EN
登录

SGK1通过NRF2依赖性和非依赖性途径抑制卵巢癌症脱铁

SGK1 suppresses ferroptosis in ovarian cancer via NRF2-dependent and -independent pathways

Nature 等信源发布 2024-09-21 22:25

可切换为仅中文


AbstractHigh-grade serous ovarian cancer (HGSOC) is a highly aggressive disease often developing resistance to current therapies, necessitating new treatment strategies. Our study identifies SGK1, a key effector in the PI3K pathway, as a promising therapeutic target to exploit ferroptosis, a distinct form of cell death induced by iron overload and lipid peroxidation.

摘要高度浆液性卵巢癌(HGSOC)是一种高度侵袭性的疾病,通常对目前的治疗产生耐药性,因此需要新的治疗策略。我们的研究确定了PI3K途径中的关键效应子SGK1是利用铁上睑下垂(一种由铁超载和脂质过氧化诱导的细胞死亡的独特形式)的有希望的治疗靶点。

Importantly, SGK1 activation, whether through high expression or the constitutively active SGK1-S422D mutation, confers resistance to ferroptosis in HGSOC. Conversely, SGK1 inhibition significantly enhances sensitivity to ferroptosis, as shown by increased PTGS2 expression (a ferroptosis marker), lipid peroxidation, and toxic-free iron levels.

重要的是,SGK1激活,无论是通过高表达还是组成型活性SGK1-S422D突变,都会赋予HGSOC对铁浓化的抗性。相反,SGK1抑制显着增强了对ferroptosis的敏感性,如PTGS2表达增加(ferroptosis标记),脂质过氧化和有毒游离铁水平所示。

Remarkably, this enhanced cytotoxicity is reversed by ferrostatin-1 and the iron chelator deferoxamine, highlighting the pivotal roles of lipid peroxidation and iron dysregulation in the process. Mechanistically, SGK1 protects HGSOC cells from ferroptosis via NRF2-dependent pathways, promoting glutathione synthesis and iron homeostasis, and NRF2-independent pathways via mTOR/SREBP1/SCD1-mediated lipogenesis.

值得注意的是,这种增强的细胞毒性被ferrostatin-1和铁螯合剂去铁胺逆转,突出了脂质过氧化和铁失调在该过程中的关键作用。从机制上讲,SGK1通过NRF2依赖性途径保护HGSOC细胞免于铁浓化,促进谷胱甘肽合成和铁稳态,并通过mTOR/SREBP1/SCD1介导的脂肪生成促进NRF2非依赖性途径。

Notably, pharmacological SGK1 inhibition sensitizes HGSOC xenograft models to ferroptosis induction, highlighting its therapeutic potential. These findings establish SGK1 as a critical regulator of ferroptosis and suggest targeting SGK1 alongside ferroptosis pathways as a potential therapeutic strategy for HGSOC patients..

值得注意的是,药理学SGK1抑制使HGSOC异种移植模型对ferroptosis诱导敏感,突出了其治疗潜力。这些发现将SGK1确立为ferroptosis的关键调节剂,并建议将SGK1与ferroptosis途径一起作为HGSOC患者的潜在治疗策略。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Subscribe to this journalReceive 50 print issues and online access251,40 € per yearonly 5,03 € per issueLearn moreBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout

订阅本期刊每年可收到50期印刷品和在线访问251,40欧元每期仅5,03欧元了解更多在SpringerLink上购买本文立即访问全文PDFBuy NOW价格可能需要缴纳结帐时计算的当地税费

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: HGSOC cells with high SGK1 expression are resistant to ferroptosis-inducing agents.Fig. 2: Oncogenic activation of SGK1 confers resistance to ferroptosis.Fig. 3: Activation of SGK1 suppresses ferroptosis through induction of NRF2 expression.Fig. 4: Inhibition of SGK1-NRF2 signaling axis promotes ferroptosis via suppressing SLC7A11-mediated GSH synthesis and impairing iron homeostasis.Fig.

图1:具有高SGK1表达的HGSOC细胞对ferroptosis诱导剂具有抗性。。图3:SGK1的激活通过诱导NRF2表达抑制ferroptosis。图4:SGK1-NRF2信号轴的抑制通过抑制SLC7A11介导的GSH合成和损害铁稳态来促进铁浓化。图。

5: Targeting SGK1 sensitizes HGSOC cells to ferroptosis inducer through inhibiting SREBP/SCD1.Fig. 6: Targeting SGK1 sensitizes HGSOC to ferroptosis inducer in vivo.Fig. 7: Proposed model of SGK1 suppressing ferroptosis in ovarian cancer via NRF2-dependent and -independent pathways..

