EN
登录

自我维持的长期3D上皮样培养揭示了食管上皮克隆扩增的驱动因素

Self-sustaining long-term 3D epithelioid cultures reveal drivers of clonal expansion in esophageal epithelium

Nature 等信源发布 2024-09-23 18:15

可切换为仅中文


AbstractAging epithelia are colonized by somatic mutations, which are subjected to selection influenced by intrinsic and extrinsic factors. The lack of suitable culture systems has slowed the study of this and other long-term biological processes. Here, we describe epithelioids, a facile, cost-effective method of culturing multiple mouse and human epithelia.

摘要衰老上皮细胞被体细胞突变定植,这些突变受到内在和外在因素的影响。缺乏合适的培养系统减缓了对这一和其他长期生物过程的研究。在这里,我们描述了上皮样细胞,这是一种培养多种小鼠和人类上皮细胞的简便,经济有效的方法。

Esophageal epithelioids self-maintain without passaging for at least 1 year, maintaining a three-dimensional structure with proliferative basal cells that differentiate into suprabasal cells, which eventually shed and retain genomic stability. Live imaging over 5 months showed that epithelioids replicate in vivo cell dynamics.

食管上皮样细胞在不传代的情况下自我维持至少1年,维持三维结构,增殖性基底细胞分化为基底上细胞,最终脱落并保持基因组稳定性。超过5个月的实时成像显示上皮样细胞复制体内细胞动力学。

Epithelioids support genetic manipulation and enable the study of mutant cell competition and selection in three-dimensional epithelia, and show how anti-cancer treatments modulate competition between transformed and wild-type cells. Finally, a targeted CRISPR–Cas9 screen shows that epithelioids recapitulate mutant gene selection in aging human esophagus and identifies additional drivers of clonal expansion, resolving the genetic networks underpinning competitive fitness..

上皮样细胞支持遗传操作,可以研究三维上皮细胞中突变细胞的竞争和选择,并显示抗癌治疗如何调节转化细胞和野生型细胞之间的竞争。最后,靶向CRISPR-Cas9筛选显示,上皮样细胞概括了衰老人类食道中突变基因的选择,并确定了克隆扩增的其他驱动因素,从而解决了支持竞争适应性的遗传网络。。

MainIn recent years multiple methods have been developed for culturing primary epithelial cells. These differ in their suitability for specific tissues, the extent to which tissue samples may be expanded in culture, the degree to which cultures reflect tissue organization and differentiation, the length of time that cultures may be maintained before passage and the cost of the required media (Fig.

主要近年来,已经开发了多种培养原代上皮细胞的方法。这些不同之处在于它们对特定组织的适用性,组织样品在培养物中可扩增的程度,培养物反映组织组织和分化的程度,传代前可维持培养的时间长度以及所需培养基的成本(图)。

1). Such factors limit the application of each system.Fig. 1: Primary epithelial culture methods.Standard77,78, organotypic6,9,79,80 and organoid51,81,82 primary cultures of esophageal, oral and bladder epithelium, compared with the esophageal epithelioid cultures described in the text. aExpansion of cells from primary tissue can be enhanced by addition of Y27632 to the media; this is not required for epithelioid cultures.

1) 。这些因素限制了每个系统的应用。图1:原代上皮培养方法。与文中描述的食管上皮样培养物相比,食管,口腔和膀胱上皮的标准77,78,器官型6,9,79,80和类器官51,81,82原代培养物。通过向培养基中添加Y27632可以增强原代组织细胞的扩增;上皮样培养不需要。

2D, two-dimensional; FCS, fetal calf serum.Full size imageSubmerged cultures on tissue culture plastics are cheap but have a short lifespan and may achieve limited expansion in cell numbers from a tissue sample (Fig. 1)1,2,3. These limitations may be partially overcome by ‘conditional reprogramming’ with the Rho associated coiled-coil containing protein kinase inhibitor, Y27632, or bone morphogenetic protein/transforming growth factor, beta 1 antagonists that repress differentiation and extend culture life.

2D,二维;FCS,胎牛血清。组织培养塑料上的全尺寸图像浸没培养物价格便宜,但寿命短,并且可以从组织样品中获得有限的细胞数量扩增(图1)1,2,3。这些限制可以通过用含有Rho相关卷曲螺旋的蛋白激酶抑制剂Y27632或骨形态发生蛋白/转化生长因子β1拮抗剂进行“条件性重编程”来部分克服,该拮抗剂可抑制分化并延长培养寿命。

However, passaging is typically required every 7–10 days4,5.A second culture type is organotypic culture, initially developed by growing epithelial cells on collagen gels placed on a permeable membrane (Fig. 1)6,7. Such cultures give excellent differentiation. However, other than for airway epithelia, they last only few weeks at most6,7,8,9.

然而,通常每7-10天需要传代4,5。第二种培养类型是器官型培养,最初是通过在置于可渗透膜上的胶原凝胶上生长上皮细胞来发展的(图1)6,7。这种文化具有极好的差异性。然而,除了气道上皮细胞外,它们在most6,7,8,9仅持续数周。

More recently, complex, bioengineered tissue substitutes have been produced in advanced bioreactors with the aim of.

最近,在先进的生物反应器中生产了复杂的生物工程组织替代品,目的是。

Data availability

数据可用性

The sequencing datasets in this study are publicly available at the European Nucleotide Archive. Accession numbers for RNA-seq data on https://www.ebi.ac.uk/ena are as follows: ERS14340821, ERS14340822, ERS14340823, ERS14340824 (in vivo samples) and ERS2515249, ERS2515250, ERS2515251, ERS2515252 (in vitro samples).

