胞的代谢模型揭示了自身免疫的调节因子。细胞1844168–4185.e21(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yizhak, K., Chaneton, B., Gottlieb, E. & Ruppin, E. Modeling cancer metabolism on a genome scale. Mol. Syst. Biol. 11, 817 (2015).Article

Yizhak,K.,Chaneton,B.,Gottlieb,E。&Ruppin,E。在基因组规模上模拟癌症代谢。分子系统。生物学杂志11817(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Terekhanova, N. V. et al. Epigenetic regulation during cancer transitions across 11 tumour types. Nature 623, 432–441 (2023).Article

Terekhanova,N.V。等人。11种肿瘤类型的癌症转变过程中的表观遗传调控。自然623432-441(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007). This study presents the first global human GEM and its use for systems biology-based applications.Article

Duarte,N.C.等人。基于基因组和文献数据的人类代谢网络的全球重建。程序。国家科学院。。美国1041777-1782(2007)。这项研究介绍了第一个全球人类GEM及其在基于系统生物学的应用中的用途。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ma, H. et al. The Edinburgh Human Metabolic Network reconstruction and its functional analysis. Mol. Syst. Biol. 3, 135 (2007).Article

Ma,H。等。爱丁堡人类代谢网络重建及其功能分析。分子系统。生物学杂志3135(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hao, T., Ma, H. W., Zhao, X. M. & Goryanin, I. Compartmentalization of the Edinburgh Human Metabolic Network. BMC Bioinformatics 11, 393 (2010).Article

Hao,T.,Ma,H.W.,Zhao,X.M。和Goryanin,I。爱丁堡人类代谢网络的区室化。BMC生物信息学11393(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Palsson, B. Ø. Systems Biology: Constraint-Based Reconstruction and Analysis (Cambridge Univ. Press, 2015).Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8, e1002518 (2012).Article

Palsson,B.Ø。系统生物学:基于约束的重建和分析(剑桥大学出版社,2015)。。PLoS计算机。生物学杂志8,e1002518(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat. Biotechnol. 31, 419–425 (2013).Article

Thiele,I.等人,《社区驱动的全球人类新陈代谢重建》。美国国家生物技术公司。31419-425(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat. Commun. 5, 3083 (2014).Article

Mardinoglu,A。等人。肝细胞的基因组规模代谢模型揭示了非酒精性脂肪肝病患者的丝氨酸缺乏症。国家公社。53083(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gille, C. et al. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol. Syst. Biol. 6, 411 (2010).Article

Gille,C。等。HepatoNet1:用于肝脏生理学分析的人肝细胞的全面代谢重建。分子系统。生物学6411(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mardinoglu, A. et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol. Syst. Biol. 9, 649 (2013).Article

Mardinoglu,A。等人。临床数据与人类脂肪细胞基因组规模代谢模型的整合。分子系统。生物学9649(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kanehisa, M. in ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium 247 (eds. Bock, G. & Goode, J. A.) 91–103 (Wiley, 2002).Milacic, M. et al. The Reactome Pathway Knowledgebase 2024 Nucleic Acids Res. 52, D672–D678 (2024).Article

Kanehisa,M.《生物过程的计算机模拟:诺华基金会研讨会》247(编辑:Bock,G.&Goode,J.A。)91-103(Wiley,2002)。Milacic,M.等人,《反应组途径知识库2024核酸研究》52,D672–D678(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Quek, L.-E. et al. Reducing Recon 2 for steady-state flux analysis of HEK cell culture. J. Biotechnol. 184, 172–178 (2014).Article

Quek,L.-E.等人。减少Recon 2用于HEK细胞培养的稳态通量分析。J、 生物技术。184172-178(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smallbone, K. Striking a balance with Recon 2.1. Preprint at arXiv https://doi.org/10.48550/arXiv.1311.5696 (2014).Swainston, N. et al. Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12, 109 (2016).Article

Smallbone,K。与侦察2.1取得平衡。arXiv预印本https://doi.org/10.48550/arXiv.1311.5696(2014年)。Swainston,N。等人,Recon 2.2:从重建到人类代谢模型。代谢组学12109(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat. Biotechnol. 36, 272–281 (2018). This paper presents the community-based global reconstruction of human metabolism.Article

Brunk,E。等人的Recon3D可以实现人类新陈代谢中基因变异的三维视图。美国国家生物技术公司。36272-281(2018)。本文介绍了基于社区的人类新陈代谢全球重建。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Robinson, J. L. et al. An atlas of human metabolism. Sci. Signal. 13, eaaz1482 (2020). This paper presents an extensively curated global human GEM that unifies two parallel model lineages.Article

Robinson,J.L.等人,《人类新陈代谢图谱》。。。13,eaaz1482(2020)。本文介绍了一个广泛策划的全球人类GEM,它统一了两个平行的模型谱系。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dahal, S., Yurkovich, J. T., Xu, H., Palsson, B. O. & Yang, L. Synthesizing systems biology knowledge from omics using genome-scale models. Proteomics 20, 1900282 (2020).Article

Dahal,S.,Yurkovich,J.T.,Xu,H.,Palsson,B.O。&Yang,L。使用基因组规模模型从组学合成系统生物学知识。蛋白质组学201900282(2020)。文章

CAS

中科院

Google Scholar

谷歌学者

Mardinoglu, A. & Nielsen, J. New paradigms for metabolic modeling of human cells. Curr. Opin. Biotechnol. 34, 91–97 (2015).Article

Mardinoglu,A。&Nielsen,J。人类细胞代谢建模的新范例。货币。奥平。生物技术。34,91-97(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bordbar, A. & Palsson, B. O. Using the reconstructed genome-scale human metabolic network to study physiology and pathology. J. Intern. Med. 271, 131–141 (2012).Article

Bordbar,A。&Palsson,B.O。使用重建的基因组规模的人类代谢网络来研究生理学和病理学。J、 实习生。医学271131-141(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uhlén, M. et al. Transcriptomics resources of human tissues and organs. Mol. Syst. Biol. 12, 862 (2016).Article

Uhlén,M。等人。人体组织和器官的转录组学资源。分子系统。生物学杂志12862(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Satish Kumar, V., Dasika, M. S. & Maranas, C. D. Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8, 212 (2007).Article

Satish Kumar,V.,Dasika,M.S。和Maranas,C.D。基于优化的代谢重建自动管理。BMC生物信息学8212(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shlomi, T., Cabili, M. N., Herrgard, M. J., Palsson, B. O. & Ruppin, E. Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol. 26, 1003–1010 (2008). This paper presents a computational method that describes the tissue specificity of human metabolism on a large scale.Article .