5: 靶向SGK1通过抑制SREBP/SCD1使HGSOC细胞对ferroptosis诱导剂敏感。图6:靶向SGK1使HGSOC在体内对ferroptosis诱导剂敏感。图7:SGK1通过NRF2依赖性和非依赖性途径抑制卵巢癌铁浓化的拟议模型。。

Data availability

数据可用性

The data generated in this study are available upon request from the corresponding author.

ReferencesVeneziani AC, Gonzalez-Ochoa E, Alqaisi H, Madariaga A, Bhat G, Rouzbahman M, et al. Heterogeneity and treatment landscape of ovarian carcinoma. Nat Rev Clin Oncol. 2023;20:820–42.Article

参考文献Veneziani AC,Gonzalez-Ochoa E,Alqaisi H,Madariaga A,Bhat G,Rouzbahman M等。卵巢癌的异质性和治疗前景。Nat Rev Clin Oncol。2023年;20: 820-42.文章

PubMed

PubMed

Google Scholar

谷歌学者

Breen J, Allen K, Zucker K, Adusumilli P, Scarsbrook A, Hall G, et al. Artificial intelligence in ovarian cancer histopathology: a systematic review. NPJ Precis Oncol. 2023;7:83.Article

Breen J,Allen K,Zucker K,Adusumilli P,Scarsbrook A,Hall G等。卵巢癌组织病理学中的人工智能:系统评价。NPJ Precis Oncol。2023年;7: 83、条款

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22:381–96.Article

Lei G,Zhuang L,Gan B.将ferroptosis作为癌症的脆弱性。Nat Rev癌症。2022年;22:381–96.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185:2401–21.Article

Stockwell BR。Ferroptosis 10岁:新兴机制,生理功能和治疗应用。细胞。2022年;185:2401–21.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–96.Article

Chen X,Kang R,Kroemer G,Tang D.拓宽视野:ferroptosis在癌症中的作用。Nat Rev Clin Oncol。2021年;18:

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer. Cancer Cell. 2019;35:830–49.Article

Hassannia B,Vandenabeele P,Vanden Berghe T.靶向ferroptosis以消除癌症。癌细胞。2019年;35:830–49.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ruan D, Wen J, Fang F, Lei Y, Zhao Z, Miao Y. Ferroptosis in epithelial ovarian cancer: a burgeoning target with extraordinary therapeutic potential. Cell Death Discov. 2023;9:434.Article

阮D,温J,方F,雷Y,赵Z,苗Y.上皮性卵巢癌的Ferroptosis:一个具有非凡治疗潜力的新兴靶点。细胞死亡发现。2023年;9: 第434条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, et al. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 2021;42:101928.Article

Hong T,Lei G,Chen X,Li H,Zhang X,Wu N等。PARP抑制通过抑制SLC7A11促进ferroptosis,并与BRCA熟练卵巢癌中的ferroptosis诱导剂协同作用。氧化还原生物。2021年;42:101928.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang CK, Chen TJ, Tan GYT, Chang FP, Sridharan S, Yu CA, et al. MEX3A mediates p53 degradation to suppress ferroptosis and facilitate ovarian cancer tumorigenesis. Cancer Res. 2023;83:251–63.Article

Wang CK,Chen TJ,Tan GYT,Chang FP,Sridharan S,Yu CA等。MEX3A介导p53降解以抑制铁蛋白沉积并促进卵巢癌肿瘤发生。癌症研究2023;83:251–63.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA 2020;117:31189–97.Article

Yi J,Zhu J,Wu J,Thompson CB,Jiang X.PI3K-AKT-mTOR信号传导的致癌激活通过SREBP介导的脂肪生成抑制铁浓化。美国国家科学院院刊2020;117:31189–97.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen H, Qi Q, Wu N, Wang Y, Feng Q, Jin R, et al. Aspirin promotes RSL3-induced ferroptosis by suppressing mTOR/SREBP-1/SCD1-mediated lipogenesis in PIK3CA-mutant colorectal cancer. Redox Biol. 2022;55:102426.Article