这项研究中的测序数据集可在欧洲核苷酸档案馆公开获得。https://www.ebi.ac.uk/ena如下:ERS14340821,ERS14340822,ERS14340823,ERS14340824(体内样品)和ERS2515249,ERS2515250,ERS2515251,ERS2515252(体外样品)。

The accession number for targeted DNA sequencing of SCA is ERP107379. Source data are provided with this paper..

SCA靶向DNA测序的登录号为ERP107379。本文提供了源数据。。

Code availability

代码可用性

The pipeline code used for CNA calling and the modified QDNAseq package are available at https://github.com/sdentro/qdnaseq_pipeline and https://github.com/sdentro/QDNAseq/tree/dev respectively. The code developed for the quantitative clonal analysis is publicly available at https://github.com/gp10/ClonalDeriv3D..

用于CNA调用的管道代码和修改后的QDNAseq包可在https://github.com/sdentro/qdnaseq_pipeline和https://github.com/sdentro/QDNAseq/tree/dev。为定量克隆分析开发的代码可在https://github.com/gp10/ClonalDeriv3D..

ReferencesMarchetti, M., Caliot, E. & Pringault, E. Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J. Cell Sci. 116, 1429–1436 (2003).Article

参考文献Marchetti,M.,Caliot,E。&Pringault,E。慢性酸暴露导致小鼠食管角质形成细胞长期培养中cdx2肠同源盒基因的激活。J、 细胞科学。1161429-1436(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Compton, C. C., Warland, G., Nakagawa, H., Opitz, O. G. & Rustgi, A. K. Cellular characterization and successful transfection of serially subcultured normal human esophageal keratinocytes. J. Cell. Physiol. 177, 274–281 (1998).Article

Compton,C.C.,Warland,G.,Nakagawa,H.,Opitz,O.G。&Rustgi,A.K。细胞表征和连续传代培养的正常人食管角质形成细胞的成功转染。J、 细胞。生理学。177274-281(1998)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Doran, T. I., Vidrich, A. & Sun, T.-T. Intrinsic and extrinsic regulation of the differentiation of skin, corneal and esophageal epithelial cells. Cell 22, 17–25 (1980).Article

Doran,T.I.,Vidrich,A。&Sun,T.-T。皮肤,角膜和食管上皮细胞分化的内在和外在调节。细胞22,17-25(1980)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Suprynowicz, F. A. et al. Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc. Natl Acad. Sci. USA 109, 20035–20040 (2012).Article

Suprynowicz,F.A。等人。有条件重编程的细胞代表成体上皮细胞的干样状态。程序。国家科学院。科学。美国10920035–20040(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mou, H. et al. Dual SMAD signaling inhibition enables long-term expansion of diverse epithelial basal cells. Cell Stem Cell 19, 217–231 (2016).Article

Mou,H。等人。双重SMAD信号传导抑制能够长期扩增多种上皮基底细胞。细胞干细胞19217-231(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kalabis, J. et al. Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture. Nat. Protoc. 7, 235–246 (2012).Article

Kalabis,J。等人。3D器官型培养中小鼠和人食管上皮细胞的分离和表征。自然协议。7235-246(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oh, J. W., Hsi, T. C., Guerrero-Juarez, C. F., Ramos, R. & Plikus, M. V. Organotypic skin culture. J. Invest. Dermatol. 133, e14 (2013).Article

Oh,J.W.,Hsi,T.C.,Guerrero-Juarez,C.F.,Ramos,R。&Plikus,M.V。器官型皮肤培养。J、 投资。皮肤病。133,e14(2013)。文章

CAS

中科院

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Awatade, N. T. et al. Comparison of commercially available differentiation media on cell morphology, function, and anti-viral responses in conditionally reprogrammed human bronchial epithelial cells. Sci. Rep. 13, 11200 (2023).Article

Awatade,N.T.等人。市售分化培养基对条件重编程人支气管上皮细胞的细胞形态,功能和抗病毒反应的比较。科学。代表1311200(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Whelan, K. A., Muir, A. B. & Nakagawa, H. Esophageal 3D culture systems as modeling tools in esophageal epithelial pathobiology and personalized medicine. Cell. Mol. Gastroenterol. Hepatol. 5, 461–478 (2018).Article

Whelan,K.A.,Muir,A.B。&Nakagawa,H。食管3D培养系统作为食管上皮病理生物学和个性化医学的建模工具。细胞。胃肠病学分子。肝病。5461-478(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Urbani, L. et al. Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors. Nat. Commun. 9, 4286 (2018).Article

Urbani,L.等人。具有体外扩增的肌肉和上皮成体祖细胞的分层食管的多阶段生物工程。国家公社。94286(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meran, L., Tullie, L., Eaton, S., De Coppi, P. & Li, V. S. W. Bioengineering human intestinal mucosal grafts using patient-derived organoids, fibroblasts and scaffolds. Nat. Protoc. 18, 108–135 (2023).Article

。自然协议。18108-135(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).Article

Shin,K。等人。Hedgehog/Wnt反馈支持膀胱上皮干细胞的再生增殖。自然472110-114(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).Article

Sato,T。等人。单个Lgr5干细胞在体外构建隐窝-绒毛结构,而没有间充质生态位。自然459262-265(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).Article

。Nat。Rev。Mol。Cell Biol。21571-584(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fujii, M. & Sato, T. Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. Nat. Mater. 20, 156–169 (2021).Article

Fujii,M。&Sato,T。体细胞衍生的类器官作为人类上皮组织和疾病的原型。。20156-169(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).Article

Clevers,H。用类器官建模发育和疾病。细胞1651586-1597(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hendriks, D., Clevers, H. & Artegiani, B. CRISPR–Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 27, 705–731 (2020).Article