Shlomi,T.,Cabili,M.N.,Herrgard,M.J.,Palsson,B.O。&Ruppin,E。基于网络的人体组织特异性代谢预测。美国国家生物技术公司。261003-1010(2008)。本文提出了一种大规模描述人体代谢组织特异性的计算方法。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schultz, A. & Qutub, A. A. Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput. Biol. 12, e1004808 (2016).Article

Schultz,A。&Qutub,A.A。使用CORDA重建组织特异性代谢网络。PLoS计算机。生物学12,e1004808(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput. Biol. 10, e1003424 (2014).Article

Vlassis,N.,Pacheco,M.P。&Sauter,T。快速重建紧凑的上下文特定代谢网络模型。PLoS计算机。生物学杂志10,e1003424(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Becker, S. A. & Palsson, B. O. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4, e1000082 (2008).Article

Becker,S.A。&Palsson,B.O。特定于上下文的代谢网络与实验一致。PLoS计算机。生物学4,e1000082(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bordbar, A. et al. Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol. Syst. Biol. 8, 558 (2012).Article

Bordbar,A。等人。模型驱动的多组学数据分析阐明了巨噬细胞活化的代谢免疫调节剂。分子系统。生物学8558(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zur, H., Ruppin, E. & Shlomi, T. iMAT: an integrative metabolic analysis tool. Bioinformatics 26, 3140–3142 (2010).Article

Zur,H.,Ruppin,E。和Shlomi,T。iMAT:一种综合代谢分析工具。生物信息学263140–3142(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol. Syst. Biol. 6, 401 (2010).Article

Jerby,L.,Shlomi,T。&Ruppin,E。组织特异性代谢模型的计算重建:在人类肝脏代谢中的应用。分子系统。生物学杂志6401(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jensen, P. A. & Papin, J. A. Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics 27, 541–547 (2011).Article

Jensen,P.A。&Papin,J.A。代谢网络模型和表达数据的功能整合,无需任意阈值。生物信息学27541-547(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, Y., Eddy, J. A. & Price, N. D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst. Biol. 6, 153 (2012).Article

Wang,Y.,Eddy,J.A。和Price,N.D。使用mCADRE重建126个人体组织的基因组规模代谢模型。BMC系统。生物学6153(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pacheco, M. P., Ji, J., Prohaska, T., García, M. M. & Sauter, T. scFASTCORMICS: a contextualization algorithm to reconstruct metabolic multi-cell population models from single-cell RNAseq data. Metabolites 12, 1211 (2022).Article

Pacheco,M.P.,Ji,J.,Prohaska,T.,García,M.M。&Sauter,T。scFASTCORMICS:从单细胞RNAseq数据重建代谢多细胞群体模型的情境化算法。代谢物12111(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van Berlo, R. J. et al. Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 206–216 (2011).Article

van Berlo,R.J.等人。使用基因表达差异作为约束来预测代谢通量。IEEE/ACM Trans。计算机。生物。生物信息。8206-216(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 721 (2014).Article

Agren,R。等人。通过个性化基因组规模代谢模型鉴定肝细胞癌的抗癌药物。分子系统。生物学杂志10721(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Blais, E. M. et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat. Commun. 8, 14250 (2017).Article

。国家公社。814250(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Machado, D. & Herrgard, M. Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol. 10, e1003580 (2014).Article

Machado,D。&Herrgard,M。系统评估将转录组数据整合到基于约束的代谢模型中的方法。PLoS计算机。生物学杂志10,e1003580(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Opdam, S. et al. A systematic evaluation of methods for tailoring genome-scale metabolic models. Cell Syst. 4, 318–329.e6 (2017). A systemic benchmarking study for several algorithms that use omics data to construct cell-line- and tissue-specific GEMs.Article

Opdam,S.等人。对定制基因组规模代谢模型方法的系统评估。细胞系统。4318-329.e6(2017)。针对使用组学数据构建细胞系和组织特异性GEM的几种算法的系统基准研究。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).Article

Gu,C.,Kim,G.B.,Kim,W.J.,Kim,H.U。和Lee,S.Y。基因组规模代谢模型的现状和应用。基因组生物学。20121(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020).Article

Lieven,C。等人。用于标准化基因组规模代谢模型测试的备忘录。美国国家生物技术公司。38272-276(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gustafsson, J. et al. Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data. Proc. Natl Acad. Sci. USA 120, e2217868120 (2023).Article

Gustafsson,J.等人。从单细胞RNA-Seq数据衍生的上下文特定基因组规模代谢模型的生成和分析。程序。国家科学院。。美国120,e2217868120(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wiback, S. J. & Palsson, B. O. Extreme pathway analysis of human red blood cell metabolism. Biophys. J. 83, 808–818 (2002).Article

Wiback,S.J。和Palsson,B.O。人类红细胞代谢的极端途径分析。生物物理。J、 83808-818(2002)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vo, T. D., Greenberg, H. J. & Palsson, B. O. Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J. Biol. Chem. 279, 39532–39540 (2004).Article

Vo,T.D.,Greenberg,H.J。&Palsson,B.O。基于蛋白质组学和生化数据的人类线粒体代谢网络的重建和功能表征。J、 生物。化学。27939532–39540(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vo, T. D., Paul Lee, W. N. & Palsson, B. O. Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh’s syndrome. Mol. Genet. Metab. 91, 15–22 (2007).Article

Vo,T.D.,Paul Lee,W.N。&Palsson,B.O。能量代谢的系统分析阐明了Leigh综合征中受影响的呼吸链复合体。分子遗传学。代谢。91,15-22(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bordbar, A., Jamshidi, N. & Palsson, B. O. iAB-RBC-283: a proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Syst. Biol. 5, 110 (2011).Article

Bordbar,A.,Jamshidi,N。&Palsson,B.O。iAB-RBC-283:一种蛋白质组学衍生的红细胞代谢知识库,可用于模拟其生理和病理生理状态。BMC系统。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thomas, A., Rahmanian, S., Bordbar, A., Palsson, B. O. & Jamshidi, N. Network reconstruction of platelet metabolism identifies metabolic signature for aspirin resistance. Sci. Rep. 4, 3925 (2014).Article

Thomas,A.,Rahmanian,S.,Bordbar,A.,Palsson,B.O。&Jamshidi,N。血小板代谢的网络重建确定了阿司匹林抵抗的代谢特征。。代表43925(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yousefi, M., Marashi, S.-A., Sharifi-Zarchi, A. & Taleahmad, S. The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency. Cell Biosci. 9, 71 (2019).Article

Yousefi,M.,Marashi,S.-A.,Sharifi Zarchi,A。&Taleahmad,S。引发/幼稚人类胚胎干细胞的代谢网络模型强调了氧化还原潜能和色氨酸代谢在引发多能性中的重要性。细胞生物科学。9,71(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sen, P. et al. Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia 63, 1017–1031 (2020).Article

Sen,P。等人。免疫细胞的代谢改变与1型糖尿病的进展有关。糖尿病学631017-1031(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sen, P. et al. Quantitative genome-scale metabolic modeling of human CD4+ T-cell differentiation reveals subset-specific regulation of glycosphingolipid pathways 37, 109973 (2021).Puniya, B. L. et al. Integrative computational approach identifies drug targets in CD4+ T-cell-mediated immune disorders.

Sen,P。等人。人类CD4+T细胞分化的定量基因组规模代谢模型揭示了糖鞘脂途径的子集特异性调节37109973(2021)。Puniya,B.L。等人。综合计算方法识别CD4+T细胞介导的免疫疾病中的药物靶标。

NPJ Syst. Biol. Appl. 7, 4 (2021).Article .

