商务合作
动脉网APP
可切换为仅中文
AbstractProtein and vaccine therapies based on mRNA would benefit from an increase in translation capacity. Here, we report a method to augment translation named ligation-enabled mRNA–oligonucleotide assembly (LEGO). We systematically screen different chemotopological motifs and find that a branched mRNA cap effectively initiates translation on linear or circular mRNAs without internal ribosome entry sites.
摘要基于mRNA的蛋白质和疫苗疗法将受益于翻译能力的提高。在这里,我们报告了一种增强翻译的方法,称为连接启用的mRNA-寡核苷酸组装(LEGO)。我们系统地筛选了不同的化学拓扑基序,发现分支的mRNA帽有效地启动了线性或环状mRNA的翻译,而没有内部核糖体进入位点。
Two types of chemical modification, locked nucleic acid (LNA) N7-methylguanosine modifications on the cap and LNA + 5 × 2′ O-methyl on the 5′ untranslated region, enhance RNA–eukaryotic translation initiation factor (eIF4E–eIF4G) binding and RNA stability against decapping in vitro. Through multidimensional chemotopological engineering of dual-capped mRNA and capped circular RNA, we enhanced mRNA protein production by up to tenfold in vivo, resulting in 17-fold and 3.7-fold higher antibody production after prime and boost doses in a severe acute respiratory syndrome coronavirus 2 vaccine setting, respectively.
两种类型的化学修饰,即帽上的锁核酸(LNA)N7甲基鸟苷修饰和5'非翻译区上的LNA+×2'O-甲基,可增强RNA-真核翻译起始因子(eIF4E-eIF4G)的结合和RNA在体外的稳定性。通过双封端mRNA和封端环状RNA的多维化学拓扑工程,我们在体内将mRNA蛋白产量提高了10倍,导致在严重急性呼吸综合征冠状病毒2疫苗中初次和加强剂量后抗体产量分别提高了17倍和3.7倍。
The LEGO platform opens possibilities to design unnatural RNA structures and topologies beyond canonical linear and circular RNAs for both basic research and therapeutic applications..
乐高平台为基础研究和治疗应用提供了超越经典线性和环状RNA的非自然RNA结构和拓扑设计的可能性。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Multidimensional chemical screening of the mRNA cap and 5′ UTR modifications.Fig. 2: Chemotopological design and engineering of dual-capped mRNA.Fig. 3: Mechanistic characterization of 5′ chemical and topological modifications in mRNA translation.Fig. 4: Synthesis of m1Ψ-modified, QRNA and mechanistic probing for cap-proximal translation induction.Fig.
图1:mRNA帽和5'UTR修饰的多维化学筛选。图2:双帽mRNA的化学拓扑设计和工程。图3:mRNA翻译中5'化学和拓扑修饰的机理表征。图4:m1Ψ修饰的QRNA的合成和cap近端翻译诱导的机制探测。图。
5: Chemotopologically optimized mRNA exhibits enhanced protein expression in vivo.Fig. 6: Chemically modified dual-capped mRNA enhances SARS-CoV-2 mRNA vaccine efficacy in mice..
5: 化学拓扑优化的mRNA在体内表现出增强的蛋白质表达。图6:化学修饰的双帽mRNA增强了SARS-CoV-2 mRNA疫苗在小鼠中的效力。。
Data availability
数据可用性
Sequences and modification information of all RNA constructs used in this study are provided in Supplementary Table 1. Plasmids used in this study were deposited to Addgene. Raw MS data for SILAC pulldown experiments are available on Zenodo96. The SARS-CoV-2 vaccine lymph node STARmap and RIBOmap datasets are available on Zenodo97.
补充表1提供了本研究中使用的所有RNA构建体的序列和修饰信息。本研究中使用的质粒被保存到Addgene。用于SILAC下拉实验的原始MS数据可在Zenodo96上获得。SARS-CoV-2疫苗淋巴结星图和RIBOmap数据集可在Zenodo97上获得。
Source data are provided with this paper..
本文提供了源数据。。
Code availability
代码可用性
The code used for data analysis is available on GitHub (https://github.com/wanglab-broad/Multicap-analysis).
