商务合作
动脉网APP
可切换为仅中文
AbstractThe tuberal hypothalamus regulates a range of crucial physiological processes, including energy homeostasis and metabolism. In this Review, we explore the intricate molecular mechanisms and signalling pathways that control the development of the tuberal hypothalamus, focusing on aspects that shape metabolic outcomes.
摘要下丘脑结节调节一系列关键的生理过程,包括能量稳态和代谢。在这篇综述中,我们探讨了控制下丘脑结节发育的复杂分子机制和信号通路,重点关注影响代谢结果的方面。
Major developmental events are discussed in the context of their effect on the establishment of both functional hypothalamic neuronal circuits and brain–body interfaces that are pivotal to the control of metabolism. Emerging evidence indicates that aberrations in molecular pathways during tuberal hypothalamic development contribute to metabolic dysregulation.
讨论了主要的发育事件对建立功能性下丘脑神经元回路和对代谢控制至关重要的脑-体界面的影响。新出现的证据表明,下丘脑结节发育过程中分子途径的异常会导致代谢失调。
Understanding the molecular underpinnings of tuberal hypothalamic development provides a comprehensive view of neurodevelopmental processes and offers a promising avenue for future targeted interventions to prevent and treat metabolic disorders.Key points.
了解结节性下丘脑发育的分子基础,可以全面了解神经发育过程,并为未来预防和治疗代谢紊乱的有针对性的干预措施提供了有希望的途径。关键点。
Energy balance is regulated by pro-opiomelanocortin and neuropeptide Y neurons within the arcuate nucleus and by tanycytes within the median eminence.
能量平衡受弓状核内的前黑素皮质素和神经肽Y神经元以及正中隆起内的tanycytes调节。
Sequential signalling events govern the progression of diencephalic prethalamic-like cells to generate regionally distinct populations of hypothalamic progenitors; sustained signalling events and hierarchical transcription factor networks mediate tuberal neurogenesis and the specification of tuberal neuronal subtypes and tanycytes..
顺序信号事件控制间脑丘脑前样细胞的进展,以产生区域不同的下丘脑祖细胞群;持续的信号传导事件和分级转录因子网络介导结节神经发生以及结节神经元亚型和tanycytes的规范。。
Leptin and a high-fat diet regulate diverse aspects of tuberal cell specification, including neurogenesis, axon guidance and synaptic connectivity.
瘦素和高脂肪饮食调节结节细胞规格的各个方面,包括神经发生,轴突导向和突触连接。
Neurons of the tuberal hypothalamus are sexually dimorphic in their distribution and regulate sexually dimorphic patterns of behaviour.
。
Genetic and environmental factors disrupt tuberal hypothalamic development and lead to lifelong metabolic defects.
遗传和环境因素破坏了结节下丘脑的发育并导致终身代谢缺陷。
Directed differentiation of human induced pluripotent stem cells towards hypothalamic identities is in its infancy but holds the promise of generating therapeutically important tuberal hypothalamic cell types.
人类诱导的多能干细胞向下丘脑身份的定向分化尚处于起步阶段,但有望产生治疗上重要的结节性下丘脑细胞类型。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Anatomy of the adult and developing tuberal hypothalamus.Fig. 2: Gene regulatory networks underlying HypFP and tuberal progenitor specification.Fig. 3: Topology of the hypothalamus at neurogenic stages.Fig. 4: Molecular pathways underlying ARCN neuronal and tuberal tanycyte differentiation.Fig.
图1:成人和发育中的下丘脑结节的解剖结构。。图3:神经源性阶段下丘脑的拓扑结构。图4:ARCN神经元和结节tanycyte分化的分子途径。图。
5: Stage-specific insults to the developing hypothalamus and their role in metabolic disorders..