NPJ系统。生物学应用。7,4(2021)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Varemo, L. et al. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes. Cell Rep. 11, 921–933 (2015).Article

Varemo,L.等人。蛋白质组和转录组驱动的人类肌细胞代谢网络的重建及其在糖尿病标志物鉴定中的应用。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, Y. & Huang, J. Reconstruction and analysis of human heart-specific metabolic network based on transcriptome and proteome data. Biochem. Biophys. Res. Commun. 415, 450–454 (2011).Article

Zhao,Y。&Huang,J。基于转录组和蛋白质组数据重建和分析人类心脏特异性代谢网络。生物化学。生物物理。公共资源。415450-454(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Karlstadt, A. et al. CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst. Biol. 6, 114 (2012).Article

Karlstadt,A。等人。CardioNet:一种适合研究心肌细胞代谢的人类代谢网络。BMC系统。生物学6114(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lewis, N. E. et al. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat. Biotechnol. 28, 1279–1285 (2010).Article

Lewis,N.E.等人。人脑细胞类型之间代谢相互作用的大规模计算机模拟。美国国家生物技术公司。281279-1285(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sertbaş, M., Ülgen, K. & Çakır, T. Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio 4, 542–553 (2014).Article

Sertbaş,M.,Ülgen,K。&Çakır,T。通过新重建的大脑特异性代谢网络系统分析神经退行性疾病对人脑代谢的转录水平影响。FEBS Open Bio 4542-553(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martín-Jiménez, C. A., Salazar-Barreto, D., Barreto, G. E. & González, J. Genome-scale reconstruction of the human astrocyte metabolic network. Front. Aging Neurosci. 9, 23 (2017).Article

Martín-Jiménez,C.A.,Salazar Barreto,D.,Barreto,G.E。和González,J。人类星形胶质细胞代谢网络的基因组规模重建。前。衰老神经科学。9,23(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Baloni, P. et al. Metabolic network analysis reveals altered bile acid synthesis and metabolism in Alzheimer’s disease. Cell Rep. Med. 1, 100138 (2020).Article

代谢网络分析揭示了阿尔茨海默病中胆汁酸合成和代谢的改变。细胞代表医学1100138(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baloni, P. et al. Multi-omic analyses characterize the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer’s disease. Commun. Biol. 5, 1074 (2022).Article

Baloni,P。等人。多组学分析将神经酰胺/鞘磷脂途径表征为阿尔茨海默病的治疗靶标。Commun公司。生物学杂志51074(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Preciat, G. et al. Mechanistic model-driven exometabolomic characterisation of human dopaminergic neuronal metabolism. Preprint at bioRxiv https://doi.org/10.1101/2021.06.30.450562 (2022).Chang, R. L., Xie, L., Xie, L., Bourne, P. E. & Palsson, B. O. Drug off-target effects predicted using structural analysis in the context of a metabolic network model.

Preciat,G。等人。人类多巴胺能神经元代谢的机制模型驱动的外代谢组学表征。bioRxiv预印本https://doi.org/10.1101/2021.06.30.450562。Chang,R.L.,Xie,L.,Xie,L.,Bourne,P.E.&Palsson,B.O。在代谢网络模型的背景下使用结构分析预测药物脱靶效应。

PLoS Comput. Biol. 6, e1000938 (2010).Article .

PLoS计算机。生物学杂志6,e1000938(2010)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sohrabi-Jahromi, S., Marashi, S.-A. & Kalantari, S. A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis. Mamm. Genome 27, 158–167 (2016).Article

Sohrabi Jahromi,S.,Marashi,S.-A。和Kalantari,S。一种用于分析局灶性节段性肾小球硬化的肾脏特异性基因组规模代谢网络模型。。基因组27158-167(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nanda, P. & Ghosh, A. Genome scale-differential flux analysis reveals deregulation of lung cell metabolism on SARS-CoV-2 infection. PLoS Comput. Biol. 17, e1008860 (2021).Article

Nanda,P。&Ghosh,A。基因组规模的差异通量分析揭示了SARS-CoV-2感染时肺细胞代谢的失调。PLoS计算机。生物学17,e1008860(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bordbar, A., Lewis, N. E., Schellenberger, J., Palsson, B. O. & Jamshidi, N. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol. Syst. Biol. 6, 422 (2010).Article

Bordbar,A.,Lewis,N.E.,Schellenberger,J.,Palsson,B.O。&Jamshidi,N。通过代谢重建洞察人肺泡巨噬细胞和结核分枝杆菌的相互作用。分子系统。生物学6422(2010)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McGarrity, S., Halldórsson, H., Palsson, S., Johansson, P. I. & Rolfsson, Ó. Understanding the causes and implications of endothelial metabolic variation in cardiovascular disease through genome-scale metabolic modeling. Front. Cardiovasc. Med. 3, 10 (2016).Article

McGarrity,S.,Halldórsson,H.,Palsson,S.,Johansson,P.I。和Rolfsson,Ó。通过基因组规模的代谢建模了解心血管疾病内皮代谢变异的原因和意义。正面。心血管。医学杂志3,10(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, G.-H. et al. System-level metabolic modeling facilitates unveiling metabolic signature in exceptional longevity. Aging Cell 21, e13595 (2022).Article

Li,G.-H.等人。系统级代谢建模有助于揭示异常长寿的代谢特征。衰老细胞21,e13595(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Özcan, E. & Çakır, T. Reconstructed metabolic network models predict flux-level metabolic reprogramming in glioblastoma. Front. Neurosci. 10, 156 (2016).Article

Özcan,E。&Çakır,T。重建的代谢网络模型预测胶质母细胞瘤中的通量水平代谢重编程。正面。神经科学。10156(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Damiani, C. et al. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: the WarburQ effect. PLoS Comput. Biol. 13, e1005758 (2017).Article

Damiani,C。等人。代谢核心模型阐明了葡萄糖和谷氨酰胺的利用增强以及谷氨酰胺依赖性乳酸产生增强如何促进癌细胞生长:WarburQ效应。PLoS计算机。生物学13,e1005758(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Masid, M., Ataman, M. & Hatzimanikatis, V. Analysis of human metabolism by reducing the complexity of the genome-scale models using redHUMAN. Nat. Commun. 11, 2821 (2020).Article

Masid,M.,Ataman,M。&Hatzimanikatis,V。通过使用redHUMAN降低基因组规模模型的复杂性来分析人类代谢。国家公社。112821(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yizhak, K. et al. Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer. eLife 3, e03641 (2014).Article

Yizhak,K。等人。基于表型的细胞特异性代谢模型揭示了癌症的代谢负债。eLife 3,e03641(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).Article

Uhlen,M。等人。人类癌症转录组的病理图谱。科学357,eaan2507(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Turanli, B. et al. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine 42, 386–396 (2019).Article

Turanli,B。等人。使用基因组规模的代谢建模和药物重新定位发现前列腺癌治疗剂。EBioMedicine 42386-396(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lewis, J. E. & Kemp, M. L. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat. Commun. 12, 2700 (2021).Article

Lewis,J.E.&Kemp,M.L。机器学习和基因组规模代谢建模的整合确定了抗辐射的多组学生物标志物。国家公社。122700(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gatto, F., Miess, H., Schulze, A. & Nielsen, J. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. Sci. Rep. 5, 10738 (2015).Article

Gatto,F.,Miess,H.,Schulze,A。&Nielsen,J。通量平衡分析预测透明细胞肾细胞癌代谢中的必需基因。。代表510738(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ghaffari, P. et al. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci. Rep. 5, 8183 (2015).Article

。。代表58183(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yizhak, K. et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol. Syst. Biol. 10, 744 (2014).Article

Yizhak,K。等人。对Warburg效应的计算研究确定了抑制癌症迁移的代谢靶标。分子系统。生物学杂志10744(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zielinski, D. C. et al. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci. Rep. 7, 41241 (2017).Article

Zielinski,D.C.等人,《癌细胞代谢标志驱动因素的系统生物学分析》。。代表741241(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bordbar, A. et al. A multi-tissue type genome-scale metabolic network for analysis of whole-body systems physiology. BMC Syst. Biol. 5, 180 (2011).Article