GitHub上提供了用于数据分析的代码(https://github.com/wanglab-broad/Multicap-analysis)。
ReferencesMulligan, M. J. et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589–593 (2020).Article
参考文献Mulligan,M.J。等人,成人新型冠状病毒-19 RNA疫苗BNT162b1的I/II期研究。自然586589-593(2020)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Morais, P., Adachi, H. & Yu, Y.-T. The critical contribution of pseudouridine to mRNA COVID-19 vaccines. Front. Cell Dev. Biol. 9, 789427 (2021).Article
Morais,P.,Adachi,H。&Yu,Y.-T。假尿苷对mRNA COVID-19疫苗的关键贡献。正面。细胞开发生物学。9789427(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rohner, E., Yang, R., Foo, K. S., Goedel, A. & Chien, K. R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 40, 1586–1600 (2022).Article
Rohner,E.,Yang,R.,Foo,K.S.,Goedel,A。&Chien,K.R。解开mRNA治疗的承诺。美国国家生物技术公司。401586-1600(2022)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Jackson, R. J., Hellen, C. U. T. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).Article
Jackson,R.J.,Hellen,C.U.T。和Pestova,T.V。真核翻译起始的机制及其调控原则。Nat。Rev。Mol。Cell Biol。11113-127(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
von der Haar, T., Gross, J. D., Wagner, G. & McCarthy, J. E. G. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat. Struct. Mol. Biol. 11, 503–511 (2004).Article
von der Haar,T.,Gross,J.D.,Wagner,G。&McCarthy,J.E.G。转录后基因表达中的mRNA帽结合蛋白eIF4E。自然结构。分子生物学。11503-511(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Despic, V. & Jaffrey, S. R. mRNA ageing shapes the Cap2 methylome in mammalian mRNA. Nature 614, 358–366 (2023).Article
Despic,V。&Jaffrey,S.R。mRNA老化塑造了哺乳动物mRNA中的Cap2甲基化组。Nature 614358-366(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Züst, R. et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12, 137–143 (2011).Article
Züst,R。等人。核糖2'-O-甲基化为区分依赖于RNA传感器Mda5的自身和非自身mRNA提供了分子标记。自然免疫。12137-143(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ramanathan, A., Robb, G. B. & Chan, S.-H. mRNA capping: biological functions and applications. Nucleic Acids Res. 44, 7511–7526 (2016).Article
Ramanathan,A.,Robb,G.B。&Chan,S.-H。mRNA加帽:生物学功能和应用。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grudzien‐Nogalska, E. et al. Synthesis of anti‐reverse cap analogs (ARCAs) and their applications in mRNA translation and stability. Methods Enzymol. 431, 203–227 (2007).Article
Grudzien-Nogalska,E.等人。抗反向帽类似物(ARCA)的合成及其在mRNA翻译和稳定性中的应用。方法酶法。431203-227(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Stepinski, J., Waddell, C., Stolarski, R., Darzynkiewicz, E. & Rhoads, R. E. Synthesis and properties of mRNAs containing the novel ‘anti-reverse’ cap analogs 7-methyl(3′-O-methyl)GpppG and 7-methyl(3′-deoxy)GpppG. RNA 7, 1486–1495 (2001).PubMed
Stepinski,J.,Waddell,C.,Stolarski,R.,Darzynkiewicz,E。&Rhoads,R.E。含有新型“反反向”帽类似物7-甲基(3'-O-甲基)GpppG和7-甲基(3'-deoxy)GpppG的mRNA的合成和性质。RNA 71486-1495(2001)。PubMed出版社
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Ishikawa, M., Murai, R., Hagiwara, H., Hoshino, T. & Suyama, K. Preparation of eukaryotic mRNA having differently methylated adenosine at the 5′-terminus and the effect of the methyl group in translation. Nucleic Acids Symp. Ser. 53, 129–130 (2009).Article
Ishikawa,M.,Murai,R.,Hagiwara,H.,Hoshino,T。&Suyama,K。制备在5'末端具有不同甲基化腺苷的真核mRNA以及甲基在翻译中的作用。核酸症状。序列号。53129-130(2009)。文章
CAS
中科院
Google Scholar
谷歌学者
Sikorski, P. J. et al. The identity and methylation status of the first transcribed nucleotide in eukaryotic mRNA 5′ cap modulates protein expression in living cells. Nucleic Acids Res. 48, 1607–1626 (2020).Article
Sikorski,P.J。等人。真核mRNA 5'cap中第一个转录核苷酸的身份和甲基化状态调节活细胞中的蛋白质表达。核酸研究481607-1626(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Jurga, S. & Barciszewski, J. (eds) Messenger RNA Therapeutics (Springer Nature, 2022).Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).Article
Jurga,S。&Barciszewski,J。(编辑)Messenger RNA Therapeutics(Springer Nature,2022)。Wesselhoeft,R.A.,Kowalski,P.S。和Anderson,D.G。工程环状RNA,用于在真核细胞中进行有效和稳定的翻译。国家公社。92629(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41, 262–272 (2023).Article
Chen,R.等人。设计环状RNA以增强蛋白质生产。美国国家生物技术公司。41262-272(2023)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Qu, L. et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728–1744 (2022).Article
Qu,L.等人。针对SARS-CoV-2和新兴变体的环状RNA疫苗。细胞1851728-1744(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Koch, A., Aguilera, L., Morisaki, T., Munsky, B. & Stasevich, T. J. Quantifying the dynamics of IRES and cap translation with single-molecule resolution in live cells. Nat. Struct. Mol. Biol. 27, 1095–1104 (2020).Article
Koch,A.,Aguilera,L.,Morisaki,T.,Munsky,B。&Stasevich,T.J。用活细胞中的单分子分辨率量化IRES和帽翻译的动力学。自然结构。分子生物学。271095-1104(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Abe, N. et al. Complete chemical synthesis of minimal messenger RNA by efficient chemical capping reaction. ACS Chem. Biol. 17, 1308–1314 (2022).Article