5: 对发育中的下丘脑的阶段性侮辱及其在代谢紊乱中的作用。。
ReferencesTessmar-Raible, K. et al. Conserved sensory-neurosecretory cell types in annelid and fish forebrain: insights into hypothalamus evolution. Cell 129, 1389–1400 (2007).Article
参考文献Tessmar Raible,K。等人。环节动物和鱼类前脑中保守的感觉神经分泌细胞类型:下丘脑进化的见解。细胞1291389-1400(2007)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fong, H., Zheng, J. & Kurrasch, D. The structural and functional complexity of the integrative hypothalamus. Science 382, 388–394 (2023).Article
Fong,H.,Zheng,J。和Kurrasch,D。整合下丘脑的结构和功能复杂性。科学382388-394(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Alcantara, I. C., Tapia, A. P. M., Aponte, Y. & Krashes, M. J. Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding. Nat. Metab. 4, 836–847 (2022).Article
Alcantara,I.C.,Tapia,A.P.M.,Aponte,Y。&Krashes,M.J。食欲行为:控制食欲,完成和终止喂养阶段的神经回路。自然代谢。4836-847(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, D. et al. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front. Neuroanat. 9, 40 (2015).Article
Wang,D.等人。POMC和AgRP神经元直接输入和轴突投射的全脑映射。正面。神经解剖学。9,40(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dietrich, M. O. et al. AgRP neurons regulate development of dopamine neuronal plasticity and nonfood-associated behaviors. Nat. Neurosci. 15, 1108–1110 (2012).Article
Dietrich,M.O.等人,AgRP神经元调节多巴胺神经元可塑性和非食物相关行为的发展。自然神经科学。151108-1110(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Prevot, V. et al. Gonadotrophin-releasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J. Neuroendocrinol. 22, 639–649 (2010).Article
Prevot,V。等人。成人正中隆起中的促性腺激素释放激素神经末梢,tanycytes和神经血管连接重塑:生殖的功能后果和血管内皮细胞的动态作用。J、 神经内分泌。22639-649(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
García-Cáceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).Article
García-Cáceres,C.等人。星形胶质细胞,小胶质细胞和tanycytes在大脑控制全身代谢中的作用。自然神经科学。22,7-14(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, M. M. et al. The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits. Neuron 102, 653–667.e6 (2019).Article
Li,M.M.等人。脑室旁下丘脑通过两个遗传上不同的回路调节饱腹感并预防肥胖。神经元102653-667.e6(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schaeffer, M. et al. Rapid sensing of circulating ghrelin by hypothalamic appetite-modifying neurons. Proc. Natl Acad. Sci. USA 110, 1512–1517 (2013).Article
Schaeffer,M.等人。下丘脑食欲调节神经元快速感知循环生长素释放肽。程序。国家科学院。科学。美国1101512-1517(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Balland, E. et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 19, 293–301 (2014).Article
Balland,E。等人。下丘脑tanycytes是瘦素进入大脑的ERK门控通道。细胞代谢。19293-301(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yoo, S. et al. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 68, 1987–2000 (2020).Article
Yoo,S.等人。弓状核和正中隆起的Tanycyte消融通过增加雄性小鼠体内脂肪含量来增加肥胖易感性。神经胶质681987-2000(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yoo, S., Cha, D., Kim, D. W., Hoang, T. V. & Blackshaw, S. Tanycyte-independent control of hypothalamic leptin signaling. Front. Neurosci. 13, 240 (2019).Article
Yoo,S.,Cha,D.,Kim,D.W.,Hoang,T.V。&Blackshaw,S。Tanycyte独立控制下丘脑瘦素信号传导。正面。神经科学。13240(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, D. A. et al. Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat. Neurosci. 15, 700–702 (2012).Article
。自然神经科学。15700–702(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Robins, S. C. et al. α-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat. Commun. 4, 2049 (2013).Article
Robins,S.C.等人,成年下丘脑第三脑室的α-Tanycytes包括不同数量的FGF反应性神经祖细胞。国家公社。42049(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Theodosis, D. T., Poulain, D. A. & Oliet, S. H. R. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88, 983–1008 (2008).Article
Theodosis,D.T.,Poulain,D.A。&Oliet,S.H.R。星形胶质细胞-神经元相互作用的活性依赖性结构和功能可塑性。生理学。版本88983-1008(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Anbalagan, S. et al. Pituicyte cues regulate the development of permeable neuro-vascular interfaces. Dev. Cell 47, 711–726.e5 (2018).Article
Anbalagan,S。等人。Pituicyte提示调节可渗透神经血管界面的发育。Dev.Cell 47711–726.e5(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).Article
。自然神经科学。20484-496(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).Article
Chen,R.,Wu,X.,Jiang,L。&Zhang,Y。单细胞RNA-seq揭示下丘脑细胞多样性。Cell Rep.183227–3241(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, D. W. et al. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat. Commun. 11, 4360 (2020).Article