Bordbar,A。等人。用于分析全身系统生理学的多组织类型基因组规模代谢网络。BMC系统。生物学5180(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nam, H. et al. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks. PLoS Comput. Biol. 10, e1003837 (2014).Article

Nam,H.等人。一种通过特定背景的基因组规模代谢网络预测癌代谢物的系统方法。PLoS计算机。生物学杂志10,e1003837(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).Article

Uhlen,M。等人。蛋白质组学。基于组织的人类蛋白质组图谱。科学3471260419(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Richelle, A., Chiang, A. W. T., Kuo, C. C. & Lewis, N. E. Increasing consensus of context-specific metabolic models by integrating data-inferred cell functions. PLoS Comput. Biol. 15, e1006867 (2019).Article

Richelle,A.,Chiang,A.W.T.,Kuo,C.C.&Lewis,N.E。通过整合数据推断的细胞功能,增加了上下文特定代谢模型的共识。PLoS计算机。生物学杂志15,e1006867(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thiele, I. et al. Personalized whole‐body models integrate metabolism, physiology, and the gut microbiome. Mol. Syst. Biol. 16, e8982 (2020). This study presents two sex‐specific WBMMs that used organ‐specific information from the literature and omics data.Article

Thiele,I。等人。个性化全身模型整合了新陈代谢,生理学和肠道微生物组。分子系统。生物学16,e8982(2020)。这项研究提出了两种性别特异性WBMM,它们使用了文献和组学数据中的器官特异性信息。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martins Conde, P., Pfau, T., Pires Pacheco, M. & Sauter, T. A dynamic multi-tissue model to study human metabolism. NPJ Syst. Biol. Appl. 7, 5 (2021).Article

Martins Conde,P.,Pfau,T.,Pires Pacheco,M。&Sauter,T。一种研究人体代谢的动态多组织模型。NPJ系统。生物学应用。7,5(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Foguet, C. et al. Genetically personalised organ-specific metabolic models in health and disease. Nat. Commun. 13, 7356 (2022). This study presents personalized organ-specific GEMs for 524,615 individuals to define how genetic variants affect biochemical reaction fluxes across major human tissues.Article .

Foguet,C.等人,《健康和疾病中的基因个性化器官特异性代谢模型》。国家公社。137356(2022年)。这项研究为524615个人提供了个性化的器官特异性GEM,以定义遗传变异如何影响主要人体组织的生化反应通量。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291–305 (2012). An extensive review and presentation of the phylogeny of more than 100 COBRA.Article

。自然修订版微生物学。10291-305(2012)。对100多种眼镜蛇的系统发育进行了广泛的回顾和介绍。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Monk, J. M. et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35, 904–908 (2017).Article

Monk,J.M.等人的iML1515,一个计算大肠杆菌性状的知识库。美国国家生物技术公司。35904-908(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tanaka, K. et al. Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model. Nucleic Acids Res. 41, 687–699 (2013).Article

Tanaka,K。等人。在枯草芽孢杆菌中构建可分配染色体区域的库需要对同源大规模代谢模型进行重大改进。核酸研究41687-699(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

López-Agudelo, V. A. et al. A systematic evaluation of Mycobacterium tuberculosis genome-scale metabolic networks. PLoS Comput. Biol. 16, e1007533 (2020).Article

López-Agudelo,V.A.等人。结核分枝杆菌基因组规模代谢网络的系统评估。PLoS计算机。生物学16,e1007533(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, H. et al. A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10, 3586 (2019).Article

Lu,H.等人。用于全面探测细胞代谢的共识酿酒酵母代谢模型Yeast8及其生态系统。国家公社。103586(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shoaie, S. et al. Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3, 2532 (2013).Article

Shoaie,S.等人。通过代谢建模了解人类肠道中细菌之间的相互作用。。第32532页(2013年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Metwaly, A., Reitmeier, S. & Haller, D. Microbiome risk profiles as biomarkers for inflammatory and metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 19, 383–397 (2022).Article

Metwaly,A.,Reitmeier,S。&Haller,D。微生物组风险概况作为炎症和代谢紊乱的生物标志物。胃肠病学国家修订版。肝病。19383-397(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Aron-Wisnewsky, J. et al. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17, 279–297 (2020).Article

Aron Wisnewsky,J。等人。肠道微生物群和人类NAFLD:从代谢紊乱中解开微生物特征。胃肠病学国家修订版。肝病。17279-297(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Beura, S., Kundu, P., Das, A. K. & Ghosh, A. Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health. Comput. Biol. Med. 149, 105997 (2022).Article

Beura,S.,Kundu,P.,Das,A.K。&Ghosh,A。宏基因组规模的社区代谢模型,用于了解肠道微生物群在人类健康中的作用。计算机。生物医学149105997(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ye, C. et al. Genome-scale metabolic network models: from first-generation to next-generation. Appl. Microbiol. Biotechnol. 106, 4907–4920 (2022).Article

Ye,C.等人。基因组规模的代谢网络模型:从第一代到下一代。应用。微生物。生物技术。1064907-4920(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).Article

Gacesa,R。等人。环境因素塑造了荷兰人群的肠道微生物群。自然604732-739(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).Article

Valles Colomer,M。等人,《肠道和口腔微生物群的人与人之间的传播情况》。自然614125-135(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331 (2023). This study presents the microbial GEMs for 7,302 strains, which have been extensively curated based on comparative genomics and literature searches.Article .

Heinken,A.等人。用于个性化医学的7302种人类微生物的基因组规模代谢重建。美国国家生物技术公司。411320-1331(2023)。这项研究介绍了7302株菌株的微生物GEM,这些菌株已根据比较基因组学和文献检索进行了广泛的策划。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).Article

Shoaie,S.等人。量化饮食诱导的人类肠道微生物组代谢变化。细胞代谢。22320-331(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).Article

Machado,D.,Andrejev,S.,Tramontano,M。&Patil,K.R。快速自动重建微生物物种和群落的基因组规模代谢模型。核酸研究467542-7553(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).Article

Magnúsdóttir,S.等人。为773个人类肠道微生物群成员生成基因组规模的代谢重建。美国国家生物技术公司。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588 (2021).Article

Seaver,S.M.D.等人。用于整合代谢注释以及植物,真菌和微生物代谢模型的重建,比较和分析的ModelSEED生物化学数据库。核酸研究49,D575–D588(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A. metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res. 49, e126 (2021).Article

Zorrilla,F.,Buric,F.,Patil,K.R。&Zelezniak,A。metaGEM:直接从宏基因组重建基因组规模的代谢模型。核酸研究49,e126(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bidkhori, G. & Shoaie, S. MIGRENE: the toolbox for microbial and individualized GEMs, reactobiome and community network modelling. Metabolites 14, 132 (2024).Article

Bidkhori,G。&Shoaie,S。MIGRENE:微生物和个体化GEM,reactobiome和社区网络建模的工具箱。代谢物14132(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bidkhori, G. et al. The reactobiome unravels a new paradigm in human gut microbiome metabolism. Preprint at bioRxiv https://doi.org/10.1101/2021.02.01.428114 (2021). This study describes a comprehensive computational platform for population stratification based on microbiome composition and community level metabolic models.Heinken, A.

Bidkhori,G。等人。reactobiome揭示了人类肠道微生物组代谢的新范例。bioRxiv预印本https://doi.org/10.1101/2021.02.01.428114(2021年)。这项研究描述了基于微生物组组成和社区水平代谢模型的人口分层的综合计算平台。海因肯,A。

et al. APOLLO: a genome-scale metabolic reconstruction resource of 247,092 diverse human microbes spanning multiple continents, age groups, and body sites. Preprint at bioRxiv https://doi.org/10.1101/2023.10.02.560573 (2023). A comprehensive resource of human microbial GEMs spanning 19 phyla and accounting for microbial genomes from 34 countries, all age groups and five body sites.Sánchez, B.