Abe,N.等人。通过有效的化学封端反应完成最小信使RNA的化学合成。ACS化学。。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Kawaguchi, D. et al. Phosphorothioate modification of mRNA accelerates the rate of translation initiation to provide more efficient protein synthesis. Angew. Chem. Int. Ed. Engl. 59, 17403–17407 (2020).Article
Kawaguchi,D。等人。mRNA的硫代磷酸酯修饰可加速翻译起始速率,从而提供更有效的蛋白质合成。安吉。。国际英语。5917403-17407(2020)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Wojcik, R. et al. Novel N7-arylmethyl substituted dinucleotide mRNA 5′ cap analogs: synthesis and evaluation as modulators of translation. Pharmaceutics 13, 1941 (2021).Article
Wojcik,R。等人。新型N7芳基甲基取代的二核苷酸mRNA 5'cap类似物:合成和评估作为翻译调节剂。药剂学131941(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Chen, X. et al. Structure-guided design, synthesis, and evaluation of guanine-derived inhibitors of the eIF4E mRNA–cap interaction. J. Med. Chem. 55, 3837–3851 (2012).Article
Chen,X。等人。鸟嘌呤衍生的eIF4E mRNA-cap相互作用抑制剂的结构指导设计,合成和评估。J、 医学化学。553837-3851(2012)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Inagaki, M. et al. Cap analogs with a hydrophobic photocleavable tag enable facile purification of fully capped mRNA with various cap structures. Nat. Commun. 14, 2657 (2023).Article
Inagaki,M。等人。具有疏水性光可裂解标签的帽类似物能够轻松纯化具有各种帽结构的完全封端的mRNA。国家公社。142657(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Kore, A. R., Shanmugasundaram, M., Charles, I., Vlassov, A. V. & Barta, T. J. Locked nucleic acid (LNA)-modified dinucleotide mRNA cap analogue: synthesis, enzymatic incorporation, and utilization. J. Am. Chem. Soc. 131, 6364–6365 (2009).Article
Kore,A.R.,Shanmugasundaram,M.,Charles,I.,Vlassov,A.V。&Barta,T.J。锁定核酸(LNA)修饰的二核苷酸mRNA帽类似物:合成,酶促掺入和利用。J、 美国化学。Soc.1316364–6365(2009)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Senthilvelan, A. et al. Trinucleotide cap analogue bearing a locked nucleic acid moiety: synthesis, mRNA modification, and translation for therapeutic applications. Org. Lett. 23, 4133–4136 (2021).Article
Senthilvelan,A。等人。带有锁定核酸部分的三核苷酸帽类似物:用于治疗应用的合成,mRNA修饰和翻译。组织Lett。234133-4136(2021)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Aitken, C. E. & Lorsch, J. R. A mechanistic overview of translation initiation in eukaryotes. Nat. Struct. Mol. Biol. 19, 568–576 (2012).Article
Aitken,C.E。&Lorsch,J.R。真核生物翻译起始的机制概述。自然结构。分子生物学。19568-576(2012)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Gu, Y., Mao, Y., Jia, L., Dong, L. & Qian, S.-B. Bi-directional ribosome scanning controls the stringency of start codon selection. Nat. Commun. 12, 6604 (2021).Article
Gu,Y.,Mao,Y.,Jia,L.,Dong,L。&Qian,S.-B。双向核糖体扫描控制起始密码子选择的严格性。国家公社。126604(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Aditham, A. et al. Chemically modified mocRNAs for highly efficient protein expression in mammalian cells. ACS Chem. Biol. 17, 3352–3366 (2022).Article
。ACS化学。生物学173352-3366(2022)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Hellman, L. M. & Fried, M. G. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat. Protoc. 2, 1849–1861 (2007).Article
Hellman,L.M。和Fried,M.G。用于检测蛋白质-核酸相互作用的电泳迁移率变动分析(EMSA)。自然协议。21849-1861(2007)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Nagaraj, N. et al. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7, 548 (2011).Article
Nagaraj,N。等人。人类癌细胞系的深度蛋白质组和转录组作图。分子系统。生物学7548(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mitchell, S. F. et al. The 5′-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and to block an alternative pathway. Mol. Cell 39, 950–962 (2010).Article
Mitchell,S.F.等人。真核mRNA上的5'-7-甲基鸟苷帽既可刺激经典翻译起始,又可阻断另一种途径。分子细胞39950-962(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Balatsos, N. A. A., Maragozidis, P., Anastasakis, D. & Stathopoulos, C. Modulation of poly(A)-specific ribonuclease (PARN): current knowledge and perspectives. Curr. Med. Chem. 19, 4838–4849 (2012).Article
Balatsos,N.A.A.,Maragozidis,P.,Anastasakis,D。和Stathopoulos,C。调节聚(A)特异性核糖核酸酶(PARN):当前的知识和观点。货币。医学化学。194838-4849(2012)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Gerbracht, J. V. et al. CASC3 promotes transcriptome-wide activation of nonsense-mediated decay by the exon junction complex. Nucleic Acids Res. 48, 8626–8644 (2020).Article
Gerbracht,J.V。等人,CASC3通过外显子连接复合物促进转录组范围内无义介导的衰变的激活。核酸研究488626-8644(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Hu, W., Sweet, T. J., Chamnongpol, S., Baker, K. E. & Coller, J. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 461, 225–229 (2009).Article
Hu,W.,Sweet,T.J.,Chamnongpol,S.,Baker,K.E。&Coller,J。酿酒酵母中的共翻译mRNA衰变。《自然》461225-229(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
van Dijk, E. et al. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 21, 6915–6924 (2002).Article
van Dijk,E。等人。人Dcp2:一种位于特定细胞质结构中的催化活性mRNA去盖酶。EMBO J.216915–6924(2002)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wojtczak, B. A. et al. 5′-Phosphorothiolate dinucleotide cap analogues: reagents for messenger RNA modification and potent small-molecular inhibitors of decapping enzymes. J. Am. Chem. Soc. 140, 5987–5999 (2018).Article