Hendriks,D.,Clevers,H。&Artegiani,B。CRISPR-Cas工具及其在人类干细胞和类器官基因工程中的应用。细胞干细胞27705-731(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens. Nature 568, 511–516 (2019).Article

Behan,F.M.等人。使用CRISPR-Cas9筛选对癌症治疗靶点进行优先排序。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).Article

Schwank,G。等人。CRISPR/Cas9在囊性纤维化患者的肠干细胞类器官中对CFTR的功能修复。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wu, Z. et al. Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nat. Genet. 53, 881–894 (2021).Article

Wu,Z。等人。通过SOX2对食管鳞状细胞癌表观基因组进行重编程可促进ADAR1依赖性。纳特·吉内特。53881-894(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. et al. 3D modeling of esophageal development using human PSC-derived basal progenitors reveals a critical role for Notch signaling. Cell Stem Cell 23, 516–529.e5 (2018).Article

Zhang,Y。等人。使用人PSC衍生的基础祖细胞对食管发育进行3D建模揭示了Notch信号传导的关键作用。细胞干细胞23516-529.e5(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pikkupeura, L. M. et al. Transcriptional and epigenomic profiling identifies YAP signaling as a key regulator of intestinal epithelium maturation. Sci. Adv. 9, eadf9460 (2023).Article

Pikkupeura,L.M.等人的转录和表观基因组分析确定YAP信号传导是肠上皮成熟的关键调节因子。科学。Adv.9,eadf9460(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barbera, M. et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut 64, 11–19 (2015).Article

Barbera,M。等人。人类鳞状食管在分化的不同阶段具有从细胞克隆扩增的广泛能力。肠道64,11-19(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Doupe, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337, 1091–1093 (2012).Article

Doupe,D.P.等人。单个祖细胞群体改变行为以维持和修复食管上皮。科学3371091-1093(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jones, K. B. et al. Quantitative clonal analysis and single-cell transcriptomics reveal division kinetics, hierarchy, and fate of oral epithelial progenitor cells. Cell Stem Cell 24, 183–192.e8 (2019).Article

定量克隆分析和单细胞转录组学揭示了口腔上皮祖细胞的分裂动力学,等级和命运。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gaisa, N. T. et al. The human urothelium consists of multiple clonal units, each maintained by a stem cell. J. Pathol. 225, 163–171 (2011).Article

人类尿路上皮由多个克隆单位组成,每个克隆单位由干细胞维持。J、 病理学。225163-171(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Colom, B. et al. Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium. Nat. Genet. 52, 604–614 (2020).Article

空间竞争塑造了正常食管上皮的动态突变景观。纳特·吉内特。52604-614(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fowler, J. C. et al. Selection of oncogenic mutant clones in normal human skin varies with body site. Cancer Discov. 11, 340–361 (2021).Article

Fowler,J.C.等人。正常人皮肤中致癌突变克隆的选择因身体部位而异。癌症发现。11340-361(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).Article

Martincorena,I。等人。体细胞突变克隆随着年龄的增长而定殖于人类食管。科学362911-917(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).Article

Moore,L。等人。正常人子宫内膜上皮的突变景观。《自然》580640–646(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).Article

Yokoyama,A。等人。突变癌症驱动因素对食管上皮的年龄相关重塑。自然565312-317(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).Article

Lawson,A.R.J.等人,《人类膀胱中体细胞突变和选择的广泛异质性》。科学370,75-82(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Abby, E. et al. Notch1 mutation drives clonal expansion in normal esophageal epithelium but impairs tumor growth. Nat. Genet. 55, 234–245 (2023).Article

Abby,E。等人,Notch1突变驱动正常食管上皮细胞的克隆扩增,但损害肿瘤生长。纳特·吉内特。55234-245(2023)。文章

Google Scholar

谷歌学者

Herms, A. et al. Organismal metabolism regulates the expansion of oncogenic PIK3CA mutant clones in normal esophagus. Nat. Genet. https://doi.org/10.1038/s41588-024-01891-8 (2024).Colom, B. et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598, 510–514 (2021).Article .

Herms,A。等人。机体代谢调节正常食管中致癌PIK3CA突变克隆的扩增。纳特·吉内特。https://doi.org/10.1038/s41588-024-01891-8(2024年)。Colom,B。等人。正常上皮细胞中的突变克隆胜过并消除了新出现的肿瘤。自然598510-514(2021)。。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fernandez-Antoran, D. et al. Outcompeting p53-mutant cells in the normal esophagus by redox manipulation. Cell Stem Cell 25, 329–341 (2019).Article

Fernandez-Antoran,D.等人通过氧化还原操作在正常食管中竞争p53突变细胞。细胞干细胞25329-341(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Murai, K. et al. p53 mutation in normal esophagus promotes multiple stages of carcinogenesis but is constrained by clonal competition. Nat. Commun. 13, 6206 (2022).Article

Murai,K。等人。正常食管中的p53突变促进癌发生的多个阶段,但受到克隆竞争的限制。国家公社。136206(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Murai, K. et al. Epidermal tissue adapts to restrain progenitors carrying clonal p53 mutations. Cell Stem Cell 23, 687–699.e8 (2018).Article

Murai,K。等人。表皮组织适应抑制携带克隆性p53突变的祖细胞。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rheinwald, J. G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331–343 (1975).Article

Rheinwald,J.G。&Green,H。人表皮角质形成细胞株的系列培养:从单细胞形成角质化集落。细胞6331-343(1975)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fujii, M., Clevers, H. & Sato, T. Modeling human digestive diseases with CRISPR–Cas9-modified organoids. Gastroenterology 156, 562–576 (2019).Article

