EN
登录

基于细胞动力学的表观遗传年龄加速的概率推断

Probabilistic inference of epigenetic age acceleration from cellular dynamics

Nature 等信源发布 2024-09-23 18:18

可切换为仅中文


AbstractThe emergence of epigenetic predictors was a pivotal moment in geroscience, propelling the measurement and concept of biological aging into a quantitative era; however, while current epigenetic clocks show strong predictive power, they are data-driven in nature and are not based on the underlying biological mechanisms driving methylation dynamics.

摘要表观遗传预测因子的出现是老年科学的关键时刻,推动了生物衰老的测量和概念进入定量时代;然而,虽然目前的表观遗传时钟显示出强大的预测能力,但它们本质上是数据驱动的,并且不基于驱动甲基化动力学的潜在生物学机制。

We show that predictions of these clocks are susceptible to several confounding non-age-related phenomena that make interpretation of these estimates and associations difficult. To address these limitations, we developed a probabilistic model describing methylation transitions at the cellular level.

我们表明,这些时钟的预测容易受到几种混杂的非年龄相关现象的影响,这些现象使得对这些估计和关联的解释变得困难。为了解决这些限制,我们开发了一个概率模型,描述了细胞水平的甲基化转变。

Our approach reveals two measurable components, acceleration and bias, which directly reflect perturbations of the underlying cellular dynamics. Acceleration is the proportional increase in the speed of methylation transitions across CpG sites, whereas bias corresponds to global changes in methylation levels.

我们的方法揭示了两个可测量的组件,加速度和偏差,它们直接反映了潜在细胞动力学的扰动。加速是CpG位点甲基化转变速度的成比例增加,而偏差对应于甲基化水平的整体变化。

Using data from 15,900 participants from the Generation Scotland study, we develop a robust inference framework and show that these are two distinct processes confounding current epigenetic predictors. Our results show improved associations of acceleration and bias with physiological traits known to impact healthy aging, such as smoking and alcohol consumption, respectively.

使用来自苏格兰一代研究的15900名参与者的数据,我们开发了一个强大的推理框架,并表明这是混淆当前表观遗传预测因子的两个不同过程。我们的研究结果表明,加速和偏倚与已知影响健康衰老的生理特征(例如吸烟和饮酒)之间的关联有所改善。

Furthermore, a genome-wide association study of epigenetic age acceleration identified seven genomic loci..

此外,表观遗传年龄加速的全基因组关联研究确定了七个基因组位点。。

MainThe role of age as the predominant risk factor for cancer, neurodegenerative disease and cardiovascular disease has motivated research into its underlying cellular mechanisms. Until recently, a major challenge in this field was the lack of a reliable method for accurately measuring biological age.

主要年龄作为癌症,神经退行性疾病和心血管疾病的主要危险因素的作用激发了对其潜在细胞机制的研究。直到最近,该领域的一个主要挑战是缺乏准确测量生物年龄的可靠方法。

A tipping point was the development of the first comprehensive epigenetic age predictors1,2,3,4. These models quantified biological age based on the presence of age-related changes in the DNA methylome of individuals. This development naturally led to the concept of epigenetic age acceleration, which is commonly defined, for an individual within a cohort, as the residual from the epigenetic clock’s predicted age and their chronological age3,5.

一个转折点是第一个全面的表观遗传年龄预测因子1,2,3,4的发展。这些模型基于个体DNA甲基化组中年龄相关变化的存在来量化生物学年龄。这种发展自然产生了表观遗传年龄加速的概念,对于队列中的个体来说,表观遗传年龄加速通常被定义为表观遗传时钟预测年龄及其时间年龄的残余3,5。

The use of epigenetic clocks to measure the rate of epigenetic aging is now widely employed as they have been shown to capture the impact of various diseases and environmental factors in a single metric5,6.In recent years, advances in the field have led to numerous improvements. First, population-based cohorts used for training have increased from modest sizes to include and combine large cross-sectional studies with thousands of participants1,2,7,8.