Kim,D.W.等人,《从胚胎发育到出生后晚期下丘脑模式和分化的细胞和分子景观》。国家公社。114360(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Romanov, R. A. et al. Molecular design of hypothalamus development. Nature 582, 246–252 (2020).Article
Romanov,R.A.等人,《下丘脑发育的分子设计》。《自然》582246–252(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mickelsen, L. E. et al. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. eLife 9, e58901 (2020).Article
Mickelsen,L.E.等人。小鼠腹后下丘脑的细胞分类学和空间组织。eLife 9,e58901(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ma, T., Wong, S. Z. H., Lee, B., Ming, G.-L. & Song, H. Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron 109, 1150–1167.e6 (2021).Article
Ma,T.,Wong,S.Z.H.,Lee,B.,Ming,G.-L。&Song,H。解码单个下丘脑核的神经元组成和个体发育。神经元1091150–1167.e6(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Steuernagel, L. et al. HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus. Nat. Metab. 4, 1402–1419 (2022).Article
Steuernagel,L。等人。HypoMap-一种统一的小鼠下丘脑单细胞基因表达图谱。自然代谢。41402-1419(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023).Article
Yao,Z.等人。全小鼠大脑中细胞类型的高分辨率转录组学和空间图谱。自然624317-332(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Harkany, T. et al. Molecularly stratified hypothalamic astrocytes are cellular foci for obesity. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-3748581/v1 (2024).Article
Harkany,T。等人。分子分层的下丘脑星形胶质细胞是肥胖的细胞灶。预印在Res.Sq。https://doi.org/10.21203/rs.3.rs-3748581/v1(2024年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sullivan, A. I., Potthoff, M. J. & Flippo, K. H. Tany-seq: integrated analysis of the mouse tanycyte transcriptome. Cells 11, 1565 (2022).Article
Sullivan,A.I.,Potthoff,M.J。&Flippo,K.H。Tany-seq:小鼠tanycyte转录组的综合分析。细胞111565(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Placzek, M. & Briscoe, J. The floor plate: multiple cells, multiple signals. Nat. Rev. Neurosci. 6, 230–240 (2005).Article
Placzek,M。&Briscoe,J。底板:多个细胞,多个信号。神经科学杂志。6230-240(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, D. W. et al. Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Rep. 38, 110251 (2022).Article
Kim,D.W.等人对早期雏鸡下丘脑发育的单细胞分析表明,下丘脑细胞是由丘脑前样祖细胞诱导的。Cell Rep.38110251(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chinnaiya, K. et al. A neuroepithelial wave of BMP signalling drives anteroposterior specification of the tuberal hypothalamus. eLife 12, e83133 (2023).Article
Chinnaiya,K。等人。BMP信号传导的神经上皮波驱动下丘脑结节的前后规格。eLife 12,e83133(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Manning, L. et al. Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev. Cell 11, 873–885 (2006).Article
Manning,L。等人。下丘脑的区域形态发生:BMP-Tbx2途径通过Shh下调协调命运和增殖。Dev.Cell 11873–885(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dale, J. K. et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269 (1997).Article
Dale,J.K.等人。BMP7和SHH在通过前中胚层诱导前脑腹中线细胞中的合作。细胞90257-269(1997)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dale, K. et al. Differential patterning of ventral midline cells by axial mesoderm is regulated by BMP7 and chordin. Development 126, 397–408 (1999).Article
Dale,K。等人。轴向中胚层对腹中线细胞的差异模式受BMP7和chordin的调节。发展126397-408(1999)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Fu, T., Towers, M. & Placzek, M. A. Fgf10+ progenitors give rise to the chick hypothalamus by rostral and caudal growth and differentiation. Development 144, 3278–3288 (2017).PubMed
Fu,T.,Towers,M。&Placzek,M.A。Fgf10+祖细胞通过嘴侧和尾部生长和分化产生小鸡下丘脑。发展1443278-3288(2017)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Szabó, N.-E. et al. Role of neuroepithelial sonic hedgehog in hypothalamic patterning. J. Neurosci. 29, 6989–7002 (2009).Article
Szabó,N.-E.等人。神经上皮声波刺猬在下丘脑模式中的作用。J、 神经科学。296989-7002(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shimogori, T. et al. A genomic atlas of mouse hypothalamic development. Nat. Neurosci. 13, 767–775 (2010).Article
Shimogori,T。等人。小鼠下丘脑发育的基因组图谱。自然神经科学。13767-775(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haddad-Tóvolli, R. et al. Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus. Front. Neuroanat. 9, 34 (2015).PubMed
Haddad-Tóvolli,R.等人。小鼠下丘脑区域规范中Gli2和Gli3的差异要求。正面。神经解剖学。9,34(2015)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Puelles, L. Recollections on the origins and development of the prosomeric model. Front. Neuroanat. 15, 787913 (2021).Article