等人,《阿波罗:跨越多个大陆,年龄组和身体部位的247092种不同人类微生物的基因组规模代谢重建资源》。bioRxiv预印本https://doi.org/10.1101/2023.10.02.560573(2023年)。人类微生物GEM的综合资源,跨越19个门,涵盖了来自34个国家,所有年龄组和五个身体部位的微生物基因组。桑切斯,B。

J. et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol. 13, 935 (2017).Article .

J、 等人。通过结合酶促约束来改进酵母基因组规模代谢模型的表型预测。分子系统。生物学13935(2017)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Domenzain, I. et al. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat. Commun. 13, 3766 (2022).Article

Domenzain,I.等人。使用GECKO 2.0重建具有酶促约束的基因组规模代谢模型目录。国家公社。133766(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Y. et al. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nat. Protoc. 19, 629–667 (2024). This paper presents the latest version of GECKO method that incorporates the enzymatic constraints using kinetic and omics data to improve the predictive power of a GEM.Article .

Chen,Y.等人。使用GECKO Toolbox 3.0重建,模拟和分析酶约束代谢模型。自然协议。19629-667(2024)。。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, F. et al. Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nat. Catal. 5, 662–672 (2022).Article

Li,F。等人。基于深度学习的kcat预测可以改进酶约束模型的重建。加泰罗尼亚州。5662-672(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).Article

Harcombe,W.R.等人。个体微生物的代谢资源分配决定了生态系统的相互作用和空间动态。Cell Rep.71104–1115(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bauer, E., Zimmermann, J., Baldini, F., Thiele, I. & Kaleta, C. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 13, e1005544 (2017).Article

Bauer,E.,Zimmermann,J.,Baldini,F.,Thiele,I。&Kaleta,C。BacArena:复杂群落中异质微生物的基于个体的代谢建模。PLoS计算机。生物学杂志13,e1005544(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zomorrodi, A. R., Islam, M. M. & Maranas, C. D. d-OptCom: dynamic multi-level and multi-objective metabolic modeling of microbial communities. ACS Synth. Biol. 3, 247–257 (2014).Article

Zomorrodi,A.R.,Islam,M.M。和Maranas,C.D.D-OptCom:微生物群落的动态多层次和多目标代谢建模。ACS合成。生物学3247-257(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhuang, K. et al. Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J. 5, 305–316 (2011).Article

Zhuang,K.等人。缺氧地下环境中Rhodoferax和Geobacter之间竞争的基因组规模动态建模。ISME J.5305–316(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Louca, S. & Doebeli, M. Calibration and analysis of genome-based models for microbial ecology. eLife 4, e08208 (2015).Article

Louca,S。&Doebeli,M。基于基因组的微生物生态学模型的校准和分析。eLife 4,e08208(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Popp, D. & Centler, F. μbialSim: constraint-based dynamic simulation of complex microbiomes. Front. Bioeng. Biotechnol. 8, 574 (2020).Article

Popp,D。&Centler,F。μbialSim:复杂微生物组的基于约束的动态模拟。正面。生物能源。生物技术。8574(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Diener, C., Gibbons, S. M. & Resendis-Antonio, O. MICOM: metagenome-scale modeling to infer metabolic interactions in the gut microbiota. mSystems 5, e00606-19 (2020).Article

Diener,C.,Gibbons,S.M。和Resendis Antonio,O.MICOM:宏基因组规模建模,以推断肠道微生物群中的代谢相互作用。mSystems 5,e00606-19(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Baldini, F. et al. The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinformatics 35, 2332–2334 (2019).Article

Baldini,F。等人,《微生物组建模工具箱:从微生物相互作用到个性化微生物群落》。生物信息学352332-2334(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mardinoglu, A. et al. Personal model‐assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD. Mol. Syst. Biol. 13, 916 (2017). This study presents personalized GEMs for human hepatocytes that account for the interactions between liver and other metabolic tissues, including adipose, muscle and brain tissues.Article .

Mardinoglu,A。等人。NAD+和谷胱甘肽代谢作为NAFLD干预靶点的个人模型辅助鉴定。分子系统。生物学13916(2017)。这项研究为人类肝细胞提供了个性化的GEM,可以解释肝脏与其他代谢组织(包括脂肪,肌肉和脑组织)之间的相互作用。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

El-Semman, I. E. et al. Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Syst. Biol. 8, 41 (2014).Article

El Semman,I.E.等人。青春双歧杆菌L2-32和普氏粪杆菌A2-165的基因组规模代谢重建及其相互作用。BMC系统。生物学杂志8,41(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).Article

Zomorrodi,A.R。&Maranas,C.D。OptCom:用于微生物群落代谢建模和分析的多级优化框架。PLoS计算机。生物学杂志8,e1002363(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, S. et al. Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metab. 24, 172–184 (2016). This study presents cell-specific integrated networks that integrate functional GEMs with transcriptional regulatory and PPI networks.Article .

综合网络分析揭示了血浆甘露糖水平与胰岛素抵抗之间的关联。细胞代谢。。这项研究提出了细胞特异性整合网络,将功能性GEM与转录调控和PPI网络整合在一起。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mardinoglu, A. et al. Plasma mannose levels are associated with incident type 2 diabetes and cardiovascular disease. Cell Metab. 26, 281–283 (2017).Article

Mardinoglu,A。等人。血浆甘露糖水平与2型糖尿病和心血管疾病有关。细胞代谢。26281-283(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, S., Mardinoglu, A., Zhang, C., Lee, D. & Nielsen, J. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis. Nucleic Acids Res. 44, 5529–5539 (2016). This paper presents HCC tumour-specific integrated networks that integrate GEMs with signalling networks.Article .

Lee,S.,Mardinoglu,A.,Zhang,C.,Lee,D。&Nielsen,J。肝脏脂质代谢失调的信号枢纽揭示了肝细胞癌的发病机制。核酸研究445529-5539(2016)。本文介绍了将GEM与信号网络相结合的HCC肿瘤特异性集成网络。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, S. et al. Network analyses identify liver‐specific targets for treating liver diseases. Mol. Syst. Biol. 13, 938 (2017).Article

Lee,S.等人。网络分析确定了治疗肝病的肝脏特异性靶标。分子系统。生物学13938(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chella Krishnan, K. et al. Integration of multi-omics data from mouse diversity panel highlights mitochondrial dysfunction in non-alcoholic fatty liver disease. Cell Syst. 6, 103–115.e7 (2018).Article

Chella Krishnan,K。等人。来自小鼠多样性小组的多组学数据的整合突出了非酒精性脂肪肝疾病中的线粒体功能障碍。细胞系统。6103-115.e7(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chella Krishnan, K. et al. Liver pyruvate kinase promotes NAFLD/NASH in both mice and humans in a sex-specific manner. Cell. Mol. Gastroenterol. Hepatol. 11, 389–406 (2021).Article

Chella Krishnan,K。等人。肝脏丙酮酸激酶以性别特异性方式促进小鼠和人类的NAFLD/NASH。细胞。胃肠病学分子。肝病。11389-406(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Z. et al. Pyruvate kinase L/R is a regulator of lipid metabolism and mitochondrial function. Metab. Eng. 52, 263–272 (2019).Article