使用表观遗传时钟来测量表观遗传衰老的速度现在被广泛使用,因为它们已被证明可以在单个指标中捕捉各种疾病和环境因素的影响5,6。近年来,该领域的进步导致了许多改进。首先,用于培训的基于人群的队列已经从适度规模增加到包括并结合了数千名参与者的大型横断面研究1,2,7,8。

Second, the complexity of models has advanced on two fronts. Machine learning techniques are now used increasingly to develop epigenetic clocks that capture nonlinear and interaction dynamics9,10. Furthermore, ‘composite’ or ‘second-generation’ clocks have been directly trained on quantitative markers tracking health and longevity.

其次,模型的复杂性在两个方面都有所提高。机器学习技术现在越来越多地用于开发捕获非线性和相互作用动态的表观遗传时钟9,10。。

As a result, these clocks have increased associations with a number of diseases as well as overall mortality11,12,13.While more sophisticated algorithms and larger cohort sizes have improved the accuracy of epigenetic clocks in predicting chronological age, th.

Data availability

数据可用性

According to the terms of consent for GS participants, access to data must be reviewed by the GS Access Committee. Applications should be made to access@generationscotland.org. Applications are reviewed usually within 6–8 weeks of submission, but typically sooner. Applicants are notified of the decision no later than 2 weeks after the meeting.

根据GS参与者的同意条款,数据的访问必须由GS访问委员会审查。申请应提交至access@generationscotland.org.申请通常在提交后6-8周内进行审查,但通常更快。不迟于会议后2周通知申请人该决定。

The dataset ‘Sample information of DNA methylation profiles of male and female in 24 tissues’ used to check the associations for tissue-specific sites is publicly available at the EWAS Datahub at https://download.cncb.ac.cn/ewas/datahub/download/sex_methylation_v1.zip. The Down syndrome dataset is publicly available in the Gene Expression Omnibus under accession no.GSE52588.

用于检查组织特异性位点关联的数据集“24种组织中男性和女性DNA甲基化谱的样本信息”可在EWAS Datahub上公开获得https://download.cncb.ac.cn/ewas/datahub/download/sex_methylation_v1.zip.唐氏综合症数据集可在Gene Expression Omnibus中公开获得,登录号为GSE52588。

The Hannum dataset is publicly available in the Gene Expression Omnibus under accession no. GSE40279..

。。

Code availability

代码可用性

All code used in this manuscript is available at https://github.com/zuberek/probage. The inference of the posterior distribution of model parameters was implemented in Python v.3.9 with dependencies on PyMC v.5.0.2 (ref. 40), Numpy v.1.24.1 (ref. 44), Anndata v.0.8.0 (ref. 45) and Pandas v.1.5.3 (ref.

本手稿中使用的所有代码均可在https://github.com/zuberek/probage.模型参数后验分布的推断是在Python v.3.9中实现的,依赖于PyMC v.5.0.2(参考文献40),Numpy v.1.24.1(参考文献44),Anndata v.0.8.0(参考文献45)和Pandas v.1.5.3(参考文献45)。

46). Cox proportional hazards regression was conducted using the survival package v.3.4.0 (refs. 47,48), while linear and logistic regression were carried out using the stats base package under R base v.4.2.2. GWAS summary statistics were generated using GCTA v.1.93.2. Functional analysis of the GWAS results was conducted using FUMA v.1.5.1.

46)。使用survival package v.3.4.0(参考文献47,48)进行Cox比例风险回归,而使用R base v.4.2.2下的stats base package进行线性和逻辑回归。GWAS汇总统计数据是使用GCTA v.1.93.2生成的。使用FUMA v.1.5.1对GWAS结果进行功能分析。

The human reference genome assembly used for GWAS is at http://www.ncbi.nlm.nih.gov/assembly/2758/. GENCODE annotation release 39 is at https://www.gencodegenes.org/human/release_39.html..

用于GWAS的人类参考基因组组件位于http://www.ncbi.nlm.nih.gov/assembly/2758/.GENCODE注释版本39位于https://www.gencodegenes.org/human/release_39.html..

ReferencesBocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).Article

参考文献Bockland,S。等人。年龄的表观遗传预测因子。PLoS ONE 6,e14821(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Koch, C. M. & Wagner, W. Epigenetic-aging-signature to determine age in different tissues. Aging 3, 1018–1027 (2011).Article

Koch,C.M。&Wagner,W。表观遗传衰老特征,以确定不同组织的年龄。年龄31018-1027(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).Article

Horvath,S。人体组织和细胞类型的DNA甲基化年龄。基因组生物学。14,R115(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).Article

Hannum,G。等人。全基因组甲基化谱揭示了人类衰老率的定量观点。分子细胞49359-367(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).Article

Horvath,S。&Raj,K。基于DNA甲基化的生物标志物和衰老的表观遗传时钟理论。Genet自然Rev。19371-384(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Simpson, D. J. & Chandra, T. Epigenetic age prediction. Aging Cell 20, 1–20 (2021).Article

Simpson,D.J。&Chandra,T。表观遗传年龄预测。衰老细胞20,1-20(2021)。文章

Google Scholar

谷歌学者

Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019).Article

Zhang,Q.等人。提高了跨组织表观遗传时钟估计的精确度及其对生物衰老的影响。基因组医学11,54(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bernabeu, E. et al. Refining epigenetic prediction of chronological and biological age. Genome Med. https://doi.org/10.1186/s13073-023-01161-y (2023).Galkin, F., Mamoshina, P., Kochetov, K., Sidorenko, D. & Zhavoronkov, A. DeepMAge: a methylation aging clock developed with deep learning.

Bernabeu,E.等人完善了时间和生物年龄的表观遗传预测。基因组医学。https://doi.org/10.1186/s13073-023-01161-y(2023年)。Galkin,F.,Mamoshina,P.,Kochetov,K.,Sidorenko,D。&Zhavoronkov,A。DeepMAge:随着深度学习而发展的甲基化衰老时钟。

Aging Dis. 12, 1252–1262 (2021).Article .

老化Dis。121252-1262(2021)。。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Lima Camillo, L. P., Lapierre, L. R. & Singh, R. A pan-tissue DNA-methylation epigenetic clock based on deep learning. NPJ Aging 8, 4 (2022).Article

de Lima Camillo,L.P.,Lapierre,L.R。&Singh,R。基于深度学习的泛组织DNA甲基化表观遗传时钟。NPJ老化8,4(2022)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018).Article

Levine,M.E.等人。衰老对寿命和健康的表观遗传生物标志物。年龄10573-591(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).Article

Lu,A.T.等人,DNA甲基化GrimAge强烈预测寿命和健康寿命。年龄11303-327(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 9, e54870 (2020).Article

Belsky,D.W.等人。通过血液测试,即DunedinPoAm DNA甲基化算法,对人类生物衰老速度进行定量。eLife 9,e54870(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

El Khoury, L. Y. et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 20, 283 (2019).Article

。基因组生物学。20283(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Magalhães, J. P. Distinguishing between driver and passenger mechanisms of aging. Nat. Genet. 56, 204–211 (2024).Article

de Magalhães,J.P。区分驾驶员和乘客的衰老机制。纳特·吉内特。56204-211(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Pfeifer, G. P., Steigerwald, S. D., Hansen, R. S., Gartler, S. M. & Riggs, A. D. Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability.

Pfeifer,G.P.,Steigerwald,S.D.,Hansen,R.S.,Gartler,S.M。&Riggs,A.D。聚合酶链反应辅助X染色体连锁CpG岛的基因组测序:甲基化模式表明克隆遗传,CpG位点自主性和活性状态稳定性的解释。

Proc. Natl Acad. Sci. USA 87, 8252–8256 (1990).Article .

Proc. Natl Acad. Sci. USA 87, 8252–8256 (1990).Article .