Wojtczak,B.A。等人。5'-硫代磷酸酯二核苷酸帽类似物:信使RNA修饰试剂和有效的脱盖酶小分子抑制剂。J、 美国化学。Soc.1405987–5999(2018)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Bohlen, J., Roiuk, M., Neff, M. & Teleman, A. A. PRRC2 proteins impact translation initiation by promoting leaky scanning. Nucleic Acids Res. 51, 3391–3409 (2023).Article
Bohlen,J.,Roiuk,M.,Neff,M。&Teleman,A.A。PRRC2蛋白通过促进泄漏扫描来影响翻译起始。核酸研究513391-3409(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Garshott, D. M. et al. iRQC, a surveillance pathway for 40S ribosomal quality control during mRNA translation initiation. Cell Rep. 36, 109642 (2021).Article
Garshott,D.M。等人,iRQC,mRNA翻译起始过程中40S核糖体质量控制的监测途径。细胞代表36109642(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Ostrowski, L. A., Hall, A. C. & Mekhail, K. Ataxin-2: from RNA control to human health and disease. Genes 8, 157 (2017).Article
Ostrowski,L.A.,Hall,A.C。和Mekhail,K.Ataxin-2:从RNA控制到人类健康和疾病。基因8157(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hildebrandt, A. et al. The RNA-binding ubiquitin ligase MKRN1 functions in ribosome-associated quality control of poly(A) translation. Genome Biol. 20, 216 (2019).Article
Hildebrandt,A。等人。RNA结合泛素连接酶MKRN1在poly(A)翻译的核糖体相关质量控制中起作用。基因组生物学。20216(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pattabhi, S., Knoll, M. L., Gale, M. Jr & Loo, Y.-M. DHX15 is a coreceptor for RLR signaling that promotes antiviral defense against RNA virus infection. J. Interferon Cytokine Res. 39, 331–346 (2019).Article
Pattabhi,S.,Knoll,M.L.,Gale,M.Jr&Loo,Y.-M.DHX15是RLR信号传导的共同受体,可促进针对RNA病毒感染的抗病毒防御。J、 。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Xing, J. et al. DHX15 is required to control RNA virus-induced intestinal inflammation. Cell Rep. 35, 109205 (2021).Article
Xing,J。等人。DHX15是控制RNA病毒诱导的肠道炎症所必需的。。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Wang, Y. et al. Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat. Struct. Mol. Biol. 17, 781–787 (2010).Article
Wang,Y。等人。先天免疫受体RIG-I对5'-ppp RNA模式识别的结构和功能见解。Nat。Struct。分子生物学。17781-787(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).Article
Wang,X。等人。单细胞转录状态的三维完整组织测序。科学361,eaat5691(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).Article
Zeng,H。等人。分子分辨率的空间分辨单细胞翻译组学。科学380,eadd3067(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Chen, H. et al. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02174-7 (2024).Article
Chen,H。等人。支化化学修饰的聚(A)尾巴增强mRNA的翻译能力。Nat。Biotechnol。https://doi.org/10.1038/s41587-024-02174-7(2024年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, A. S., Kranzusch, P. J., Doudna, J. A. & Cate, J. H. D. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 536, 96–99 (2016).Article
Lee,A.S.,Kranzusch,P.J.,Doudna,J.A。&Cate,J.H.D。eIF3d是一种mRNA帽结合蛋白,是专门翻译起始所必需的。《自然》536,96-99(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Moerke, N. J. et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128, 257–267 (2007).Article
Moerke,N.J.等人。翻译起始因子eIF4E和eIF4G之间相互作用的小分子抑制。细胞128257-267(2007)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520 (2019).Article
Wesselhoeft,R.A。等人。RNA环化降低了免疫原性,并可以延长体内翻译的持续时间。分子细胞74508-520(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).Article
Karikó,K。等人。将假尿苷掺入mRNA产生优异的非免疫原性载体,具有增加的翻译能力和生物稳定性。摩尔热。161833-1840(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Cervantes, J. L., Weinerman, B., Basole, C. & Salazar, J. C. TLR8: the forgotten relative revindicated. Cell. Mol. Immunol. 9, 434–438 (2012).Article
塞万提斯(Cervantes),J.L.,韦内曼(Weinerman),B.,巴索尔(Basole),C。&Salazar,J.C。TLR8:被遗忘的亲戚被重新指出。细胞。分子免疫。9434-438(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Rehwinkel, J. & Gack, M. U. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 20, 537–551 (2020).Article
Rehwinkel,J。&Gack,M。U。RIG-I样受体:它们在RNA传感中的调节和作用。国家免疫修订版。20537-551(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109 (2019).Article
Chen,Y.G.等人,N6-甲基腺苷修饰控制环状RNA免疫。分子细胞76,96-109(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Lee, Y., Choe, J., Park, O. H. & Kim, Y. K. Molecular mechanisms driving mRNA degradation by m6A modification. Trends Genet. 36, 177–188 (2020).Article
Lee,Y.,Choe,J.,Park,O.H。&Kim,Y.K。通过m6A修饰驱动mRNA降解的分子机制。趋势Genet。36177-188(2020)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Jain, S. et al. Modulation of translational decoding by m6A modification of mRNA. Nat. Commun. 14, 4784 (2023).Article
Jain,S.等人。通过mRNA的m6A修饰调节翻译解码。自然通讯。。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Ehret, F., Zhou, C. Y., Alexander, S. C., Zhang, D. & Devaraj, N. K. Site-specific covalent conjugation of modified mRNA by tRNA guanine transglycosylase. Mol. Pharm. 15, 737–742 (2018).Article
Ehret,F.,Zhou,C.Y.,Alexander,S.C.,Zhang,D。和Devaraj,N.K。通过tRNA鸟嘌呤转糖基化酶修饰的mRNA的位点特异性共价缀合。Mol.Pharm.15737-742(2018)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Meyer, K. D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).Article
Meyer,K.D.等人,5′UTR m6A促进了与帽无关的翻译。细胞163999-1010(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Kumar, P., Hellen, C. U. T. & Pestova, T. V. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes Dev. 30, 1573–1588 (2016).Article