Chen H,Qi Q,Wu N,Wang Y,Feng Q,Jin R,et al。阿司匹林通过抑制PIK3CA突变型结直肠癌中mTOR/SREBP-1/SCD1介导的脂肪生成来促进RSL3诱导的铁浓化。氧化还原生物。2022年;55:102426.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cahuzac KM, Lubin A, Bosch K, Stokes N, Shoenfeld SM, Zhou R, et al. AKT activation because of PTEN loss upregulates xCT via GSK3beta/NRF2, leading to inhibition of ferroptosis in PTEN-mutant tumor cells. Cell Rep. 2023;42:112536.Article

Cahuzac KM,Lubin A,Bosch K,Stokes N,Shoenfeld SM,Zhou R等。由于PTEN丢失导致的AKT激活通过GSK3beta/NRF2上调xCT,从而抑制PTEN突变肿瘤细胞的铁浓化。细胞代表2023;42:112536.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Takahashi N, Cho P, Selfors LM, Kuiken HJ, Kaul R, Fujiwara T, et al. 3D culture models with CRISPR screens reveal hyperactive NRF2 as a prerequisite for spheroid formation via regulation of proliferation and ferroptosis. Mol Cell. 2020;80:828–44.e826.Article

Takahashi N,Cho P,Selfors LM,Kuiken HJ,Kaul R,Fujiwara T等。具有CRISPR筛选的3D培养模型显示,过度活跃的NRF2是通过调节增殖和铁浓化形成球体的先决条件。摩尔细胞。2020年;80:828–44.e826.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107.Article

Dodson M,Castro-Portuguez R,Zhang DD.NRF2在减轻脂质过氧化和铁浓化中起关键作用。氧化还原生物。2019年;23:101107.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anandhan A, Dodson M, Shakya A, Chen J, Liu P, Wei Y, et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci Adv. 2023;9:eade9585.Article

Anandhan A,Dodson M,Shakya A,Chen J,Liu P,Wei Y等。NRF2通过HERC2和VAMP8控制铁稳态和铁下垂。Sci Adv.2023;9: eade9585.条款

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer. Cancer Cell. 2018;34:21–43.Article

Rojo de la Vega M,Chapman E,Zhang DD.NRF2和癌症的标志。癌细胞。;34:21–43.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Castel P, Ellis H, Bago R, Toska E, Razavi P, Carmona FJ, et al. PDK1-SGK1 signaling sustains AKT-independent mTORC1 activation and confers resistance to PI3Kalpha inhibition. Cancer Cell. 2016;30:229–42.Article

Castel P,Ellis H,Bago R,Toska E,Razavi P,Carmona FJ等。PDK1-SGK1信号传导维持不依赖AKT的mTORC1激活并赋予对PI3Kalpha抑制的抗性。癌细胞。2016年;30:229–42.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Toska E, Castel P, Chhangawala S, Arruabarrena-Aristorena A, Chan C, Hristidis VC, et al. PI3K inhibition activates SGK1 via a feedback loop to promote chromatin-based regulation of ER-dependent gene expression. Cell Rep. 2019;27:294–306.e295.Article

Toska E,Castel P,Chhangawala S,Arruabarena Aristorena A,Chan C,Hristidis VC等。PI3K抑制通过反馈环激活SGK1,以促进基于染色质的ER依赖性基因表达调控。细胞代表2019;27:294–306.e295.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R, et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci USA 2013;110:8708–13.Article

Anacker C,Cattaneo A,Musaelyan K,Zunszain PA,Horowitz M,Molteni R等。激酶SGK1在应激,抑郁和糖皮质激素对海马神经发生的影响中的作用。美国国家科学院院刊2013;110:8708–13.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Di Cristofano A. SGK1: the dark side of PI3K signaling. Curr Top Dev Biol. 2017;123:49–71.Article

Di Cristofano A.SGK1:PI3K信号传导的黑暗面。当前顶级开发生物。2017年;123:49–71.文章

PubMed

PubMed

Google Scholar

谷歌学者

Sang Y, Kong P, Zhang S, Zhang L, Cao Y, Duan X, et al. SGK1 in human cancer: emerging roles and mechanisms. Front Oncol. 2020;10:608722.Article

桑Y,孔P,张S,张L,曹Y,段X等。SGK1在人类癌症中的作用和机制。前部Oncol。2020年;10: 608722条

PubMed

PubMed

Google Scholar

谷歌学者

Zhu R, Yang G, Cao Z, Shen K, Zheng L, Xiao J, et al. The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star. Ther Adv Med Oncol. 2020;12:1758835920940946.Article