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schumacher, B. & Meyer, D. Accurate aging clocks based on accumulating stochastic variation. Res. Sq. https://doi.org/10.21203/rs.3.rs-2351315/v1 (2023).Article

Schumacher,B。&Meyer,D。基于累积随机变化的精确老化时钟。Res.平方米。https://doi.org/10.21203/rs.3.rs-2351315/v1(2023年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiong, Z. et al. EWAS Data Hub: a resource of DNA methylation array data and metadata. Nucleic Acids Res. 48, D890–D895 (2020).Article

Xiong,Z.等人。EWAS数据中心:DNA甲基化阵列数据和元数据的资源。核酸研究48,D890–D895(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oblak, L., van der Zaag, J., Higgins-Chen, A. T., Levine, M. E. & Boks, M. P. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res. Rev. 69, 101348 (2021).Article

Oblak,L.,van der Zaag,J.,Higgins Chen,A.T.,Levine,M.E。&Boks,M.P。与表观遗传时钟加速相关的生物,社会和环境因素的系统综述。《老龄化决议》第69版,第101348页(2021年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Joehanes, R. et al. Epigenetic signatures of cigarette smoking. Circ. Cardiovasc. Genet. 9, 436–447 (2016).Article

Joehanes,R。等人。吸烟的表观遗传特征。保监会。心血管。基因。9436-447(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Grieshober, L. et al. AHRR methylation in heavy smokers: associations with smoking, lung cancer risk, and lung cancer mortality. BMC Cancer 20, 905 (2020).Article

Grieshober,L。等人。重度吸烟者的AHRR甲基化:与吸烟,肺癌风险和肺癌死亡率的关系。BMC癌症20905(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dai, X. et al. Health effects associated with smoking: a Burden of Proof study. Nat. Med. 28, 2045–2055 (2022).Article

。《自然医学》282045-2055(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Seale, K., Horvath, S., Teschendorff, A., Eynon, N. & Voisin, S. Making sense of the ageing methylome. Nat. Rev. Genet. 23, 585–605 (2022).Article

Seale,K.,Horvath,S.,Teschendorff,A.,Eynon,N。和Voisin,S。理解衰老的甲基化组。Genet自然Rev。23585-605(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495 (2015).Article

Horvath,S.等人加速了唐氏综合症的表观遗传衰老。衰老细胞14491-495(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Varela-Rey, M., Woodhoo, A., Martinez-Chantar, M.-L., Mato, J. M. & Lu, S. C. Alcohol, DNA methylation, and cancer. Alcohol Res. 35, 25–35 (2013).PubMed

瓦雷拉·雷伊(Varela Rey,M.),伍德霍(Woodhoo),马丁内斯·尚塔尔(Martinez-Chantar),马托(Mato),J.M。&Lu,S.C。酒精,DNA甲基化和癌症。酒精决议35,25-35(2013)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).Article

Sollis,E.等人,《NHGRI-EBI GWAS目录:知识库和沉积资源》。核酸研究51,D977–D985(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

McCartney, D. L. et al. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol. 22, 194 (2021).Article

McCartney,D.L.等人的全基因组关联研究确定了137个衰老DNA甲基化生物标志物的基因位点。基因组生物学。22194(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Javierre, B. M. et al. Lineage-Specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19 (2016).Article

Javierre,B.M。等人。谱系特异性基因组结构将增强子和非编码疾病变体与靶基因启动子联系起来。细胞1671369-1384.e19(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sloan, C. A. et al. ENCODE data at the ENCODE portal. Nucleic Acids Res. 44, D726–D732 (2016).Article

Sloan,C.A.等人在ENCODE门户网站上对数据进行编码。核酸研究44,D726–D732(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hofmann, J. W. et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell 160, 477–488 (2015).Article

Hofmann,J.W。等人。MYC的表达减少会延长寿命并增强健康。细胞160477-488(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458 (2016).Article

Hnisz,D。等人。通过破坏染色体邻域激活原癌基因。科学3511454-1458(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zimmerman, M. W. et al. MYC Drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov. 8, 320–335 (2018).Article

Zimmerman,M.W。等人,MYC驱动一部分高危小儿神经母细胞瘤,并通过增强子劫持和局灶性增强子扩增等机制被激活。癌症发现。8320-335(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yang, R. et al. Mycn deficiency underlies the development of orofacial clefts in mice and humans. Hum. Mol. Genet. 31, 803–815 (2022).Article

Yang,R。等人。Mycn缺乏症是小鼠和人类口面部裂隙发展的基础。嗯,摩尔·吉内特。31803-815(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Higham, J. et al. Local CpG density affects the trajectory and variance of age-associated DNA methylation changes. Genome Biol. 23, 216 (2022).Article