Puelles,L。回忆prosomeric模型的起源和发展。正面。神经解剖学。15787913(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alvarez-Bolado, G., Grinevich, V. & Puelles, L. Editorial: development of the hypothalamus. Front. Neuroanat. 9, 83 (2015).Article
Alvarez Bolado,G.,Grinevich,V。&Puelles,L。社论:下丘脑的发育。正面。神经解剖学。9,83(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Manning, E. & Placzek, M. Organizing activities of axial mesoderm. Curr. Top. Dev. Biol. 157, 83–123 (2024).Article
Manning,E。&Placzek,M。组织轴向中胚层的活动。货币。。开发生物。157,83-123(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Aoto, K. et al. Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev. Biol. 327, 106–120 (2009).Article
Aoto,K。等人。在大脑和颅面形态发生过程中,小鼠Shh是维持前筛板所必需的。开发生物。327106-120(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Placzek, M. & Briscoe, J. Sonic hedgehog in vertebrate neural tube development. Int. J. Dev. Biol. 62, 225–234 (2018).Article
Placzek,M。&Briscoe,J。Sonic hedgehog在脊椎动物神经管发育中的作用。Int.J.Dev.Biol。62225-234(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Barratt, K. S., Drover, K. A., Thomas, Z. M. & Arkell, R. M. Patterning of the antero-ventral mammalian brain: lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech. Dis. 14, e1552 (2022).Article
Barratt,K.S.,Drover,K.A.,Thomas,Z.M。和Arkell,R.M。前腹哺乳动物大脑的模式:人和小鼠全前脑比较生物学的教训。电线机械。Dis。14,e1552(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Shimamura, K. & Rubenstein, J. L. Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718 (1997).Article
Shimamura,K。&Rubenstein,J.L。诱导相互作用指导小鼠前脑的早期区域化。发展1242709-2718(1997)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).Article
Chiang,C.等人。缺乏声波刺猬基因功能的小鼠的睫状体和轴向模式缺陷。自然383407-413(1996)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mukhopadhyay, M. et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell 1, 423–434 (2001).Article
Mukhopadhyay,M。等人Dickkopf1是小鼠胚胎头部诱导和肢体形态发生所必需的。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lewis, S. L. et al. Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135, 1791–1801 (2008).Article
Lewis,S.L.等人,Dkk1和Wnt3相互作用以控制小鼠的头部形态发生。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lagutin, O. V. et al. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev. 17, 368–379 (2003).Article
Lagutin,O.V.等人。Six3抑制前神经外胚层中的Wnt信号传导对于脊椎动物前脑发育至关重要。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Newman, E. A., Wu, D., Taketo, M. M., Zhang, J. & Blackshaw, S. Canonical Wnt signaling regulates patterning, differentiation and nucleogenesis in mouse hypothalamus and prethalamus. Dev. Biol. 442, 236–248 (2018).Article
Newman,E.A.,Wu,D.,Taketo,M.M.,Zhang,J。&Blackshaw,S。经典Wnt信号调节小鼠下丘脑和丘脑的模式,分化和核发生。开发生物。442236-248(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Geng, X. et al. Haploinsufficiency of Six3 fails to activate Sonic hedgehog expression in the ventral forebrain and causes holoprosencephaly. Dev. Cell 15, 236–247 (2008).Article
Geng,X。等人。Six3的单倍剂量不足不能激活腹侧前脑中的声波刺猬表达,并导致全前脑畸形。Dev.Cell 15236-247(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Muthu, V., Eachus, H., Ellis, P., Brown, S. & Placzek, M. Rx3 and Shh direct anisotropic growth and specification in the zebrafish tuberal/anterior hypothalamus. Development 143, 2651–2663 (2016).PubMed
Muthu,V.,Eachus,H.,Ellis,P.,Brown,S。&Placzek,M。Rx3和Shh指导斑马鱼管/前下丘脑的各向异性生长和规格。发展1432651-2663(2016)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Orquera, D. P., Nasif, S., Low, M. J., Rubinstein, M. & de Souza, F. S. J. Essential function of the transcription factor Rax in the early patterning of the mammalian hypothalamus. Dev. Biol. 416, 212–224 (2016).Article
Orquera,D.P.,Nasif,S.,Low,M.J.,Rubinstein,M。&de Souza,F.S.J。转录因子Rax在哺乳动物下丘脑早期模式中的基本功能。开发生物。416212-224(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Manoli, M. & Driever, W. nkx2.1 and nkx2.4 genes function partially redundant during development of the zebrafish hypothalamus, preoptic region, and pallidum. Front. Neuroanat. 8, 145 (2014).Article
Manoli,M。&Driever,W。nkx2.1和nkx2.4基因在斑马鱼下丘脑,视前区和苍白球的发育过程中部分冗余。正面。神经解剖学。8145(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sussel, L., Marin, O., Kimura, S. & Rubenstein, J. L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).Article .