Fujii,M.,Clevers,H。&Sato,T。用CRISPR-Cas9修饰的类器官模拟人类消化系统疾病。胃肠病学156562-576(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pereira, D. & Sequeira, I. A scarless healing tale: comparing homeostasis and wound healing of oral mucosa with skin and oesophagus. Front. Cell Dev. Biol. 9, 682143 (2021).Article

Pereira,D。&Sequeira,I。一个无疤痕的愈合故事:比较口腔粘膜与皮肤和食道的稳态和伤口愈合。正面。细胞开发生物学。9682143(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Papafotiou, G. et al. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat. Commun. 7, 11914 (2016).Article

Papafotiou,G。等人KRT14标志着膀胱基底细胞的一个亚群,在再生和肿瘤发生中起着关键作用。国家公社。711914(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bailey, D. D. et al. Use of hPSC-derived 3D organoids and mouse genetics to define the roles of YAP in the development of the esophagus. Development 146, dev178855 (2019).Article

Bailey,D.D.等人。使用hPSC衍生的3D类器官和小鼠遗传学来定义YAP在食道发育中的作用。发展146,dev178855(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kabir, M. F. et al. Single cell transcriptomic analysis reveals cellular diversity of murine esophageal epithelium. Nat. Commun. 13, 2167 (2022).Article

Kabir,M.F.等人。单细胞转录组学分析揭示了小鼠食管上皮细胞的多样性。国家公社。132167(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McGinn, J. et al. A biomechanical switch regulates the transition towards homeostasis in oesophageal epithelium. Nat. Cell Biol. 23, 511–525 (2021).Article

McGinn,J。等人。生物力学开关调节食管上皮向稳态的转变。自然细胞生物学。23511-525(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang, M. et al. BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis. J. Clin. Invest. 125, 1557–1568 (2015).Article

Jiang,M。等人。BMP驱动的食管基底细胞分化和嗜酸性食管炎中的NRF2激活。J、 临床。投资。1251557-1568(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tetreault, M. P. et al. Esophageal squamous cell dysplasia and delayed differentiation with deletion of Krüppel-like factor 4 in murine esophagus. Gastroenterology 139, 171–181.e9 (2010).Article

Tetreault,M.P.等。小鼠食管鳞状细胞发育不良和Krüppel样因子4缺失的延迟分化。胃肠病学139171-181.e9(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Goldstein, B. G. et al. Overexpression of Kruppel-like factor 5 in esophageal epithelia in vivo leads to increased proliferation in basal but not suprabasal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1784–G1792 (2007).Article

Goldstein,B.G.等人。体内食管上皮中Kruppel样因子5的过表达导致基底细胞而非基底上细胞的增殖增加。Am.J.Physiol。胃肠学家。肝脏生理学。292,G1784–G1792(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ohashi, S. et al. NOTCH1 and NOTCH3 coordinate esophageal squamous differentiation through a CSL-dependent transcriptional network. Gastroenterology 139, 2113–2123 (2010).Article

Ohashi,S.等人,《NOTCH1和NOTCH3通过CSL依赖性转录网络协调食管鳞状细胞分化》,《胃肠病学》1392113-2123(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

van Dop, W. A. et al. Hedgehog signalling stimulates precursor cell accumulation and impairs epithelial maturation in the murine oesophagus. Gut 62, 348–357 (2013).Article

van Dop,W.A。等人。刺猬信号传导刺激前体细胞积累并损害小鼠食道上皮成熟。肠道62348-357(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, B. et al. A new murine esophageal organoid culture method and organoid-based model of esophageal squamous cell neoplasia. iScience 24, 103440 (2021).Article

Zheng,B。等。一种新的小鼠食管类器官培养方法和基于类器官的食管鳞状细胞瘤形成模型。iScience 24103440(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rübsam, M. et al. E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat. Commun. 8, 1250 (2017).Article

E-钙粘蛋白整合了机械转导和EGFR信号传导,以控制连接组织极化和紧密连接定位。国家公社。81250(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Imafuku, K. et al. Zonula occludens-1 demonstrates a unique appearance in buccal mucosa over several layers. Cell Tissue Res. 384, 691–702 (2021).Article

Imafku,K。等人,Zonula occludens-1在几层颊粘膜中表现出独特的外观。细胞组织研究384691-702(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, Z., Lamb, R., Coles, M. C., Bennett, C. L. & Ambler, C. A. Inducible ablation of CD11c+ cells to determine their role in skin wound repair. Immunology 163, 105–111 (2021).Article

Li,Z.,Lamb,R.,Coles,M.C.,Bennett,C.L。和Ambler,C.A。诱导性消融CD11c+细胞以确定它们在皮肤伤口修复中的作用。免疫学163105-111(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 5, 553–559 (2008).Article

Gutscher,M。等人。细胞内谷胱甘肽氧化还原电位的实时成像。《自然方法》5553-559(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Allen-Hoffmann, B. L. et al. Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J. Invest. Dermatol. 114, 444–455 (2000).Article

Allen Hoffmann,B.L.等人。自发永生化的近二倍体人角质形成细胞系NIKS的正常生长和分化。J、 投资。皮肤病。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).Article

Clayton,E。等人。单一类型的祖细胞维持正常的表皮。自然446185-189(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Piedrafita, G. et al. A single-progenitor model as the unifying paradigm of epidermal and esophageal epithelial maintenance in mice. Nat. Commun. 11, 1429 (2020).Article

Piedrafita,G.等人。单一祖细胞模型作为小鼠表皮和食管上皮维持的统一范例。国家公社。111429(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fowler, J. C. & Jones, P. H. Somatic mutation: what shapes the mutational landscape of normal epithelia? Cancer Discov. 12, 1642–1655 (2022).Article