Higham,J。等人。局部CpG密度影响与年龄相关的DNA甲基化变化的轨迹和变化。基因组生物学。23216(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

GBD 2019 Viewpoint Collaborators. Five insights from the global burden of disease study 2019. Lancet 396, 1135–1159 (2020).Article

GBD 2019视点合作者。2019年全球疾病负担研究的五点见解。柳叶刀3961135-1159(2020)。文章

Google Scholar

谷歌学者

Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Sci. Aging Knowledge Environ. 2001, cp13 (2001).Smith, B. H. et al. Generation Scotland: the Scottish Family Health Study; a new resource for researching genes and heritability. BMC Med. Genet. 7, 74 (2006).Article .

Williams,G.C。多效性,自然选择和衰老的进化。科学。老龄化知识环境。2001年,cp13(2001)。Smith,B.H.等人,《苏格兰一代:苏格兰家庭健康研究》;研究基因和遗传力的新资源。BMC医学基因。7,74(2006)。。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Smith, B. H. et al. Cohort Profile: Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness. Int. J. Epidemiol. 42, 689–700 (2013).Article

Smith,B.H.等人,《队列概况:苏格兰一代:苏格兰家庭健康研究》(GS:SFHS)。这项研究,参与者及其在健康和疾病基因研究中的潜力。国际流行病学杂志。42689-700(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).Article

McCarthy,S.等人。用于基因型估算的64976个单倍型的参考小组。纳特·吉内特。481279-1283(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nagy, R. et al. Exploration of haplotype research consortium imputation for genome-wide association studies in 20,032 Generation Scotland participants. Genome Med. 9, 23 (2017).Article

Nagy,R.等人,《探索单倍型研究联盟估算20032代苏格兰参与者的全基因组关联研究》。基因组医学9,23(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abril-Pla, O. et al. PyMC: a modern, and comprehensive probabilistic programming framework in Python. PeerJ Comput. Sci. 9, e1516 (2023).Article

Abril Pla,O。等人。PyMC:一个现代的、全面的Python概率编程框架。PeerJ计算机。科学。9,e1516(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).Article

。上午J。嗯。Genet。88,76-82(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).Article

Watanabe,K.,Taskesen,E.,van Bochoven,A。&Posthuma,D。与FUMA遗传关联的功能定位和注释。国家公社。81826(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, S.-H., Brown, D. W. & Machiela, M. J. Ldtrait: an online tool for identifying published phenotype associations in linkage disequilibrium. Cancer Res. 80, 3443–3446 (2020).Article

。癌症研究803443-3446(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).Article

Harris,C.R.等人。使用NumPy进行数组编程。《自然》585357-362(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).Article

Wolf,F.A.,Angerer,P。&Theis,F.J。SCANPY:大规模单细胞基因表达数据分析。基因组生物学。19,15(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McKinney, W. pandas: a foundational Python library for data analysis and statistics. Python for High Performance and Scientific Computing 14, 1–9 (2011).

McKinney,W.pandas:用于数据分析和统计的基础Python库。Python for High Performance and Scientific Computing 14,1–9(2011)。

Google Scholar

谷歌学者

Therneau, T. A package for survival analysis in S. R package version 2 (2015).Download referencesAcknowledgementsThe authors thank all of the participants of the GS: Scottish Family Health Study as well as study team members for their previous and ongoing contribution to this study. GS received core support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006).

Therneau,T。S.R软件包第2版(2015)中的生存分析软件包。下载参考文献致谢作者感谢GS:苏格兰家庭健康研究的所有参与者以及研究团队成员之前和正在进行的对这项研究的贡献。GS获得了苏格兰政府卫生局首席科学家办公室(CZD/16/6)和苏格兰资助委员会(HR03006)的核心支持。

DNA methylation profiling of the GS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland and was funded by the Medical Research Council UK, the Brain & Behavior Research Foundation (ref. 27404) and the Wellcome Trust (Wellcome Trust Strategic Award ‘STratifying Resilience and Depression Longitudinally’ ((STRADL) ref.