Sussel,L.,Marin,O.,Kimura,S。&Rubenstein,J.L。Nkx2.1同源框基因功能的丧失导致基底端脑内的腹侧到背侧分子再特异性:苍白球转化为纹状体的证据。。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Strähle, U., Blader, P. & Ingham, P. W. Expression of axial and sonic hedgehog in wildtype and midline defective zebrafish embryos. Int. J. Dev. Biol. 40, 929–940 (1996).PubMed
Strähle,U.,Blader,P。&Ingham,P。W。在野生型和中线缺陷斑马鱼胚胎中轴向和声刺猬的表达。Int.J.Dev.Biol。。PubMed出版社
Google Scholar
谷歌学者
Mathieu, J., Barth, A., Rosa, F. M., Wilson, S. W. & Peyriéras, N. Distinct and cooperative roles for Nodal and Hedgehog signals during hypothalamic development. Development 129, 3055–3065 (2002).Article
。发展1293055-3065(2002)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ellis, P. S. et al. ProNodal acts via FGFR3 to govern duration of Shh expression in the prechordal mesoderm. Development 142, 3821–3832 (2015).PubMed
。发展1423821-3832(2015)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Angueyra, J. M. et al. Transcription factors underlying photoreceptor diversity. eLife 12, e81579 (2023).Article
Angueyra,J.M.等人。光感受器多样性的转录因子。eLife 12,e81579(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pearson, C. A. et al. FGF-dependent midline-derived progenitor cells in hypothalamic infundibular development. Development 138, 2613–2624 (2011).Article
Pearson,C.A。等人。下丘脑漏斗发育中FGF依赖性中线来源的祖细胞。发展1382613-2624(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Corman, T. S., Bergendahl, S. E. & Epstein, D. J. Distinct temporal requirements for Sonic hedgehog signaling in development of the tuberal hypothalamus. Development 145, dev167379 (2018).Article
Corman,T.S.,Bergendahl,S.E.&Epstein,D.J。下丘脑结节发育过程中声波刺猬信号的不同时间要求。发展145,dev167379(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carreno, G. et al. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development 144, 3289–3302 (2017).Article
下丘脑声波刺猬是LHX3/LHX4垂体胚胎前体细胞规格和增殖所必需的。发展1443289-3302(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Trowe, M.-O. et al. Inhibition of Sox2-dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development 140, 2299–2309 (2013).Article
Trowe,M.-O.等人。神经垂体的形成需要Tbx3抑制腹侧间脑中Shh的Sox2依赖性激活。发展1402299-2309(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goto, M. et al. Hes1 and Hes5 are required for differentiation of pituicytes and formation of the neurohypophysis in pituitary development. Brain Res. 1625, 206–217 (2015).Article
Goto,M。等人。Hes1和Hes5是垂体发育中垂体细胞分化和神经垂体形成所必需的。Brain Res.1625206–217(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Salvatierra, J. et al. The LIM homeodomain factor Lhx2 is required for hypothalamic tanycyte specification and differentiation. J. Neurosci. 34, 16809–16820 (2014).Article
Salvatierra,J。等人。LIM同源域因子Lhx2是下丘脑tanycyte规格和分化所必需的。J、 神经科学。3416809-16820(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Oliver, G. et al. Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121, 4045–4055 (1995).Article
Oliver,G。等人Six3是正弦眼基因的鼠同源物,它划定了发育中的神经板的最前缘,并在眼睛发育过程中表达。发展1214045-4055(1995)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jean, D., Bernier, G. & Gruss, P. Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech. Dev. 84, 31–40 (1999).Article
Jean,D.,Bernier,G。&Gruss,P。Six6(Optx2)是一种新型的鼠Six3相关同源框基因,可划分假定的垂体/下丘脑轴和腹侧视杆。机械。第84页,第31-40页(1999年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ikeda, Y., Luo, X., Abbud, R., Nilson, J. H. & Parker, K. L. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol. Endocrinol. 9, 478–486 (1995).PubMed
池田,Y.,罗,X.,艾布德,R.,尼尔森,J.H。&Parker,K.L。核受体类固醇生成因子1对于下丘脑腹内侧核的形成至关重要。分子内分泌。9478-486(1995)。PubMed出版社
Google Scholar
谷歌学者
Fujiyama, T. et al. Forebrain Ptf1a is required for sexual differentiation of the brain. Cell Rep. 24, 79–94 (2018).Article
Fujiyama,T。等人。大脑的性别分化需要前脑Ptf1a。Cell Rep.24,79-94(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, W., Grimmer, J. F., Van De Water, T. R. & Lufkin, T. Hmx2 and Hmx3 homeobox genes direct development of the murine inner ear and hypothalamus and can be functionally replaced by Drosophila Hmx. Dev. Cell 7, 439–453 (2004).Article
Wang,W.,Grimmer,J。F.,Van De Water,T。R。&Lufkin,T。Hmx2和Hmx3同源框基因指导小鼠内耳和下丘脑的发育,并且可以在功能上被果蝇Hmx替代。Dev.Cell 7439–453(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pontecorvi, M., Goding, C. R., Richardson, W. D. & Kessaris, N. Expression of Tbx2 and Tbx3 in the developing hypothalamic-pituitary axis. Gene Expr. Patterns 8, 411–417 (2008).Article