Kumar,P.,Hellen,C。U。T。和Pestova,T。V。研究eIF4F介导的核糖体附着于哺乳动物帽状mRNA的机制。Genes Dev.301573–1588(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Hellen, C. U. & Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 15, 1593–1612 (2001).Article
Hellen,C.U。&Sarnow,P。真核mRNA分子中的内部核糖体进入位点。Genes Dev.151593-1612(2001)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Brito Querido, J. et al. Structure of a human 48S translational initiation complex. Science 369, 1220–1227 (2020).Article
Brito-Querido,J。等人。人类48S翻译起始复合物的结构。科学3691220-1227(2020)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Querido, J. B. et al. The structure of a human translation initiation complex reveals two independent roles for the helicase eIF4A. Nat. Struct. Mol. Biol. 31, 455–464 (2024).Article
Querido,J.B。等人。人类翻译起始复合物的结构揭示了解旋酶eIF4A的两个独立作用。自然结构。分子生物学。31455-464(2024)。文章
Google Scholar
谷歌学者
Kozak, M. Adherence to the first-AUG rule when a second AUG codon follows closely upon the first. Proc. Natl Acad. Sci. USA 92, 2662–2666 (1995).Article
当第二个AUG密码子紧随第一个AUG密码子时,遵守第一个AUG规则。程序。国家科学院。科学。美国922662-2666(1995)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Eschbach, J. W., Kelly, M. R., Haley, N. R., Abels, R. I. & Adamson, J. W. Treatment of the anemia of progressive renal failure with recombinant human erythropoietin. N. Engl. J. Med. 321, 158–163 (1989).Article
Eschbach,J.W.,Kelly,M.R.,Haley,N.R.,Abels,R.I。&Adamson,J.W。用重组人促红细胞生成素治疗进行性肾衰竭贫血。N、 英语。J、 医学321158-163(1989)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Karikó, K., Muramatsu, H., Keller, J. M. & Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther. 20, 948–953 (2012).Article
Karikó,K.,Muramatsu,H.,Keller,J.M。&Weissman,D。注射亚微克量的含假尿苷的编码促红细胞生成素的mRNA的小鼠的红细胞生成增加。摩尔热。20948-953(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jang, D.-I. et al. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 22, 2719 (2021).Article
Jang,D.-I.等人。肿瘤坏死因子-α(TNF-α)在自身免疫性疾病中的作用以及目前TNF-α抑制剂在治疗中的作用。Int.J.Mol.Sci。222719(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Giannini, E. G., Testa, R. & Savarino, V. Liver enzyme alteration: a guide for clinicians. CMAJ 172, 367–379 (2005).Article
Giannini,E。G.,Testa,R。&Savarino,V。肝酶改变:临床医生指南。CMAJ 172367-379(2005)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liang, Q. et al. RBD trimer mRNA vaccine elicits broad and protective immune responses against SARS-CoV-2 variants. iScience 25, 104043 (2022).Article
Liang,Q。等人。RBD三聚体mRNA疫苗引发针对SARS-CoV-2变体的广泛和保护性免疫应答。iScience 25104043(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Vogel, A. B. et al. BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature 592, 283–289 (2021).Article
Vogel,A.B.等人,BNT162b疫苗保护恒河猴免受SARS-CoV-2的侵害。自然592283-289(2021)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Maher, K. et al. Mitigating autocorrelation during spatially resolved transcriptomics data analysis. Preprint at bioRxiv https://doi.org/10.1101/2023.06.30.547258 (2023).Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing.
Maher,K.等人。在空间分辨转录组学数据分析中减轻自相关。bioRxiv预印本https://doi.org/10.1101/2023.06.30.547258(2023年)。Cheng,Q。等人。用于组织特异性mRNA递送和CRISPR-Cas基因编辑的选择性器官靶向(SORT)纳米颗粒。
Nat. Nanotechnol. 15, 313–320 (2020).Article .
自然纳米技术。15313-320(2020)。。
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Riol-Blanco, L. et al. The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed. J. Immunol. 174, 4070–4080 (2005).Article
Riol-Blanco,L。等人。趋化因子受体CCR7在树突状细胞中激活两个独立调节趋化性和迁移速度的信号模块。J、 免疫。1744070–4080(2005)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Johnson, A. M. et al. Cancer cell-intrinsic expression of MHC class II regulates the immune microenvironment and response to anti-PD-1 therapy in lung adenocarcinoma. J. Immunol. 204, 2295–2307 (2020).Article
。J、 免疫。2042295-2307(2020)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Kratky, W., Reis e Sousa, C., Oxenius, A. & Spörri, R. Direct activation of antigen-presenting cells is required for CD8+ T-cell priming and tumor vaccination. Proc. Natl Acad. Sci. USA 108, 17414–17419 (2011).Article
Kratky,W.,Reis e Sousa,C.,Oxenius,A。&Spörri,R。CD8+T细胞引发和肿瘤疫苗接种需要直接激活抗原呈递细胞。程序。国家科学院。科学。美国10817414-17419(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Laczkó, D. et al. A single immunization with nucleoside-modified mRNA vaccines elicits strong cellular and humoral immune responses against SARS-CoV-2 in mice. Immunity 53, 724–732 (2020).Article
Laczkó,D。等人。用核苷修饰的mRNA疫苗进行单次免疫可在小鼠中引发针对SARS-CoV-2的强烈细胞和体液免疫应答。免疫53724-732(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Calabro, S. et al. Differential intrasplenic migration of dendritic cell subsets tailors adaptive immunity. Cell Rep. 16, 2472–2485 (2016).Article
Calabro,S.等人。树突状细胞亚群的差异性脾内迁移调节适应性免疫。Cell Rep.162472–2485(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Dohnalkova, M. et al. Essential roles of RNA cap-proximal ribose methylation in mammalian embryonic development and fertility. Cell Rep. 42, 112786 (2023).Article