朱R,杨G,曹Z,沈K,郑L,肖J,等。血清和糖皮质激素诱导激酶1(SGK1)在癌症治疗中的前景:一颗新星。Ther Adv Med Oncol。2020年;12: 1758835920940946条

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li Y, Liu C, Rolling L, Sikora V, Chen Z, Gurwin J, et al. ROS signaling-induced mitochondrial Sgk1 expression regulates epithelial cell renewal. Proc Natl Acad Sci USA 2023;120:e2216310120.Article

。美国国家科学院院刊2023;120:e2216310120.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang M, Xue Y, Shen L, Qin P, Sang X, Tao Z, et al. Inhibition of SGK1 confers vulnerability to redox dysregulation in cervical cancer. Redox Biol. 2019;24:101225.Article

Wang M,Xue Y,Shen L,Qin P,Sang X,Tao Z等。SGK1的抑制赋予宫颈癌氧化还原失调的易感性。氧化还原生物。2019年;24:101225.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vaidyanathan S, Salmi TM, Sathiqu RM, McConville MJ, Cox AG, Brown KK. YAP regulates an SGK1/mTORC1/SREBP-dependent lipogenic program to support proliferation and tissue growth. Dev Cell. 2022;57:719–31.e718.Article

Vaidyanathan S,Salmi TM,Sathiqu RM,McConville MJ,Cox AG,Brown KK。YAP调节SGK1/mTORC1/SREBP依赖性脂肪生成程序以支持增殖和组织生长。开发单元。2022年;57:719–31.e718.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Eaton JK, Furst L, Ruberto RA, Moosmayer D, Hilpmann A, Ryan MJ, et al. Selective covalent targeting of GPX4 using masked nitrile-oxide electrophiles. Nat Chem Biol. 2020;16:497–506.Article

Eaton JK,Furst L,Ruberto RA,Moosmayer D,Hilpmann A,Ryan MJ等。使用掩蔽的腈氧化物亲电子试剂选择性共价靶向GPX4。Nat Chem生物。2020年;16: 497-506.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cancer Genome Atlas Research Network Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474:609–15.Article

癌症基因组图谱研究网络整合了卵巢癌的基因组分析。自然。2011年;474:609–15.文章

Google Scholar

谷歌学者

Way GP, Rudd J, Wang C, Hamidi H, Fridley BL, Konecny GE, et al. Comprehensive cross-population analysis of high-grade serous ovarian cancer supports no more than three subtypes. G3. 2016;6:4097–103.Article

Way GP,Rudd J,Wang C,Hamidi H,Fridley BL,Konecny GE等。高级别浆液性卵巢癌的综合跨人群分析支持不超过三种亚型。G3.2016;6: 4097–103.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.Article

Yang WS,SriRamaratnam R,Welsch ME,Shimada K,Skouta R,Viswanathan VS等。GPX4对铁蛋白性癌细胞死亡的调节。细胞。2014年;156:317–31.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375:1254–61.Article

Tsvetkov P,Coy S,Petrova B,Dreishpoon M,Verma A,Abdusamad M等。铜通过靶向脂酰化的TCA循环蛋白诱导细胞死亡。科学。2022年;375:1254–61.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yuk H, Abdullah M, Kim DH, Lee H, Lee SJ. Necrostatin-1 prevents ferroptosis in a RIPK1- and IDO-independent manner in hepatocellular carcinoma. Antioxidants. 2021;10:1347.Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics.

Yuk H,Abdullah M,Kim DH,Lee H,Lee SJ。Necrostatin-1在肝细胞癌中以RIPK1和IDO非依赖性方式预防铁浓化。抗氧化剂。2021年;10: Sun S,Shen J,Jiang J,Wang F,Min J.靶向ferroptosis为开发新疗法开辟了新途径。

Signal Transduct Target Ther. 2023;8:372.Article .