Pontecorvi,M.,Goding,C.R.,Richardson,W.D。和Kessaris,N。Tbx2和Tbx3在发育中的下丘脑-垂体轴中的表达。基因表达。模式8411-417(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Satoh, A., Brace, C. S., Rensing, N. & Imai, S.-I. Deficiency of Prdm13, a dorsomedial hypothalamus-enriched gene, mimics age-associated changes in sleep quality and adiposity. Aging Cell 14, 209–218 (2015).Article
Satoh,A.,Brace,C.S.,Rensing,N。&Imai,S.-I。Prdm13是一种富含背内侧下丘脑的基因,其缺乏模仿了与年龄相关的睡眠质量和肥胖的变化。衰老细胞14209-218(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Shi, X. et al. Hierarchical deployment of Tbx3 dictates the identity of hypothalamic KNDy neurons to control puberty onset. Sci. Adv. 8, eabq2987 (2022).Article
Shi,X。等人。Tbx3的分层部署决定了下丘脑KNDy神经元的身份,以控制青春期的发作。科学。广告8,eabq2987(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shimada, M. & Nakamura, T. Time of neuron origin in mouse hypothalamic nuclei. Exp. Neurol. 41, 163–173 (1973).Article
Shimada,M。&Nakamura,T。小鼠下丘脑核神经元起源的时间。实验神经学。41163-173(1973)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, J. E., Wu, S.-F., Goering, L. M. & Dorsky, R. I. Canonical Wnt signaling through Lef1 is required for hypothalamic neurogenesis. Development 133, 4451–4461 (2006).Article
Lee,J.E.,Wu,S.-F.,Goering,L.M。和Dorsky,R.I。下丘脑神经发生需要通过Lef1的经典Wnt信号传导。发展1334451-4461(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Aujla, P. K., Naratadam, G. T., Xu, L. & Raetzman, L. T. Notch/Rbpjκ signaling regulates progenitor maintenance and differentiation of hypothalamic arcuate neurons. Development 140, 3511–3521 (2013).Article
Aujla,P.K.,Naratadam,G.T.,Xu,L。&Raetzman,L.T。Notch/Rbpjκ信号调节下丘脑弓状神经元的祖细胞维持和分化。发展1403511-3521(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Biehl, M. J. & Raetzman, L. T. Rbpj-κ mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev. Biol. 406, 235–246 (2015).Article
Biehl,M.J。&Raetzman,L.T。Rbpj-κ介导的Notch信号传导在下丘脑Kisspeptin神经元的发育中起关键作用。开发生物。406235-246(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ratié, L. et al. Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development. Neural Dev. 8, 25 (2013).Article
Ratié,L。等人。当下丘脑发育过程中NOTCH信号被破坏时,新基因上调。神经发展8,25(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ware, M., Hamdi-Rozé, H. & Dupé, V. Notch signaling and proneural genes work together to control the neural building blocks for the initial scaffold in the hypothalamus. Front. Neuroanat. 8, 140 (2014).Article
Ware,M.,Hamdi-Rozé,H。&Dupé,V。Notch信号传导和前脑基因共同控制下丘脑初始支架的神经构建块。正面。神经解剖学。8140(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Place, E. et al. SHH and Notch regulate SOX9+ progenitors to govern arcuate POMC neurogenesis. Front. Neurosci. 16, 855288 (2022).Article
Place,E。等人SHH和Notch调节SOX9+祖细胞以控制弓形POMC神经发生。正面。神经科学。16855288(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pierfelice, T., Alberi, L. & Gaiano, N. Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69, 840–855 (2011).Article
Pierfelice,T.,Alberi,L。&Gaiano,N。脊椎动物神经系统的缺口:一只有新把戏的老狗。神经元69840-855(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Engler, A., Zhang, R. & Taylor, V. Notch and neurogenesis. Adv. Exp. Med. Biol. 1066, 223–234 (2018).Article
Engler,A.,Zhang,R。&Taylor,V。Notch和神经发生。高级实验医学生物学。1066223-234(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Aslanpour, S., Han, S., Schuurmans, C. & Kurrasch, D. M. Acts as a classical proneural gene in the ventromedial hypothalamus and is required for the early phase of neurogenesis. J. Neurosci. 40, 3549–3563 (2020).Article
Aslanpour,S.,Han,S.,Schuurmans,C。&Kurrasch,D.M。在腹内侧下丘脑中充当经典的前神经基因,是神经发生早期所必需的。J、 神经科学。403549-3563(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pelling, M. et al. Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev. Biol. 349, 406–416 (2011).Article
Pelling,M.等人。下丘脑POMC和NPY神经元发育中对神经生成素3的不同要求。开发生物。349406-416(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hael, C. E., Rojo, D., Orquera, D. P., Low, M. J. & Rubinstein, M. The transcriptional regulator PRDM12 is critical for Pomc expression in the mouse hypothalamus and controlling food intake, adiposity, and body weight. Mol. Metab. 34, 43–53 (2020).Article
Hael,C.E.,Rojo,D.,Orquera,D.P.,Low,M.J。&Rubinstein,M。转录调节因子PRDM12对于小鼠下丘脑中Pomc的表达以及控制食物摄入,肥胖和体重至关重要。分子代谢。34,43-53(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, B. et al. Dlx1/2 and Otp coordinate the production of hypothalamic GHRH- and AgRP-neurons. Nat. Commun. 9, 2026 (2018).Article
Lee,B。等人,Dlx1/2和Otp协调下丘脑GHRH和AgRP神经元的产生。国家公社。92026(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, B., Lee, S., Lee, S.-K. & Lee, J. W. The LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons. Development 143, 3763–3773 (2016).Article