Liu,Z。等人。丙酮酸激酶L/R是脂质代谢和线粒体功能的调节剂。代谢。工程52263-272(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mardinoglu, A., Uhlen, M. & Borén, J. Broad views of non-alcoholic fatty liver disease. Cell Syst. 6, 7–9 (2018).Article

Mardinoglu,A.,Uhlen,M。&Borén,J。对非酒精性脂肪肝疾病的广泛观点。细胞系统。6,7-9(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Arif, M. et al. iNetModels 2.0: an interactive visualization and database of multi-omics data. Nucleic Acids Res. 49, W271–W276 (2021).Article

Arif,M。等人。iNetModels 2.0:多组学数据的交互式可视化和数据库。核酸研究49,W271–W276(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Owen, M. J. et al. An automated 13.5 hour system for scalable diagnosis and acute management guidance for genetic diseases. Nat. Commun. 13, 4057 (2022).Article

Owen,M.J.等人。一个自动化的13.5小时系统,用于遗传疾病的可扩展诊断和急性管理指导。国家公社。134057(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Seydel, C. Baby’s first genome. Nat. Biotechnol. 40, 636–640 (2022).Article

塞德尔,C。婴儿的第一个基因组。美国国家生物技术公司。40636-640(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kingsmore, S. F. et al. A genome sequencing system for universal newborn screening, diagnosis, and precision medicine for severe genetic diseases. Am. J. Hum. Genet. 109, 1605–1619 (2022).Article

Kingsmore,S.F.等人。用于新生儿筛查、诊断和严重遗传疾病精准医学的基因组测序系统。上午J。嗯。Genet。1091605-1619(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ceyhan-Birsoy, O. et al. Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq PROJECt. Am. J. Hum. Genet. 104, 76–93 (2019).Article

Ceyhan Birsoy,O.等人,《健康和患病新生儿基因组测序结果的解释:BabySeq项目的结果》。上午J。嗯。Genet。104,76-93(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sahoo, S., Franzson, L., Jonsson, J. J. & Thiele, I. A compendium of inborn errors of metabolism mapped onto the human metabolic network. Mol. Biosyst. 8, 2545–2558 (2012).Article

Sahoo,S.,Franzson,L.,Jonsson,J。J。和Thiele,I。映射到人类代谢网络的先天性代谢错误概要。Mol。Biosyst。82545-2558(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 1277–1292.e14 (2018).Article

Olin,A.等人,《新生儿的定型免疫系统发育》。细胞1741277-1292.e14(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zaunseder, E. et al. Personalized metabolic whole-body models for newborns and infants predict growth and biomarkers of inherited metabolic diseases. Cell Metab. 36, 1882–1897.e7 (2024). This paper presents a resource of 360 organ-resolved, sex-specific whole-body models of newborn and infant metabolism spanning the first 180 days of life.Article .

Zaunseder,E.等人。针对新生儿和婴儿的个性化代谢全身模型可预测遗传性代谢疾病的生长和生物标志物。细胞代谢。361882-1897.e7(2024)。本文介绍了跨越生命前180天的360个器官分辨的,性别特异性的新生儿和婴儿代谢全身模型的资源。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Torkamani, A., Andersen, K. G., Steinhubl, S. R. & Topol, E. J. High-definition medicine. Cell 170, 828–843 (2017).Article

Torkamani,A.,Andersen,K.G.,Steinhubl,S.R。和Topol,E.J。高清医学。细胞170828-843(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qiu, C. et al. Multi-omics data integration for identifying osteoporosis biomarkers and their biological interaction and causal mechanisms. iScience 23, 100847 (2020).Article

Qiu,C.等。用于鉴定骨质疏松症生物标志物及其生物相互作用和因果机制的多组学数据整合。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Picard, M., Scott-Boyer, M. P., Bodein, A., Périn, O. & Droit, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 19, 3735–3746 (2021).Article

Picard,M.,ScottBoyer,M.P.,Bodein,A.,Périn,O。&Droit,A。用于机器学习分析的多组学数据的集成策略。计算机。结构。生物技术。J、 193735-3746(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, M. & Zhan, X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 9, 77–102 (2018).Article

Lu,M。&Zhan,X。多组学方法在癌症研究和临床相关结果中的关键作用。EPMA J.9,77-102(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bordbar, A. et al. Personalized whole-cell kinetic models of metabolism for discovery in genomics and pharmacodynamics. Cell Syst. 1, 283–292 (2015).Article

Bordbar,A.等人。用于基因组学和药效学发现的个性化全细胞代谢动力学模型。细胞系统。1283-292(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Battisti, U. M. et al. Exploration of novel urolithin C derivatives as non-competitive inhibitors of liver pyruvate kinase. Pharmaceuticals 16, 668 (2023).Article

Battisti,U.M.等人探索新型尿石素C衍生物作为肝丙酮酸激酶的非竞争性抑制剂。制药16668(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nain-Perez, A. et al. Tuning liver pyruvate kinase activity up or down with a new class of allosteric modulators. Eur. J. Med. Chem. 250, 115177 (2023).Article

Nain-Perez,A。等人。用一类新的变构调节剂上调或下调肝脏丙酮酸激酶活性。欧洲医学化学杂志。250115177(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Battisti, U. M. et al. Ellagic acid and its metabolites as potent and selective allosteric inhibitors of liver pyruvate kinase. Nutrients 15, 577 (2023).Article

Battisti,U.M。等人。鞣花酸及其代谢物作为肝脏丙酮酸激酶的有效和选择性变构抑制剂。营养素15577(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nain-Perez, A. et al. Anthraquinone derivatives as ADP-competitive inhibitors of liver pyruvate kinase. Eur. J. Med. Chem. 234, 114270 (2022).Article

Nain-Perez,A。等人。蒽醌衍生物作为肝脏丙酮酸激酶的ADP竞争性抑制剂。欧洲医学化学杂志。234114270(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Battisti, U. M. et al. Serendipitous identification of a covalent activator of liver pyruvate kinase. ChemBioChem 24, e202200339 (2023).Article

Battisti,U.M.等人偶然发现了一种肝脏丙酮酸激酶共价激活剂。ChemBioChem 24,e202200339(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, C. et al. Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositioning. eBioMedicine 83, 104214 (2022).Article

Zhang,C.等。使用药物重新定位发现靶向PKLR治疗NAFLD的治疗剂。eBioMedicine 83104214(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, W. et al. Characterization of an in vitro steatosis model simulating activated de novo lipogenesis in MAFLD patients. iScience 26, 107727 (2023).Article

Kim,W.等人。体外脂肪变性模型的表征,模拟MAFLD患者中活化的从头脂肪生成。iScience 26107727(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, X. et al. The acute effect of different NAD+ precursors included in the combined metabolic activators. Free Radic. Biol. Med. 205, 77–89 (2023).Article

Li,X。等人。组合代谢激活剂中包含的不同NAD+前体的急性作用。自由基。生物医学205,77-89(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, H. et al. Longitudinal metabolomics analysis reveals the acute effect of cysteine and NAC included in the combined metabolic activators. Free Radic. Biol. Med. 204, 347–358 (2023).Article

Yang,H。等人。纵向代谢组学分析揭示了联合代谢激活剂中半胱氨酸和NAC的急性作用。自由基。生物医学204347-358(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, C. et al. The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non‐alcoholic fatty liver disease. Mol. Syst. Biol. 16, e9495 (2020).Article