Dohnalkova,M。等人。RNA帽近端核糖甲基化在哺乳动物胚胎发育和生育中的重要作用。细胞代表42112786(2023)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Haussmann, I. U. et al. CMTr cap-adjacent 2′-O-ribose mRNA methyltransferases are required for reward learning and mRNA localization to synapses. Nat. Commun. 13, 1209 (2022).Article
Haussmann,I.U.等人,CMTr帽相邻的2'-O-核糖mRNA甲基转移酶是奖励学习和mRNA定位到突触所必需的。国家公社。131209(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Someya, T., Ando, A., Kimoto, M. & Hirao, I. Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry. Nucleic Acids Res. 43, 6665–6676 (2015).Article
Someya,T.,Ando,A.,Kimoto,M。&Hirao,I。通过结合遗传字母扩展转录和无铜点击化学对RNA进行位点特异性标记。。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Pellestor, F. & Paulasova, P. The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics. Eur. J. Hum. Genet. 12, 694–700 (2004).Article
Pellestor,F。&Paulasova,P。肽核酸(PNAs),分子遗传学和细胞遗传学的有力工具。Eur.J.Hum.Genet。12694-700(2004)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Corey, D. R. & Abrams, J. M. Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol. 2, reviews1015.1–reviews1015.3 (2001).Article
Corey,D.R。&Abrams,J.M。吗啉代反义寡核苷酸:研究脊椎动物发育的工具。基因组生物学。2,评论1015.1–评论1015.3(2001)。文章
Google Scholar
谷歌学者
Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11, eaat9143 (2019).Article
Hewitt,S.L.等人。肿瘤内施用IL-23,IL-36γ和OX40L mRNA的持久抗癌免疫力。科学。翻译。医学杂志11,eaat9143(2019)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).Article
Musunuru,K。等人。PCSK9的体内CRISPR碱基编辑可持久降低灵长类动物的胆固醇。自然593429-434(2021)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Arevalo, C. P. et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 378, 899–904 (2022).Article
Arevalo,C.P.等人,一种针对所有已知流感病毒亚型的多价核苷修饰mRNA疫苗。科学378899-904(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Foy, S. P. et al. Non-viral precision T cell receptor replacement for personalized cell therapy. Nature 615, 687–696 (2023).Article
Foy,S.P.等人。用于个性化细胞疗法的非病毒精密T细胞受体替代物。自然615687-696(2023)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Granit, V. et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 22, 578–590 (2023).Article
Granit,V。等人。自体RNA嵌合抗原受体T细胞治疗重症肌无力的安全性和临床活性(MG-001):一项前瞻性,多中心,开放标签,非随机1b/2a期研究。柳叶刀神经学。22578-590(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Cai, A. et al. Quantitative assessment of mRNA cap analogues as inhibitors of in vitro translation. Biochemistry 38, 8538–8547 (1999).Article
Cai,A。等人。mRNA帽类似物作为体外翻译抑制剂的定量评估。生物化学388538-8547(1999)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Flamme, M., McKenzie, L. K., Sarac, I. & Hollenstein, M. Chemical methods for the modification of RNA. Methods 161, 64–82 (2019).Article
Flamme,M.,McKenzie,L.K.,Sarac,I。&Hollenstein,M。RNA修饰的化学方法。方法161,64-82(2019)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Zhang, X. et al. Structural insights into FTO’s catalytic mechanism for the demethylation of multiple RNA substrates. Proc. Natl Acad. Sci. USA 116, 2919–2924 (2019).Article
Zhang,X。等人。FTO对多种RNA底物去甲基化催化机制的结构见解。程序。国家科学院。科学。美国1162919-2924(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shi, H. et al. Spatial atlas of the mouse central nervous system at molecular resolution. Nature 622, 552–561 (2023).Article
Shi,H.等人。分子分辨率的小鼠中枢神经系统空间图谱。自然622552-561(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article
Schindelin,J。等人。斐济:生物图像分析的开源平台。《自然方法》9676-682(2012)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Weigert, M., Schmidt, U., Haase, R., Sugawara, K. & Myers, G. Star-convex polyhedra for 3D object detection and segmentation in microscopy. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (eds Ross, A., Cox, D. & McCloskey, S.) 3666–3673 (IEEE, 2020).Wolf, F.
Weigert,M.,Schmidt,U.,Haase,R.,Sugawara,K。&Myers,G。用于显微镜中3D物体检测和分割的星形凸多面体。在IEEE/CVF计算机视觉应用冬季会议论文集(eds Ross,A.,Cox,D。&McCloskey,S。)3666-3673(IEEE,2020)。沃尔夫,F。
A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).Article .
A、 ,Angerer,P。&Theis,F。J。SCANPY:大规模单细胞基因表达数据分析。基因组生物学。19,15(2018)。。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).Article
Johnson,W.E.,Li,C。&Rabinovic,A。使用经验贝叶斯方法调整微阵列表达数据中的批次效应。生物统计学8118-127(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Edupuganti, R. R. et al. N6-methyladenosine (m6A) recruits and repels proteins to regulate mRNA homeostasis. Nat. Struct. Mol. Biol. 24, 870–878 (2017).Article
Edupuganti,R。R。等人N6-甲基腺苷(m6A)募集并排斥蛋白质以调节mRNA稳态。自然结构。分子生物学。24870-878(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
CAS
中科院
Google Scholar
谷歌学者
Alexander, S. C., Busby, K. N., Cole, C. M., Zhou, C. Y. & Devaraj, N. K. Site-specific covalent labeling of RNA by enzymatic transglycosylation. J. Am. Chem. Soc. 137, 12756–12759 (2015).Article
Alexander,S.C.,Busby,K.N.,Cole,C.M.,Zhou,C.Y。&Devaraj,N.K。通过酶促转糖基化对RNA进行位点特异性共价标记。J、 美国化学。Soc.13712756–12759(2015)。文章
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Meier, S., Güthe, S., Kiefhaber, T. & Grzesiek, S. Foldon, the natural trimerization domain of T4 fibritin, dissociates into a monomeric A-state form containing a stable β-hairpin: atomic details of trimer dissociation and local β-hairpin stability from residual dipolar couplings. J.