Lee,B.,Lee,S.,Lee,S.-K.&Lee,J.W。LIM同源盒转录因子Isl1在多个弓状核神经元的发育中起着至关重要的作用。发展1433763-3773(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Padilla, S. L., Carmody, J. S. & Zeltser, L. M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403–405 (2010).Article
Padilla,S.L.,Carmody,J.S。&Zeltser,L.M。表达Pomc的祖细胞在下丘脑喂养回路中产生拮抗性神经元群体。《自然医学》16403-405(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, H., Rubinstein, M. & Low, M. J. Developmental single-cell transcriptomics of hypothalamic POMC neurons reveal the genetic trajectories of multiple neuropeptidergic phenotypes. eLife 11, e72883 (2022).Article
Yu,H.,Rubinstein,M。&Low,M。J。下丘脑POMC神经元的发育单细胞转录组学揭示了多种神经肽能表型的遗传轨迹。eLife 11,e72883(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Orquera, D. P. et al. The homeodomain transcription factor NKX2.1 is essential for the early specification of melanocortin neuron identity and activates expression in the developing hypothalamus. J. Neurosci. 39, 4023–4035 (2019).Article
。J、 神经科学。394023-4035(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Quarta, C. et al. Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nat. Metab. 1, 222–235 (2019).Article
Quarta,C。等人。下丘脑黑皮质素神经元的功能同一性取决于Tbx3。自然代谢。1222-235(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nasif, S. et al. Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proc. Natl Acad. Sci. USA 112, E1861–E1870 (2015).Article
Nasif,S。等人,Islet 1指定了下丘脑黑皮质素神经元的身份,对于成年后的正常食物摄入和肥胖至关重要。程序。国家科学院。科学。美国112,E1861–E1870(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chen, X. et al. Comparative transcriptomic analyses of developing melanocortin neurons reveal new regulators for the anorexigenic neuron identity. J. Neurosci. 40, 3165–3177 (2020).Article
Chen,X。等人。发育中的黑皮质素神经元的比较转录组学分析揭示了厌食神经元身份的新调节因子。J、 神经科学。403165–3177(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jing, E., Nillni, E. A., Sanchez, V. C., Stuart, R. C. & Good, D. J. Deletion of the Nhlh2 transcription factor decreases the levels of the anorexigenic peptides α melanocyte-stimulating hormone and thyrotropin-releasing hormone and implicates prohormone convertases I and II in obesity.
Jing,E.,Nillni,E.A.,Sanchez,V.C.,Stuart,R.C。&Good,D.J。删除Nhlh2转录因子会降低厌食肽α黑素细胞刺激素和促甲状腺激素释放激素的水平,并暗示肥胖中的激素转化酶I和II。
Endocrinology 145, 1503–1513 (2004).Article .
内分泌学1451503-1513(2004)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Carraro, R. S. et al. Arcuate nucleus overexpression of NHLH2 reduces body mass and attenuates obesity-associated anxiety/depression-like behavior. J. Neurosci. 41, 10004–10022 (2021).Article
Carraro,R.S。等人。NHLH2的弓形核过表达可减少体重并减轻肥胖相关的焦虑/抑郁样行为。J、 神经科学。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Croizier, S., Park, S., Maillard, J. & Bouret, S. G. Central Dicer-miR-103/107 controls developmental switch of POMC progenitors into NPY neurons and impacts glucose homeostasis. eLife 7, e40429 (2018).Article
Croizier,S.,Park,S.,Maillard,J。&Bouret,S.G。Central Dicer-miR-103/107控制POMC祖细胞向NPY神经元的发育转换并影响葡萄糖稳态。eLife 7,e40429(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nogueiras, R. et al. Bsx, a novel hypothalamic factor linking feeding with locomotor activity, is regulated by energy availability. Endocrinology 149, 3009–3015 (2008).Article
Nogueiras,R。等人。Bsx是一种将进食与运动活动联系起来的新型下丘脑因子,受能量利用率的调节。内分泌学1493009-3015(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sokolowski, K. et al. Specification of select hypothalamic circuits and innate behaviors by the embryonic patterning gene dbx1. Neuron 86, 403–416 (2015).Article
Sokolowski,K。等人。胚胎模式基因dbx1对选择性下丘脑回路和先天行为的规范。神经元86403-416(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Li, H., Zeitler, P. S., Valerius, M. T., Small, K. & Potter, S. S. Gsh-1, an orphan Hox gene, is required for normal pituitary development. EMBO J. 15, 714–724 (1996).Article
。EMBO J.15714–724(1996)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Huisman, C. et al. Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators. Nat. Commun. 10, 3696 (2019).Article
Huisman,C.等人。发育中的弓状核神经元的单细胞转录组分析揭示了它们的关键发育调节因子。国家公社。103696(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yee, C. L., Wang, Y., Anderson, S., Ekker, M. & Rubenstein, J. L. R. Arcuate nucleus expression of NKX2.1 and DLX and lineages expressing these transcription factors in neuropeptide Y+, proopiomelanocortin+, and tyrosine hydroxylase+ neurons in neonatal and adult mice. J. Comp. Neurol.