Zhang,C.等。补充代谢辅因子的急性作用:一种针对非酒精性脂肪肝疾病的潜在治疗策略。分子系统。生物学16,e9495(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zeybel, M. et al. Combined metabolic activators therapy ameliorates liver fat in nonalcoholic fatty liver disease patients. Mol. Syst. Biol. 17, e10459 (2021).Article

Zeybel,M.等。联合代谢激活剂治疗可改善非酒精性脂肪肝患者的肝脏脂肪。分子系统。生物学17,e10459(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Altay, O. et al. Combined metabolic activators accelerates recovery in mild-to-moderate COVID-19. Adv. Sci. 8, 2101222 (2021).Article

Altay,O.等人联合代谢激活剂可加速轻度至中度COVID-19的恢复。高级科学。82101222(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Yulug, B. et al. Combined metabolic activators improve cognitive functions in Alzheimer’s disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl. Neurodegener. 12, 4 (2023).Article

联合代谢激活剂改善阿尔茨海默病患者的认知功能:一项随机、双盲、安慰剂对照的II期临床试验。翻译。神经退行性变。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yulug, B. et al. Combined metabolic activators improve cognitive functions without altering motor scores in Parkinson’s disease. Preprint at medRxiv https://doi.org/10.1101/2021.07.28.21261293 (2021).US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04044131 (2022).Gatto, F.

Yulug,B。等人。联合代谢激活剂在不改变帕金森病运动评分的情况下改善认知功能。medRxiv预印本https://doi.org/10.1101/2021.07.28.21261293(2021年)。美国国家医学图书馆。ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT04044131。加托,F。

et al. Glycosaminoglycan profiling in patients’ plasma and urine predicts the occurrence of metastatic clear cell renal cell carcinoma. Cell Rep. 15, 1822–1836 (2016).Article .

患者血浆和尿液中的糖胺聚糖谱可预测转移性透明细胞肾细胞癌的发生。Cell Rep.151822–1836(2016)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gatto, F., Maruzzo, M., Magro, C., Basso, U. & Nielsen, J. Prognostic value of plasma and urine glycosaminoglycan scores in clear cell renal cell carcinoma. Front. Oncol. 6, 253 (2016).Article

Gatto,F.,Maruzzo,M.,Magro,C.,Basso,U。&Nielsen,J。血浆和尿液糖胺聚糖评分在透明细胞肾细胞癌中的预后价值。正面。Oncol公司。6253(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gatto, F. et al. Plasma glycosaminoglycans as diagnostic and prognostic biomarkers in surgically treated renal cell carcinoma. Eur. Urol. Oncol. 1, 364–377 (2018).Article

血浆糖胺聚糖作为手术治疗肾细胞癌的诊断和预后生物标志物。欧元Urol。Oncol公司。1364-377(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bratulic, S. et al. Analysis of normal levels of free glycosaminoglycans in urine and plasma in adults. J. Biol. Chem. 298, 101575 (2022).Article

Bratulic,S.等人。成人尿液和血浆中游离糖胺聚糖正常水平的分析。J、 生物。化学。298101575(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gatto, F. et al. Plasma and urine free glycosaminoglycans as monitoring and predictive biomarkers in metastatic renal cell carcinoma: a prospective cohort study. JCO Precis. Oncol. 7, e2200361 (2023).Article

血浆和尿液游离糖胺聚糖作为转移性肾细胞癌的监测和预测生物标志物:一项前瞻性队列研究。JCO Precis公司。Oncol公司。7,e2200361(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gatto, F. et al. Plasma and urine free glycosaminoglycans as monitoring biomarkers in nonmetastatic renal cell carcinoma — a prospective cohort study. Eur. Urol. Open Sci. 42, 30–39 (2022).Article

Gatto,F。等人。血浆和尿液游离糖胺聚糖作为非转移性肾细胞癌的监测生物标志物-一项前瞻性队列研究。欧元Urol。打开Sci。42,30-39(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tamburro, D. et al. Analytical performance of a standardized kit for mass spectrometry-based measurements of human glycosaminoglycans. J. Chromatogr. B 1177, 122761 (2021).Article

Tamburro,D.等人。基于质谱法测量人糖胺聚糖的标准化试剂盒的分析性能。J、 色谱仪。B 1177122761(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04006405 (2023).Bratulic, S. et al. Noninvasive detection of any-stage cancer using free glycosaminoglycans. Proc. Natl Acad. Sci. USA 119, e2115328119 (2022).Article

美国国家医学图书馆。ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT04006405(2023年)。Bratulic,S.等人。使用游离糖胺聚糖无创检测任何阶段的癌症。程序。国家科学院。。美国119,e2115328119(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05235009 (2023).D’Avanzo, F. et al. Mucopolysaccharidoses differential diagnosis by mass spectrometry-based analysis of urine free glycosaminoglycans — a diagnostic prediction model. Biomolecules 13, 532 (2023).Article .

美国国家医学图书馆。ClinicalTrials.govhttps://clinicaltrials.gov/study/NCT05235009(2023年)。D'Avanzo,F。等人。通过基于质谱的尿游离糖胺聚糖分析对粘多糖进行鉴别诊断-诊断预测模型。生物分子13532(2023)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zeybel, M. et al. Multiomics analysis reveals the impact of microbiota on host metabolism in hepatic steatosis. Adv. Sci. 9, e2104373 (2022).Article

Zeybel,M。等人。多组学分析揭示了微生物群对肝脏脂肪变性宿主代谢的影响。高级科学。9,e2104373(2022)。文章

Google Scholar

谷歌学者

Shandhi, M. M. H. & Dunn, J. P. AI in medicine: where are we now and where are we going? Cell Rep. Med. 3, 100861 (2022).Article

医学界的Shandhi,M.M.H.和Dunn,J.P.AI:我们现在在哪里,我们要去哪里?细胞代表医学3100861(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Omiye, J. A., Gui, H., Rezaei, S. J., Zou, J. & Daneshjou, R. Large language models in medicine: the potentials and pitfalls. Ann. Intern. Med. 177, 210–220 (2024).Article

Omiye,J.A.,Gui,H.,Rezaei,S.J.,Zou,J。&Daneshjou,R。医学中的大型语言模型:潜力和陷阱。安,实习生。医学177210-220(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).Article

Rajpurkar,P.,Chen,E.,Banerjee,O。&Topol,E.J。AI健康与医学。《自然医学》28,31-38(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).Article

Abramson,J。等人,《生物分子与α折叠相互作用的精确结构预测》。自然630493-500(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Di Filippo, M. et al. INTEGRATE: model-based multi-omics data integration to characterize multi-level metabolic regulation. PLoS Comput. Biol. 18, e1009337 (2022).Article

Di Filippo,M。等。整合:基于模型的多组学数据整合,以表征多水平代谢调控。PLoS计算机。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Faria, J. P. et al. ModelSEED v2: high-throughput genome-scale metabolic model reconstruction with enhanced energy biosynthesis pathway prediction. Preprint at bioRxiv https://doi.org/10.1101/2023.10.04.556561 (2023).Vezina, B. et al. Bactabolize is a tool for high-throughput generation of bacterial strain-specific metabolic models.