GS样品的DNA甲基化分析由苏格兰爱丁堡惠康信托临床研究机构的遗传学核心实验室进行,并由英国医学研究委员会,大脑与行为研究基金会(参考文献27404)和惠康信托基金会(惠康信托战略奖“纵向分层弹性和抑郁”((STRADL)参考文献)资助。

104036/Z/14/Z)). We thank C. P. Ponting for critical reading of the manuscript. We thank N. Olova and all members of the Chandra laboratory for their input. J.K.D. is supported by a UK Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics.

104036/Z/14/Z))。我们感谢C.P.Ponting对稿件的批判性阅读。我们感谢N.Olova和钱德拉实验室的所有成员的投入。J、 K.D.得到了英国研究与创新(资助EP/S02431X/1),爱丁堡大学信息学院生物医学人工智能博士培训中心的支持。

E.J.Y. is funded through core funding to the MRC Human Genetics Unit (MC_ST_U16003) S.J.C.C. is supported by the Wellcome Trust Hosts, Pathogens & Global Health Programme (grant no. 226831/Z/22/Z). E.L.C. is supported by an EHA Bilateral grant no. BCG-202209-02649 to K.K. E.L.C. has also been supported by a Medical Research Council grant (MC_UU_00009/2).

E、 J.Y.由MRC人类遗传学部门(MC\U ST\U U16003)的核心资金资助。J.C.C.由惠康信托基金宿主,病原体和全球健康计划(批准号226831/Z/22/Z)支持。E、 L.C.得到了英国EHA双边拨款BCG-202209-02649的支持。E.L.C.也得到了医学研究委员会拨款(MC\U UU\U 00009/2)的支持。

T.C. was partly supported through a Chancellor’s Fellow at the University of Edinburgh and the MRC Human Genetics Unit. Research reported in this publication was supported by the Mayo Clinic Robert and Arlene Kogod Center on Aging. Blood Cancer UK provide.

T、 C.得到了爱丁堡大学校长研究员和MRC人类遗传学部门的部分支持。本出版物中报道的研究得到了梅奥诊所罗伯特和阿琳·科戈德衰老中心的支持。英国提供的血癌。

PubMed Google ScholarEmma J. YangView author publicationsYou can also search for this author in

PubMed Google ScholarEmma J.YangView作者出版物您也可以在

PubMed Google ScholarSamuel J. C. CroftsView author publicationsYou can also search for this author in

PubMed Google ScholarSamuel J.C.CroftsView作者出版物您也可以在

PubMed Google ScholarRobert F. HillaryView author publicationsYou can also search for this author in

PubMed Google ScholarRobert F.HillaryView作者出版物您也可以在

PubMed Google ScholarDaniel J. SimpsonView author publicationsYou can also search for this author in

PubMed Google ScholarDaniel J.SimpsonView作者出版物您也可以在

PubMed Google ScholarDaniel L. McCartneyView author publicationsYou can also search for this author in

PubMed Google ScholarDaniel L.McCartneyView作者出版物您也可以在

PubMed Google ScholarRiccardo E. MarioniView author publicationsYou can also search for this author in

PubMed Google ScholarRiccardo E.MarioniView作者出版物您也可以在

PubMed Google ScholarKristina KirschnerView author publicationsYou can also search for this author in

PubMed Google ScholarKristina KirschnerView作者出版物您也可以在

PubMed Google ScholarEric Latorre-CrespoView author publicationsYou can also search for this author in

PubMed谷歌学术Latorre CrespoView作者出版物您也可以在

PubMed Google ScholarTamir ChandraView author publicationsYou can also search for this author in

PubMed Google ScholarTamir ChandraView作者出版物您也可以在

PubMed Google ScholarContributionsE.L.C. and T.C. conceived and supervised the study. J.K.D., E.J.Y., S.J.C.C., E.L.C. and T.C. wrote the manuscript. J.K.D. and E.L.C. developed the modeling framework. J.K.D., E.J.Y., S.J.C.C., D.J.S. and T.C. conducted data analysis. R.F.H., D.L.M.

PubMed谷歌学术贡献。五十、 C.和T.C.构思并监督了这项研究。J、 。J、 K.D.和E.L.C.开发了建模框架。J.K.D.,E.J.Y.,S.J.C.C.,D.J.S.和T.C.进行了数据分析。R、 F.H.,D.L.M。

and R.E.M. curated GS, gave access to data and advised on the study.Corresponding authorsCorrespondence to.