信号传输目标Ther。2023年;8: 第372条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mason JA, Cockfield JA, Pape DJ, Meissner H, Sokolowski MT, White TC, et al. SGK1 signaling promotes glucose metabolism and survival in extracellular matrix detached cells. Cell Rep. 2021;34:108821.Article

Mason JA,Cockfield JA,Pape DJ,Meissner H,Sokolowski MT,White TC等。SGK1信号传导促进细胞外基质分离细胞中的葡萄糖代谢和存活。细胞代表2021;34:108821.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang Z, Zhou C, Li X, Barnes SD, Deng S, Hoover E, et al. Loss of CHD1 promotes heterogeneous mechanisms of resistance to AR-targeted therapy via chromatin dysregulation. Cancer Cell. 2020;37:584–98.e511.Article

Zhang Z,Zhou C,Li X,Barnes SD,Deng S,Hoover E等。CHD1的缺失通过染色质失调促进了对AR靶向治疗的异质性耐药机制。癌细胞。2020年;37:584–98.e511.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li X, Wang Y, Deng S, Zhu G, Wang C, Johnson NA, et al. Loss of SYNCRIP unleashes APOBEC-driven mutagenesis, tumor heterogeneity, and AR-targeted therapy resistance in prostate cancer. Cancer Cell. 2023;41:1427–49.e1412.Article

Li X,Wang Y,Deng S,Zhu G,Wang C,Johnson NA等。SYNCRIP的缺失会释放APOBEC驱动的前列腺癌突变,肿瘤异质性和AR靶向治疗耐药性。癌细胞。2023年;41:1427–49.e1412.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lim PJ, Duarte TL, Arezes J, Garcia-Santos D, Hamdi A, Pasricha SR, et al. Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat Metab. 2019;1:519–31.Article

Lim PJ,Duarte TL,Arezes J,Garcia Santos D,Hamdi A,Pasricha SR等。Nrf2通过Bmp6和铁调素控制血色素沉着症和地中海贫血的铁稳态。自然代谢。2019年;1: 519-31.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang H, Jiang X, Wu J, Zhang L, Huang J, Zhang Y, et al. Iron overload coordinately promotes ferritin expression and fat accumulation in Caenorhabditis elegans. Genetics. 2016;203:241–53.Article

Wang H,Jiang X,Wu J,Zhang L,Huang J,Zhang Y,et al。铁超载协同促进秀丽隐杆线虫铁蛋白表达和脂肪积累。遗传学。2016年;203:241–53.文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu G, Baumeister R, Heimbucher T. SGK-1 mediated inhibition of iron import is a determinant of lifespan in C. elegans. MicroPubl Biol. 2023;eCollection 2023:000970.Fagerli UM, Ullrich K, Stuhmer T, Holien T, Kochert K, Holt RU, et al. Serum/glucocorticoid-regulated kinase 1 (SGK1) is a prominent target gene of the transcriptional response to cytokines in multiple myeloma and supports the growth of myeloma cells.

Wu G,Baumeister R,Heimbucher T.SGK-1介导的铁输入抑制是秀丽隐杆线虫寿命的决定因素。MicroPubl生物。2023年;eCollection 2023:000970.Fagerli UM,Ullrich K,Stuhmer T,Holien T,Kochert K,Holt RU等。血清/糖皮质激素调节激酶1(SGK1)是多发性骨髓瘤细胞因子转录反应的重要靶基因,支持骨髓瘤细胞的生长。

Oncogene. 2011;30:3198–206.Article .

致癌基因。2011年;30:3198–206。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Amato R, Menniti M, Agosti V, Boito R, Costa N, Bond HM, et al. IL-2 signals through Sgk1 and inhibits proliferation and apoptosis in kidney cancer cells. J Mol Med. 2007;85:707–21.Article

Amato R,Menniti M,Agosti V,Boito R,Costa N,Bond HM等。IL-2通过Sgk1发出信号并抑制肾癌细胞的增殖和凋亡。J Mol Med。2007;85:707–21.文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yi J, Liu C, Tao Z, Wang M, Jia Y, Sang X, et al. MYC status as a determinant of synergistic response to Olaparib and Palbociclib in ovarian cancer. EBioMedicine. 2019;43:225–37.Article

。EBioMedicine。2019年;43:225–37.文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesFundingThis work was supported by the National Natural Science Foundation of China (No. 82472708, 82372649, and 82302981), Zhejiang Provincial Natural Science Foundation of China (LY24H160028), Medicine and Health Technology Program of Zhejiang Province (2024KY1255), Discipline Cluster of Oncology, Wenzhou Medical University, China (z2-2023015), and Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation (2018E10008).Author informationAuthor notesThese authors contributed equally: Xiaolin Sang, Jiaxin Han.Authors and AffiliationsZhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, ChinaXiaolin Sang, Weiji Cai, Zhijie Yu & Pixu LiuCancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University; Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning, ChinaJiaxin Han, Zhaojing Wang, Xingming Liao, Zhuolin Kong & Hailing ChengAuthorsXiaolin SangView author publicationsYou can also search for this author in.