Faria,J.P.等人,《ModelSEED v2:高通量基因组规模代谢模型重建,增强能量生物合成途径预测》。bioRxiv预印本https://doi.org/10.1101/2023.10.04.556561(2023年)。Vezina,B。等人Bactabolize是高通量产生细菌菌株特异性代谢模型的工具。

eLife 12, RP87406 (2023).Article .

eLife 12,RP87406(2023)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 81 (2021).Article

Zimmermann,J.,Kaleta,C。&Waschina,S。gapseq:细菌代谢途径的知情预测和准确代谢模型的重建。基因组生物学。22,81(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Büchel, F. et al. Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol. 7, 116 (2013).Article

Büchel,F。等人。Path2Models:从生化途径图大规模生成计算模型。BMC系统。生物学7116(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

King, Z. A. et al. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2016).Article

King,Z.A.等人,《BiGG模型:整合,标准化和共享基因组规模模型的平台》。核酸研究44,D515–D522(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Moretti, S. et al. MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together genome-scale metabolic networks. Nucleic acids Res. 44, D523–D526 (2016).Article

Moretti,S。等人。MetaNetX/MNXref–代谢物和生化反应的协调,以汇集基因组规模的代谢网络。核酸研究44,D523–D526(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Garza, D. R., van Verk, M. C., Huynen, M. A. & Dutilh, B. E. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nat. Microbiol. 3, 456–460 (2018).Article

Garza,D.R.,van Verk,M.C.,Huynen,M.A。&Dutilh,B.E。用机械模型从宏基因组学预测环境代谢组。自然微生物。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Price, N. D. et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds. Nat. Biotechnol. 35, 747–756 (2017).Article

Price,N.D.等人使用个人密集动态数据云对108个人进行的健康研究。美国国家生物技术公司。35747-756(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Piening, B. D. et al. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 6, 157–170.e8 (2018).Article

。细胞系统。6157-170.e8(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tebani, A. et al. Integration of molecular profiles in a longitudinal wellness profiling cohort. Nat. Commun. 11, 4487 (2020).Article

Tebani,A。等人。在纵向健康状况分析队列中整合分子谱。国家公社。114487(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zahedani, A. D. et al. Digital health application integrating wearable data and behavioral patterns improves metabolic health. NPJ Digital Med. 6, 216 (2023).Article

Zahedani,A.D.等人。集成可穿戴数据和行为模式的数字健康应用程序可改善代谢健康。NPJ数字医学6216(2023)。文章

Google Scholar

谷歌学者

All of Us Research Program Investigators. The “All of Us” research program. N. Engl. J. Med. 381, 668–676 (2019).Article

我们所有的研究项目调查员。“我们所有人”研究计划。N、 英语。J、 医学381668-676(2019)。文章

Google Scholar

谷歌学者

Callaway, E. World’s biggest set of human genome sequences opens to scientists. Nature 624, 16–17 (2023).Article

世界上最大的人类基因组序列向科学家开放。自然624,16-17(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).Article

Sudlow,C.等人,《英国生物库:一种开放获取资源,用于识别中老年各种复杂疾病的原因。《公共科学图书馆学杂志》第12期,e1001779(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).Article

Bycroft,C。等人。具有深度表型和基因组数据的英国生物库资源。自然562203-209(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yurkovich, J. T. et al. The transition from genomics to phenomics in personalized population health. Nat. Rev. Genet. 25, 286–302 (2024).Article

Yurkovich,J.T.等人,《个性化人群健康中从基因组学到表型学的转变》。Genet自然Rev。25286-302(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shilo, S. et al. 10K: a large‐scale prospective longitudinal study in Israel. Eur. J. Epidemiol. 36, 1187–1194 (2021).Article

Shilo,S。等人10K:以色列的一项大规模前瞻性纵向研究。欧洲流行病学杂志。361187-1194(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsA.M. thanks the Knut and Alice Wallenberg Foundation. The authors also thank the Systems Medicine group members for reading and providing comments.Author informationAuthors and AffiliationsScience for Life Laboratory, KTH — Royal Institute of Technology, Stockholm, SwedenAdil MardinogluCentre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, UKAdil MardinogluBioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USABernhard Ø.

下载referencesAcknowledgementsA。M、 感谢克努特和爱丽丝·沃伦伯格基金会。作者还感谢系统医学小组成员的阅读和评论。作者信息作者和附属机构生命科学实验室,KTH-皇家理工学院,斯德哥尔摩,Swedendadil MardinogluCentre,宿主-微生物组相互作用,伦敦国王学院牙科,口腔和颅面科学学院,伦敦,UKAdil MardinogluBioinformatics and Systems Biology Program,加利福尼亚大学圣地亚哥分校,加利福尼亚州拉霍亚,美国伯纳德Ø。

PalssonDepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USABernhard Ø. PalssonDepartment of Paediatrics, University of California, San Diego, La Jolla, CA, USABernhard Ø. PalssonCenter for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USABernhard Ø.

Palsson加利福尼亚大学圣地亚哥分校生物工程系,加利福尼亚州拉霍亚,USABernhardØ。。加利福尼亚大学圣地亚哥分校Palsson微生物组创新中心,加利福尼亚州拉霍亚,USABernhardØ。

PalssonNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, DenmarkBernhard Ø. PalssonAuthorsAdil MardinogluView author publicationsYou can also search for this author in.

丹麦技术大学PalssonNovo Nordisk基金会生物可持续性中心,Kongens Lyngby,DenmarkBernhardØ。。

PubMed Google ScholarBernhard Ø. PalssonView author publicationsYou can also search for this author in

PubMed谷歌ScholarBernhardØ。PalssonView作者出版物您也可以在

PubMed Google ScholarContributionsBoth authors contributed equally to all aspects of the article.Corresponding authorsCorrespondence to

PubMed谷歌学术贡献两位作者对文章的各个方面都做出了同样的贡献。通讯作者通讯

Adil Mardinoglu or Bernhard Ø. Palsson.Ethics declarations

Adil Mardinoglu或BernhardØ。帕尔森。道德宣言

Competing interests

相互竞争的利益

A.M. is the co-founder of SZA Longevity, BASH Biotech, Trustlife Therapeutics, ScandiBio Therapeutics and ScandiEdge Therapeutics, and B.Ø.P. is the co-founder of Sinopia Biosciences and Conarium Bioworks.

A、 M.是SZA长寿,BASH Biotech,Trustlife Therapeutics,ScandiBio Therapeutics和ScandiEdge Therapeutics以及B.Ø的联合创始人。P、 。

Peer review

同行评审

Peer review information

同行评审信息

Nature Reviews Genetics thanks Thomas Sauter, Aleksej Zelezniak and Cristal Zuniga for their contribution to the peer review of this work.

《自然评论遗传学》感谢托马斯·索特(ThomasSauter)、亚历克斯·泽莱兹尼亚克(AleksejZelezniak)和克里斯蒂尔·祖尼加(CristalZuniga)为这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Related linksiNetModels Interactive Database: https://inetmodels.comKEGG: https://www.genome.jp/kegg/pathway.htmlReactome: https://reactome.org/Rights and permissionsReprints and permissionsAbout this articleCite this articleMardinoglu, A., Palsson, B.Ø.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。相关链接InetModels交互数据库:https://inetmodels.comKEGG:(笑声)https://www.genome.jp/kegg/pathway.htmlReactome:(笑声)https://reactome.org/Rights和许可打印和许可本文引用本文Mardinoglu,A.,Palsson,B。

Genome-scale models in human metabologenomics..

人类代谢组学中的基因组规模模型。。

Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00768-0Download citationAccepted: 29 July 2024Published: 19 September 2024DOI: https://doi.org/10.1038/s41576-024-00768-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Rev Genet(2024年)。https://doi.org/10.1038/s41576-024-00768-0Download引文接受日期:2024年7月29日发布日期:2024年9月19日OI:https://doi.org/10.1038/s41576-024-00768-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供