Fowler,J.C.&Jones,P.H。体细胞突变:是什么塑造了正常上皮细胞的突变景观?癌症发现。121642-1655(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alcolea, M. P. et al. Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change. Nat. Cell Biol. 16, 615–622 (2014).Article

。自然细胞生物学。16615-622(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Obermannová, R. et al. Oesophageal cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33, 992–1004 (2022).Article

Obermanová,R.等人,《食管癌:ESMO诊断、治疗和随访临床实践指南》。安科。33992-1004(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lohan-Codeço, M. et al. Molecular mechanisms associated with chemoresistance in esophageal cancer. Cell. Mol. Life Sci. 79, 116 (2022).Article

Lohan Codeço,M.等人。与食管癌化疗耐药相关的分子机制。细胞。分子生命科学。79116(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).Article

Platt,R.J。等人,CRISPR–Cas9敲入小鼠,用于基因组编辑和癌症建模。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).Article

Martínez Jiménez,F.等人,《突变癌症驱动基因简编》。《国家癌症评论》20555-572(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dempster, J. M. et al. Extracting biological insights from the Project Achilles genome-scale CRISPR screens in cancer cell lines. Preprint at bioRxiv https://doi.org/10.1101/720243 (2019).Sanson, K. R. et al. Optimized libraries for CRISPR–Cas9 genetic screens with multiple modalities.

Dempster,J.M.等人从癌细胞系中的Achilles基因组规模CRISPR筛选项目中提取生物学见解。bioRxiv预印本https://doi.org/10.1101/720243(2019年)。Sanson,K.R.等人优化了CRISPR-Cas9基因筛选文库,具有多种模式。

Nat. Commun. 9, 5416 (2018).Article .

Nat.普通。95416(2018)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).Article

Li,W。等人MAGeCK能够从基因组规模的CRISPR/Cas9敲除筛选中稳健地鉴定必需基因。基因组生物学。15554(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Junqueira Alves, C. et al. Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion. Nat. Commun. 12, 6019 (2021).Article

Junqueira-Alves,C。等人。Plexin-B2通过肌动球蛋白收缩性,细胞骨架张力和粘附来协调集体干细胞动力学。国家公社。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kuznetsov, J. N. et al. BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers. Sci. Adv. 5, eaax1738 (2019).Article

Kuznetsov,J。N。等人,BAP1调节发育谱系中从多能性到分化的表观遗传转换,从而产生BAP1突变型癌症。科学。Adv.5,eaax1738(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jiang, C. et al. Mechanochemical control of epidermal stem cell divisions by B-plexins. Nat. Commun. 12, 1308 (2021).Article

Jiang,C.等。B-丛蛋白对表皮干细胞分裂的机械化学控制。国家公社。121308(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boxer, L. D., Barajas, B., Tao, S., Zhang, J. & Khavari, P. A. ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev. 28, 2013–2026 (2014).Article

Boxer,L.D.,Barajas,B.,Tao,S.,Zhang,J。&Khavari,P.A。ZNF750与KLF4和RCOR1,KDM1A和CTBP1/2染色质调节剂相互作用以抑制表皮祖细胞基因并诱导分化基因。Genes Dev.282013–2026(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Frede, J., Greulich, P., Nagy, T., Simons, B. D. & Jones, P. H. A single dividing cell population with imbalanced fate drives oesophageal tumour growth. Nat. Cell Biol. 18, 967–978 (2016).Article

Frede,J.,Greulich,P.,Nagy,T.,Simons,B.D。&Jones,P.H。命运不平衡的单个分裂细胞群驱动食管肿瘤生长。自然细胞生物学。18967-978(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xie, W., Chow, L. T., Paterson, A. J., Chin, E. & Kudlow, J. E. Conditional expression of the ErbB2 oncogene elicits reversible hyperplasia in stratified epithelia and up-regulation of TGFα expression in transgenic mice. Oncogene 18, 3593–3607 (1999).Article

Xie,W.,Chow,L.T.,Paterson,A.J.,Chin,E。&Kudlow,J.E。ErbB2癌基因的条件表达引起分层上皮中的可逆性增生和转基因小鼠中TGFα表达的上调。癌基因183593-3607(1999)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oberbeck, N. et al. The RIPK4–IRF6 signalling axis safeguards epidermal differentiation and barrier function. Nature 574, 249–253 (2019).Article

Oberbeck,N。等人。RIPK4-IRF6信号轴保护表皮分化和屏障功能。自然574249-253(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Loganathan, S. K. et al. Rare driver mutations in head and neck squamous cell carcinomas converge on NOTCH signaling. Science 367, 1264–1269 (2020).Article

Loganathan,S.K.等人。头颈部鳞状细胞癌中罕见的驱动突变集中在NOTCH信号上。科学3671264-1269(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Miroshnikova, Y. A., Cohen, I., Ezhkova, E. & Wickström, S. A. Epigenetic gene regulation, chromatin structure, and force-induced chromatin remodelling in epidermal development and homeostasis. Curr. Opin. Genet. Dev. 55, 46–51 (2019).Article

。货币。奥平。基因。德文55,46-51(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. & Atala, A. Urothelial cell culture: stratified urothelial sheet and three-dimensional growth of urothelial structure. Methods Mol. Biol. 945, 383–399 (2013).Article

Zhang,Y。&Atala,A。尿路上皮细胞培养:分层尿路上皮片和尿路上皮结构的三维生长。方法分子生物学。945383-399(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Banks-Schlegel, S. & Green, H. Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J. Cell Biol. 90, 732–737 (1981).Article