下载参考文献资助这项工作得到了国家自然科学基金(编号8247270882372649和82302981),浙江省自然科学基金(LY24H160028),浙江省医药卫生技术计划(2024KY1255),温州医科大学肿瘤学学科群(z2-2023015)和浙江省智能癌症生物标志物发现与翻译重点实验室(2018E10008)的支持。作者信息作者注意到这些作者做出了同样的贡献:桑晓林,韩嘉欣。作者和附属机构温州医科大学附属第一医院智能癌症生物标志物发现与翻译重点实验室,浙江温州,中国桑晓林,蔡伟基,余志杰和刘皮旭癌症研究所,大连分子靶向癌症治疗重点实验室,大连医科大学第二医院;。

PubMed Google ScholarJiaxin HanView author publicationsYou can also search for this author in

PubMed Google ScholarJiaxin HanView作者出版物您也可以在

PubMed Google ScholarZhaojing WangView author publicationsYou can also search for this author in

PubMed Google ScholarZhaojing WangView作者出版物您也可以在

PubMed Google ScholarWeiji CaiView author publicationsYou can also search for this author in

PubMed Google ScholarWeiji CaiView作者出版物您也可以在

PubMed Google ScholarXingming LiaoView author publicationsYou can also search for this author in

PubMed谷歌学者廖兴明查看作者出版物您也可以在

PubMed Google ScholarZhuolin KongView author publicationsYou can also search for this author in

PubMed Google ScholarZhuolin KongView作者出版物您也可以在

PubMed Google ScholarZhijie YuView author publicationsYou can also search for this author in

PubMed Google ScholarZhijie YuView作者出版物您也可以在

PubMed Google ScholarHailing ChengView author publicationsYou can also search for this author in

PubMed Google ScholarHailing ChengView作者出版物您也可以在

PubMed Google ScholarPixu LiuView author publicationsYou can also search for this author in

PubMed Google ScholarPixu LiuView作者出版物您也可以在

PubMed Google ScholarContributionsPL, HC, and ZY conceived and designed the study and drafted the manuscript. XS and JH performed most of the experiments, collected and analyzed the data. XS, JH, and ZW performed the flow cytometric analysis. XS, WC, and ZW performed quantitative RT-PCR analysis and IHC staining.

PubMed Google ScholarContributionsPL,HC和ZY构思并设计了这项研究并起草了手稿。XS和JH进行了大部分实验,收集并分析了数据。XS,JH和ZW进行了流式细胞术分析。XS,WC和ZW进行了定量RT-PCR分析和IHC染色。

XS and WC performed animal experiments. XL and ZK performed clinical data analysis. All authors revised and approved the manuscript.Corresponding authorsCorrespondence to.

XS和WC进行了动物实验。XL和ZK进行了临床数据分析。所有作者都修改并批准了手稿。通讯作者通讯。

Zhijie Yu, Hailing Cheng or Pixu Liu.Ethics declarations

余志杰、程海玲或刘丕旭。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Ethics approval

道德认可

The animal study was approved by the Institutional Animal Care and Use Committee of the First Affiliated Hospital of Wenzhou Medical University (Approval No. WYYY-IACUC-AEC-2023-083). All methods were performed in accordance with the relevant guidelines and regulations.

该动物研究经温州医科大学第一附属医院机构动物护理和使用委员会批准(批准号:WYYY-IACUC-AEC-2023-083)。所有方法均按照相关指南和规定进行。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationRights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleSang, X., Han, J., Wang, Z.

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息权利和许可Pringer Nature或其许可方(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Sang,X.,Han,J.,Wang,Z。

et al. SGK1 suppresses ferroptosis in ovarian cancer via NRF2-dependent and -independent pathways..

SGK1通过NRF2依赖性和非依赖性途径抑制卵巢癌的ferroptosis。。

Oncogene (2024). https://doi.org/10.1038/s41388-024-03173-3Download citationReceived: 18 January 2024Revised: 06 September 2024Accepted: 16 September 2024Published: 21 September 2024DOI: https://doi.org/10.1038/s41388-024-03173-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

癌基因(2024)。https://doi.org/10.1038/s41388-024-03173-3Download引文收到日期:2024年1月18日修订日期:2024年9月6日接受日期:2024年9月16日发布日期:2024年9月21日OI:https://doi.org/10.1038/s41388-024-03173-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供