和R.E.M.策划的GS,提供了数据并为研究提供了建议。通讯作者通讯。

Eric Latorre-Crespo or Tamir Chandra.Ethics declarations

埃里克·拉托雷·克雷斯波或塔米尔·钱德拉。道德宣言

Competing interests

相互竞争的利益

R.E.M. is an advisor to the Epigenetic Clock Development Foundation. R.E.M. and R.F.H. are advisors to Optima Partners. The other authors declare no competing interests.

R、 E.M.是表观遗传时钟发展基金会的顾问。R、 E.M.和R.F.H.是Optima Partners的顾问。其他作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Aging thanks João Pedro de Magsalhães, Kejun Ying and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

自然老化感谢João Pedro de Magsalhães,Kejun Ying和其他匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Analysis of current limitations in epigenetic clocks.a. Distribution of ANOVA statistics between six example tissues, for each site included in the Horvath clock when calculated in EWAS Datahub dataset.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。。

b. Methylation level vs age for a single CpG included in the first-generation epigenetic clock of Horvath. Each point is a cell and is colored by the tissue type it was taken from (all six tissue types were included in the training dataset of the original Horvath clock). The CpG displays negligible association between methylation and age, but strong association between tissue type, in this case liver.

b、 。每个点都是一个细胞,并根据其所取的组织类型进行着色(所有六种组织类型都包含在原始Horvath时钟的训练数据集中)。CpG显示甲基化与年龄之间的关联可以忽略不计,但组织类型(在这种情况下是肝脏)之间的关联很强。

Marginal boxplot shows the median and exclusive interquartile range of methylation levels in six different tissues. c. Comparison between the association of methylation levels with smoking and age on each CpG site included in a training size bootstrap experiment. Each point corresponds to a site included in a clock, colored by the size of the dataset used to train the epigenetic predictor and sized proportionally to the smoking coefficient value.

边缘箱线图显示了六种不同组织中甲基化水平的中位数和排他性四分位间距。c、 在训练规模引导实验中包括的每个CpG位点上甲基化水平与吸烟和年龄的关联之间的比较。每个点对应于时钟中包含的一个位点,由用于训练表观遗传预测因子的数据集的大小着色,并与吸烟系数值成比例。

Age association displayed as adjusted R2 from linear regressions for each CpG of the form: methylation ~ age. Smoking association shown as the absolute value of the coefficient of smoking (dichotomized as a weighted smoking value of greater than 0.25) from regressions for each CpG of the form: methylation ~ smoking + age + sex.

年龄关联显示为形式为甲基化〜年龄的每个CpG的线性回归调整后的R2。吸烟关联显示为吸烟系数的绝对值(二分法为加权吸烟值大于0.25),来自每种CpG的回归形式:甲基化~吸烟+年龄+性别。

Weighted smoking is defined as log(1 + pack years)/exp(ever smoke). Points are displayed with a random jitter to avoid overlap. d. Acceleration obtained from bootstrapped lasso linear regressions trained on chronological.

加权吸烟定义为log(1+包年)/exp(曾经吸烟)。点以随机抖动显示,以避免重叠。d、 从按时间顺序训练的自举套索线性回归获得的加速度。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleDabrowski, J.K., Yang, E.J., Crofts, S.J.C. et al. Probabilistic inference of epigenetic age acceleration from cellular dynamics.

转载和许可本文引用本文Dabrowski,J.K.,Yang,E.J.,Crofts,S.J.C.等人。从细胞动力学推断表观遗传年龄加速的概率。

Nat Aging (2024). https://doi.org/10.1038/s43587-024-00700-5Download citationReceived: 19 April 2023Accepted: 31 July 2024Published: 23 September 2024DOI: https://doi.org/10.1038/s43587-024-00700-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Aging(2024)。https://doi.org/10.1038/s43587-024-00700-5Download引文接收日期:2023年4月19日接收日期:2024年7月31日发布日期:2024年9月23日OI:https://doi.org/10.1038/s43587-024-00700-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供