Banks-Schlegel,S。&Green,H。通过角质形成细胞在天然和培养的人上皮细胞中合成和组织组装。J、 细胞生物学。90732-737(1981)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

de Boer, W. I., Rebel, J. M., Vermey, M., de Jong, A. A. & van der Kwast, T. H. Characterization of distinct functions for growth factors in murine transitional epithelial cells in primary organotypic culture. Exp. Cell. Res. 214, 510–518 (1994).Article

de Boer,W.I.,Rebel,J.M.,Vermey,M.,de Jong,A.A。&van der Kwast,T.H。表征原代器官型培养中鼠过渡上皮细胞中生长因子的不同功能。扩展单元格。第214510-518号决议(1994年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Klausner, M. et al. Organotypic human oral tissue models for toxicological studies. Toxicol. In Vitro 21, 938–949 (2007).Article

Klausner,M.等人。用于毒理学研究的器官型人口腔组织模型。。体外21938-949(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mullenders, J. et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc. Natl Acad. Sci. USA 116, 4567–4574 (2019).Article

Mullenders,J。等人。小鼠和人类尿路上皮癌类器官:膀胱癌研究的工具。程序。国家科学院。科学。美国1164567-4574(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Driehuis, E. et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 9, 852–871 (2019).Article

Driehuis,E。等人。口腔粘膜类器官作为个性化癌症治疗的潜在平台。癌症发现。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).Article

Muzumdar,M.D.,Tasic,B.,Miyamichi,K.,Li,L。&Luo,L。全球双荧光Cre报告小鼠。《创世纪》45593-605(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hochedlinger, K., Yamada, Y., Beard, C. & Jaenisch, R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, 465–477 (2005).Article

Hochedlinger,K.,Yamada,Y.,Beard,C。&Jaenisch,R。Oct-4的异位表达阻断祖细胞分化并导致上皮组织发育异常。细胞121465-477(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).Article

。科学303359-363(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).Article

Snippert,H.J.等人。肠隐窝稳态是由对称分裂的Lgr5干细胞之间的中性竞争产生的。细胞143134-144(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).Article

Srinivas,S。等人。通过将EYFP和ECFP靶向插入ROSA26基因座产生的Cre报告菌株。BMC开发生物学。1,4(2001)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol. 269, 81–94 (2004).Article

Yang,X。等人。Notch激活通过p53依赖性途径诱导神经祖细胞凋亡。开发生物。269,81-94(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tu, L. et al. Notch signaling is an important regulator of type 2 immunity. J. Exp. Med. 202, 1037–1042 (2005).Article

Tu,L。等人。Notch信号传导是2型免疫的重要调节剂。J、 实验医学2021037-1042(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kemp, R. et al. Elimination of background recombination: somatic induction of Cre by combined transcriptional regulation and hormone binding affinity. Nucleic Acids Res. 32, e92 (2004).Article

Kemp,R。等人。消除背景重组:通过联合转录调控和激素结合亲和力对Cre进行体细胞诱导。核酸研究32,e92(2004)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fujikawa, Y. et al. Mouse redox histology using genetically encoded probes. Sci. Signal. 9, rs1 (2016).Article

Fujikawa,Y。等人。使用基因编码探针的小鼠氧化还原组织学。科学。信号。9,rs1(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article

Schindelin,J。等人。斐济:生物图像分析的开源平台。《自然方法》9676-682(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wakabayashi, Y., Chua, J., Larkin, J. M., Lippincott-Schwartz, J. & Arias, I. M. Four-dimensional imaging of filter-grown polarized epithelial cells. Histochem. Cell Biol. 127, 463–472 (2007).Article

Wakabayashi,Y.,Chua,J.,Larkin,J.M.,Lippincott-Schwartz,J。&Arias,I.M。过滤生长的极化上皮细胞的四维成像。组织化学。细胞生物学。127463-472(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by grants from the Wellcome Trust to the Wellcome Sanger Institute (grant nos. 098051 and 296194) and Cancer Research UK Programme Grants to P.H.J. (grant nos C609/A17257 and C609/A27326). A.H. benefited from the award of an EMBO long-term fellowship (EMBO ALTF885-2015) and a Maria Zambrano Grant to attract international talent from Universitat de Barcelona and Ministerio de Universidades, cofunded with Next Generation European Union funds.

下载参考文献致谢这项工作得到了惠康基金会对惠康桑格研究所的资助(资助号098051和296194)和英国癌症研究计划对P.H.J.的资助(资助号C609/A17257和C609/A27326)。A、 H.受益于欧洲能源管理局长期奖学金(EMBO ALTF885-2015)和玛丽亚·赞布拉诺奖学金的授予,以吸引巴塞罗那大学和大学部长的国际人才,并与下一代欧盟基金共同资助。

D.F.-A.’s work was supported by funding from the European Union FP7-Euratom-Fission award 323267, Risk, Stem Cells and Tissue Kinetics—Ionising Radiation at the Wellcome Sanger Institute. M.P.A. acknowledges funding from the Wellcome Trust and The Royal Society (grant nos 105942/Z/14/Z and 105942/Z/14/A), Worldwide Cancer Research (grant no.

D、 F.-A.的工作得到了欧盟FP7 Euratom裂变奖323267的资助,惠康桑格研究所的风险,干细胞和组织动力学电离辐射。M、 P.A.感谢惠康基金会和皇家学会(批准号105942/Z/14/Z和105942/Z/14/A),全球癌症研究(批准号:。

23-0063) and the UK Research and Innovation Medical Research Council (grant no. MR/P019013/1). J.A.V.-L. and I.S.F.’s work was supported by joint National Centre for the 3Rs- Cancer Research UK award no. NC/X000885/1 and Cancer Research UK RadNet grant no. C17918/A28870 to D.F.-A. at the Gurdon Institute.