。J。
Mol. Biol. 344, 1051–1069 (2004).Article .
分子生物学。344, 1051-1069 (2004).第[UNK]条。
PubMed
PubMed
CAS
中科院
Google Scholar
谷歌学者
Chen, H. et al. Raw SILAC mass spectrometry data of chemical and topological design of multi-capped mRNA and capped circular RNA. Zenodo https://doi.org/10.5281/zenodo.12611469 (2024).Chen, H. et al. Lymph node STARmap/RIBOmap dataset of chemical and topological design of multi-capped mRNA and capped circular RNA.
Chen,H.等人。多封端mRNA和封端环状RNA的化学和拓扑设计的原始SILAC质谱数据。Zenodohttps://doi.org/10.5281/zenodo.12611469(2024年)。Chen,H。等人。多帽mRNA和帽状环状RNA的化学和拓扑设计的淋巴结星图/核糖体图数据集。
Zenodo https://doi.org/10.5281/zenodo.12518588 (2024).Download referencesAcknowledgementsWe would like to thank J. Ren (MIT and Broad Institute) and J. Tian (MIT and Broad Institute) for their help on the in situ sequencing experiments. We would also like to thank the flow cytometry core facility (Broad Institute) for providing access to their instruments.
泽诺多https://doi.org/10.5281/zenodo.12518588(2024年)。下载参考文献致谢我们要感谢J.Ren(麻省理工学院和布罗德研究所)和J.Tian(麻省理工学院和布罗德研究所)在原位测序实验方面的帮助。我们还要感谢流式细胞仪核心设施(Broad Institute)提供对其仪器的访问。
We would also like to thank M. Ford and others (MS Bioworks) for assistance with qMS. We would also like to thank other members of X.W.’s lab for helpful discussion throughout the project. X.W. acknowledges the support from the E. Scolnick Professorship, Ono Pharma Breakthrough Science Initiative Award, Merkin Institute Fellowship, Klarman Cell Observatory, Packard Fellowship, Sloan Research Fellowship and NIH DP2 New Innovator Award (1DP2GM146245).
我们还要感谢M.Ford和其他人(Bioworks女士)对qMS的帮助。我们还要感谢X.W.实验室的其他成员在整个项目中进行了有益的讨论。十、 W.感谢E.Scolnick教授、Ono Pharma突破性科学倡议奖、Merkin研究所奖学金、Klarman细胞天文台、Packard奖学金、Sloan研究奖学金和NIH DP2新创新者奖(1DP2GM146245)的支持。
M.J.F. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) FR 4701/1-1. R.J.X. acknowledges support from NIH grants DK43351 and DK135492. F.Z. is supported by the Howard Hughes Medical Institute and NIH grant 2R01HG009761-05 and Broad Institute Programmable Therapeutics Gift Donors.Author informationAuthor notesThese authors contributed equally: Hongyu Chen, Dangliang Liu, Abhishek Aditham.Authors and AffiliationsDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USAHongyu Chen, Dangliang Liu, Jianting Guo, Jiahao Huang, Franklin Kostas & Xiao WangBroad Institute of MIT and Harvard, Cambr.
M、 J.F.由Deutsche Forschungsgemeinschaft(DFG,德国研究基金会)FR 4701/1-1资助。R、 J.X.感谢NIH拨款DK43351和DK135492的支持。F、 Z.得到了霍华德·休斯医学研究所和NIH grant 2R01HG009761-05以及Broad Institute Programmable Therapeutics礼品捐赠者的支持。作者信息作者注意到这些作者做出了同样的贡献:陈宏宇,刘当良,阿披实·阿迪瑟姆。作者和附属机构麻省理工学院化学系,剑桥,马萨诸塞州,美国陈宏宇,刘当良,郭建庭,黄家豪,麻省理工学院和哈佛大学Franklin Kostas&Xiao WangBroad研究所,坎布尔。
PubMed Google ScholarDangliang LiuView author publicationsYou can also search for this author in
PubMed Google ScholarDangliang LiuView作者出版物您也可以在
PubMed Google ScholarAbhishek AdithamView author publicationsYou can also search for this author in
PubMed Google ScholarAbhishek AdithamView作者出版物您也可以在
PubMed Google ScholarJianting GuoView author publicationsYou can also search for this author in
PubMed Google ScholarJianting GuoView作者出版物您也可以在
PubMed Google ScholarJiahao HuangView author publicationsYou can also search for this author in
PubMed Google ScholarJiahao HuangView作者出版物您也可以在
PubMed Google ScholarFranklin KostasView author publicationsYou can also search for this author in
PubMed谷歌学者Franklin KostasView作者出版物您也可以在
PubMed Google ScholarKamal MaherView author publicationsYou can also search for this author in
PubMed Google ScholarKamal MaherView作者出版物您也可以在
PubMed Google ScholarMirco J. FriedrichView author publicationsYou can also search for this author in
PubMed Google Scholarmarco J.FriedrichView作者出版物您也可以在
PubMed Google ScholarRamnik J. XavierView author publicationsYou can also search for this author in
PubMed Google ScholarRamnik J.XavierView作者出版物您也可以在
PubMed Google ScholarFeng ZhangView author publicationsYou can also search for this author in
PubMed谷歌学者张峰查看作者出版物您也可以在
PubMed Google ScholarXiao WangView author publicationsYou can also search for this author in
PubMed Google ScholarXiao WangView作者出版物您也可以在
PubMed Google ScholarContributionsConceptualization, X.W. Methodology and investigation, H.C. and D.L. Cloning, A.A. and J.G. Biochemical assays, H.C., D.L. and A.A. Data analysis, H.C., D.L., J.H. and K.M. Design and interpretation of vaccine tests, H.C., D.L., A.A., F.K., M.J.F., R.J.X., F.Z.