23-0063)和英国研究与创新医学研究委员会(批准号MR/P019013/1)。J、 A.V.-L.和I.S.F.的工作得到了3Rs联合国家中心-英国癌症研究奖(NC/X000885/1)和英国癌症研究RadNet基金会(Cancer Research UK RadNet grant no.C17918/A28870)对Gurdon Institute D.F.-A.的支持。

G.P. is supported by the Agencia Estatal de Investigación of Spain (grant no. PID2020-116163GA-I00). M.T.B. was supported by a Leverhulme Trust research project grant to M.P.A. (grant no. RPG-2023-136). S.C.D. benefited from the award of an EMBL-ESI-Sanger postdoctoral fellowship, 2018-21, from the Wellcome Sanger Institute and the European Bioinformatics Institute EMBL-EBI.

G、 P.得到西班牙调查局的支持(批准号:PID2020-116163GA-I00)。M、 T.B.得到了Leverhulme Trust研究项目对M.P.a.的资助(资助号RPG-2023-136)。S、 C.D.从惠康桑格研究所和欧洲生物信息学研究所EMBL-EBI获得了2018-21年度EMBL ESI桑格博士后奖学金。

S.V.-N. benefits from a Programa Investigo fellowship from the Ministerio de Trabajo y Economía Social of Spain. We thank E. Choolun, T. Metcalf and the Sanger Research Support Facility for technical support with animal research; the advanced optical .

S、 V.-N.从西班牙Trabajo和经济社会部(Ministerio de Trabajo y Economaía Social)的投资项目(Programa Investigo)奖学金中受益。我们感谢E.Choolun,T.Metcalf和Sanger研究支持机构对动物研究的技术支持;先进的光学。

PubMed Google ScholarDavid Fernandez-AntoranView author publicationsYou can also search for this author in

PubMed Google ScholarDavid Fernandez AntoranView作者出版物您也可以在

PubMed Google ScholarMaria P. AlcoleaView author publicationsYou can also search for this author in

PubMed Google ScholarMaria P.AlcoleaView作者出版物您也可以在

PubMed Google ScholarArgyro KalogeropoulouView author publicationsYou can also search for this author in

PubMed Google ScholarArgyro KalogeropoulouView作者出版物您也可以在

PubMed Google ScholarUjjwal BanerjeeView author publicationsYou can also search for this author in

PubMed Google ScholarUjjwal BanerjeeView作者出版物您也可以在

PubMed Google ScholarGabriel PiedrafitaView author publicationsYou can also search for this author in

PubMed Google ScholarGabriel PiedrafitaView作者出版物您也可以在

PubMed Google ScholarEmilie AbbyView author publicationsYou can also search for this author in

PubMed Google ScholarEmilie AbbyView作者出版物您也可以在

PubMed Google ScholarJose Antonio Valverde-LopezView author publicationsYou can also search for this author in

PubMed谷歌学者Jose Antonio Valverde LopezView作者出版物您也可以在

PubMed Google ScholarInês S. FerreiraView author publicationsYou can also search for this author in

PubMed Google ScholarInês.FerreiraView作者出版物您也可以在

PubMed Google ScholarIrene CasedaView author publicationsYou can also search for this author in

PubMed Google ScholarIrene CasedaView作者出版物您也可以在

PubMed Google ScholarMaria T. BejarView author publicationsYou can also search for this author in

PubMed Google ScholarMaria T.BejarView作者出版物您也可以在

PubMed Google ScholarStefan C. DentroView author publicationsYou can also search for this author in

PubMed Google ScholarStefan C.DentroView作者出版物您也可以在

PubMed Google ScholarSara Vidal-NotariView author publicationsYou can also search for this author in

PubMed Google ScholarSara Vidal公证书作者出版物您也可以在

PubMed Google ScholarSwee Hoe OngView author publicationsYou can also search for this author in

PubMed Google ScholarSwee Hoe OngView作者出版物您也可以在

PubMed Google ScholarBartomeu ColomView author publicationsYou can also search for this author in

PubMed Google ScholarBartomeu ColomView作者出版物您也可以在

PubMed Google ScholarKasumi MuraiView author publicationsYou can also search for this author in

PubMed Google ScholarKasumi MuraiView作者出版物您也可以在

PubMed Google ScholarCharlotte KingView author publicationsYou can also search for this author in

PubMed Google ScholarCharlotte KingView作者出版物您也可以在

PubMed Google ScholarKrishnaa MahbubaniView author publicationsYou can also search for this author in

PubMed Google ScholarKrishnaa MahbubaniView作者出版物您也可以在

PubMed Google ScholarKourosh Saeb-ParsyView author publicationsYou can also search for this author in

PubMed Google ScholarKourosh Saeb ParsyView作者出版物您也可以在

PubMed Google ScholarAlan R. LoweView author publicationsYou can also search for this author in

PubMed Google ScholarAlan R.LoweView作者出版物您也可以在

PubMed Google ScholarMoritz GerstungView author publicationsYou can also search for this author in

PubMed Google Scholarmaritz GerstungView作者出版物您也可以在

PubMed Google ScholarPhilip H. JonesView author publicationsYou can also search for this author in

PubMed Google ScholarPhilip H.JonesView作者出版物您也可以在

PubMed Google ScholarContributionsA.H., D.F.-A. and P.H.J. designed the experiments. M.P.A. performed the initial experiments and set up the 3D in vitro model. A.H., D.F.-A., A.K., U.B., K. Murai, E.A., B.C., I.C., M.T.B., J.A.V.-L. and I.S.F. performed the experiments. G.P., S.V.-N.

PubMed谷歌学术贡献。H、 ,D.F.-A.和P.H.J.设计了实验。M、 P.A.进行了初步实验并建立了3D体外模型。A、 H.,D.F.-A.,A.K.,U.B.,K.Murai,E.A.,B.C.,I.C.,M.T.B.,J.A.V.-L.和I.S.F.进行了实验。G、 P.,S.V.-N。

and A.R.L. analyzed the experimental data and performed the mathematical modeling. S.C.D., C.K. and S.H.O. analyzed the sequencing data. K.S.-P. and K. Mahbubani provided human samples. A.H., D.F.-A., M.P.A. and P.H.J. wrote the paper. M.G. supervised the research of S.C.D, and P.H.J. supervised all the research.

A.R.L.分析了实验数据并进行了数学建模。S、 C.D.,C.K.和S.H.O.分析了测序数据。K、 S.-P.和K.Mahbubani提供了人类样本。A、 H.,D.F.-A.,M.P.A.和P.H.J.撰写了这篇论文。M、 G.监督了S.C.D的研究,P.H.J.监督了所有研究。

All authors discussed the results and commented on the manuscript.Corresponding authorCorrespondence to.

所有作者都讨论了结果并对手稿进行了评论。对应作者对应。

Philip H. Jones.Ethics declarations

菲利普·H·琼斯。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Genetics thanks Yuen-Yi Tseng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Nature Genetics感谢Yuen Yi Tseng和另一位匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Generation of mouse esophageal epithelioids.a, Epithelioid generation from a single esophageal explant. b, Live microscopy ‘Incucyte’ images 5, 11 and 15 days after plating Rosa26mTmG esophageal explants.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1小鼠食管上皮样细胞的产生。a,从单个食管外植体产生上皮样细胞。b、 在接种Rosa26mTmG食管外植体后5,11和15天,实时显微镜“Incucyte”图像。

Color scale shows fluorescence intensity. Scale bar, 1000 μm. Images representative of 20 independent explants. c, Area of covered by cells from a single esophageal explant. Each dot represents an epithelioid. n = 6 epithelioids. d-e, Expansion velocity at Day 6 after plating and area of cellular outgrowth 8 days after plating.

色标显示荧光强度。比例尺,1000微米。代表20个独立外植体的图像。c、 来自单个食管外植体的细胞覆盖的区域。每个点代表一个上皮样。n=6上皮样细胞。d-e,铺板后第6天的扩张速度和铺板后8天的细胞生长面积。

Each dot represents a cellular outgrowth and each colour a different mouse (n = 29 epithelioids from 6 mice). Red bar, mean. f, Number of cells in epithelioids 22 days after plating an explant of 1/32th of esophagus (Epithelioid) compared to the basal cell number in original explant (Original tissue).

每个点代表细胞生长,每个颜色代表不同的小鼠(来自6只小鼠的29个上皮样)。红色条,意味着。f、 与原始外植体(原始组织)中的基底细胞数量相比,铺板1/32食管(上皮样)外植体后22天上皮样细胞的数量。

Each dot represents a mouse or an epithelioid. Dots with the same color correspond to same mouse. n = 9 epithelioids from 3 mice. Red bar, mean. g Protocol: 5 explants from Rosa26mTmG mouse esophagus were plated in 75 mm diameter inserts and cultured for 20 days basal cell numbers quantified at the start and end of experiment.

每个点代表一只小鼠或一个上皮样细胞。具有相同颜色的点对应于相同的鼠标。来自3只小鼠的9个上皮样细胞。红色条,意味着。g方案:将来自Rosa26mTmG小鼠食道的5个外植体铺在直径75毫米的插入物中,并在实验开始和结束时定量培养20天的基底细胞数量。

h optical sections of basal layer (top-left), suprabasal layer (top-right) with lateral views (bottom) of a representative area of 20 day culture from g. Grey, TP63, green, KRT4, and blue, DAPI. Scale bars, 20 μm. i and j, Immunostaining against PDGFRA (red, fibroblasts), KRT4 (green), CD45 (grey, immune cells) and DAPI (blue), of explant and surrounding cellular outgrowth.

h来自g.Grey,TP63,green,KRT4和blue,DAPI的20天培养的代表性区域的基底层(左上),基底上层(右上)的光学切片(底部)。比例尺,20微米。i和j,针对外植体和周围细胞生长的PDGFRA(红色,成纤维细胞),KRT4(绿色),CD45(灰色,免疫细胞)和DAPI(蓝色)进行免疫染色。

Optical section with orthogonal views of explant submucosa (I, sc.

具有外植体粘膜下层正交视图的光学切片(I,sc)。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleHerms, A., Fernandez-Antoran, D., Alcolea, M.P. et al. Self-sustaining long-term 3D epithelioid cultures reveal drivers of clonal expansion in esophageal epithelium.

转载和许可本文引用本文Herms,A.,Fernandez-Antoran,D.,Alcolea,M.P。等人。自我维持的长期3D上皮样培养揭示了食管上皮克隆扩张的驱动因素。

Nat Genet (2024). https://doi.org/10.1038/s41588-024-01875-8Download citationReceived: 03 January 2023Accepted: 18 July 2024Published: 23 September 2024DOI: https://doi.org/10.1038/s41588-024-01875-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Genet(2024)。https://doi.org/10.1038/s41588-024-01875-8Download引文接收日期:2023年1月3日接收日期:2024年7月18日发布日期:2024年9月23日OI:https://doi.org/10.1038/s41588-024-01875-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供