。
and X.W. Supervision, X.W. Writing—original draft, H.C. and D.L. Writing—review and editing, all authors contributed to reviewing and editing the manuscript.Corresponding authorCorrespondence to.
。对应作者对应。
Xiao Wang.Ethics declarations
小王。道德宣言
Competing interests
相互竞争的利益
X.W., H.C., D.L., A.A. and J.G. are inventors of patent applications related to this work. X.W. is a consultant, equity holder and scientific cofounder of Stellaromics and Convergence Bio. R.J.X. is a cofounder of Celsius Therapeutics and Jnana Therapeutics, scientific advisory board member at Nestle and board director at MoonLake Immunotherapeutics.
十、 W.,H.C.,D.L.,A.A.和J.G.是与这项工作相关的专利申请的发明人。X.W.是Stellaromics和Convergence Bio的顾问、股权持有人和科学联合创始人。R.J.X.是Celsius Therapeutics和Jnana Therapeutics的联合创始人,雀巢的科学顾问委员会成员和MoonLake Immunotherapeutics的董事。
F.Z. is a scientific advisor and cofounder of Editas Medicine, Beam Therapeutics, Pairwise Plants, Arbor Biotechnologies, Proof Diagnostics, Aera Therapeutics and Moonwalk Biosciences. F.Z. is a scientific advisor for Octant. The remaining authors declare no competing interests..
F、 Z.是Editas Medicine、Beam Therapeutics、成对植物、Arbor Biotechnologies、Proof Diagnostics、Aera Therapeutics和Moonwalk Biosciences的科学顾问和联合创始人。F、 Z.是Octant的科学顾问。其余作者声明没有利益冲突。。
Peer review
同行评审
Peer review information
同行评审信息
Nature Biotechnology thanks Ru-Yi Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Nature Biotechnology感谢朱汝毅和另一位匿名审稿人为这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Synthesis and purification of fully capped synthetic oligonucleotides.(a) Chemical capping and HPLC purification of solid-phase synthesized oligonucleotides.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1完全封端的合成寡核苷酸的合成和纯化。(a) 固相合成寡核苷酸的化学封端和HPLC纯化。
Crude chemical capping reactions with varying oligonucleotide counterions (triethylammonium or ammonium) were analyzed by analytical HPLC. Capped/uncapped oligos were fully resolved by using hexylammonium acetate as HPLC aqueous buffer. (b) Scalability of oligo capping. (c) Combination of m6A with sugar backbone modifications on the first 1 ~ 3 nucleotides.
通过分析HPLC分析了具有不同寡核苷酸抗衡离子(三乙基铵或铵)的粗化学封端反应。通过使用乙酸己基铵作为HPLC水性缓冲液,完全解析了加帽/未加帽的寡核苷酸。(b) 寡核苷酸加帽的可扩展性。(c) m6A与前1〜3个核苷酸上的糖骨架修饰的组合。
n = 3, biological replicates. Mean ± sem.Source dataExtended Data Fig. 2 Synthesis and characterization of 5′/3′-modified dual-capped mRNA.(a) Synthesis of dual-capped HiBiT mRNA. (b) Denaturing gel electrophoresis characterization of branched/linear HiBiT mRNAs (15% TBE-Urea). M, marker. Gel image is representative of two replicated experiments.
n=3,生物学重复。平均sem.Source数据扩展数据图2 5'/3'修饰的双帽mRNA的合成和表征。(a)双帽HiBiT mRNA的合成。(b)支链/线性HiBiT mRNA的变性凝胶电泳表征(15%TBE尿素)。M、 标记。凝胶图像是两个重复实验的代表。
(c) Relative HiBiT luminescence in HeLa cell normalized to chemically capped linear HiBiT mRNA. n = 3, biological replicates. Mean ± sem. P values were calculated by unpaired two-sided t-test. (d) Synthesis workflow of 5′/3′-modified mRNA. 5′ triphosphorylated mRNA was synthesized by IVT, and ligated to exonuclease-resistant oligonucleotides containing 3′ blocking groups.
(c) HeLa细胞中的相对HiBiT发光归一化为化学封端的线性HiBiT mRNA。n=3,生物学重复。通过不成对的双侧t检验计算平均sem.P值。(d) 5'/3'修饰mRNA的合成流程。通过IVT合成5'三磷酸化mRNA,并连接到含有3'阻断基团的核酸外切酶抗性寡核苷酸上。
The 5′ triphosphate was then hydrolyzed by RNA 5′ pyrophosphohydrolase (RppH) and ligated to capped oligonucleotides on the 5′ end. (e) The alkyne handle position does not significantly affect mRNA translation. n = 3, biological replicates. Mean ± sem. P values were calculated by ordinary one-way ANOVA.
然后用RNA 5'焦磷酸水解酶(RppH)水解5'三磷酸,并在5'端连接到带帽的寡核苷酸上。(e) 炔烃手柄位置不会显着影响mRNA翻译。n=3,生物学重复。通过普通单因素方差分析计算平均sem.P值。
(f) Phosphorothioate modification on the branched oligo minima.
(f) 分支寡核苷酸的硫代磷酸酯修饰。
Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02393-yDownload citationReceived: 06 May 2024Accepted: 20 August 2024Published: 23 September 2024DOI: https://doi.org/10.1038/s41587-024-02393-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Biotechnol(2024)。https://doi.org/10.1038/s41587-024-02393-yDownload引文接收日期:2024年5月6日接受日期:2024年8月20日发布日期:2024年9月23日OI:https://doi.org/10.1038/s41587-024-02393-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供