Yee,C.L.,Wang,Y.,Anderson,S.,Ekker,M。&Rubenstein,J.L.R。弓形核NKX2.1和DLX的表达以及在新生和成年小鼠的神经肽Y+,proopiomelanocortin+和酪氨酸羟化酶+神经元中表达这些转录因子的谱系。J、 公司。神经病学。
517, 37–50 (2009).Article .
517,37-50(2009)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, Q. et al. Satb2 regulates the development of dopaminergic neurons in the arcuate nucleus by Dlx1. Cell Death Dis. 12, 879 (2021).Article
Zhang,Q。等人。Satb2通过Dlx1调节弓状核多巴胺能神经元的发育。细胞死亡Dis。12879(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Atkin, S. D. et al. Nuclear receptor LRH-1 induces the reproductive neuropeptide kisspeptin in the hypothalamus. Mol. Endocrinol. 27, 598–605 (2013).Article
Atkin,S.D.等人。核受体LRH-1诱导下丘脑中的生殖神经肽kisspeptin。分子内分泌。27598-605(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Whittaker, D. E. et al. A recessive PRDM13 mutation results in congenital hypogonadotropic hypogonadism and cerebellar hypoplasia. J. Clin. Invest. 131, e141587 (2021).Article
Whittaker,D.E。等人。隐性PRDM13突变导致先天性性腺功能减退性腺功能减退和小脑发育不全。J、 临床。投资。131,e141587(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Altman, J. & Bayer, S. A. Development of the diencephalon in the rat. III. Ontogeny of the specialized ventricular linings of the hypothalamic third ventricle. J. Comp. Neurol. 182, 995–1015 (1978).Article
Altman,J。&Bayer,S.A。大鼠间脑的发育。三、 。J、 公司。神经病学。182995-1015(1978)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lopez-Rodriguez, D. et al. Ontogeny of ependymoglial cells lining the third ventricle in mice. Front. Endocrinol. 13, 1073759 (2022).Article
Lopez-Rodriguez,D。等人。小鼠第三脑室室管膜胶质细胞的个体发育。正面。。131073759(2022)。文章
Google Scholar
谷歌学者
Yoo, S. & Blackshaw, S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog. Neurobiol. 170, 53–66 (2018).Article
Yoo,S。&Blackshaw,S。成年哺乳动物下丘脑神经发生的调节和功能。程序。神经生物学。170,53-66(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Miranda-Angulo, A. L., Byerly, M. S., Mesa, J., Wang, H. & Blackshaw, S. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J. Comp. Neurol. 522, 876–899 (2014).Article
Miranda Angulo,A.L.,Byerly,M.S.,Mesa,J.,Wang,H。&Blackshaw,S.Rax调节小鼠下丘脑tanycyte分化和屏障功能。J、 公司。神经病学。522876-899(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Moore, A. et al. Loss of function of the neural cell adhesion molecule NrCAM regulates differentiation, proliferation and neurogenesis in early postnatal hypothalamic tanycytes. Front. Neurosci. 16, 832961 (2022).Article
神经细胞粘附分子NrCAM的功能丧失调节出生后早期下丘脑tanycytes的分化,增殖和神经发生。正面。神经科学。16832961(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Parkash, J. et al. Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat. Commun. 6, 6385 (2015).Article
Parkash,J。等人。Semaphorin7A调节成人下丘脑正中隆起的神经胶质可塑性。国家公社。66385(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yoo, S. et al. Control of neurogenic competence in mammalian hypothalamic tanycytes. Sci. Adv. 7, eabg3777 (2021).Article
Yoo,S.等人。哺乳动物下丘脑tanycytes神经源性能力的控制。科学。Adv.7,eabg3777(2021年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lee, D. A. et al. Dietary and sex-specific factors regulate hypothalamic neurogenesis in young adult mice. Front. Neurosci. 8, 157 (2014).Article
Lee,D.A.等人。饮食和性别特异性因素调节年轻成年小鼠的下丘脑神经发生。正面。神经科学。8157(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goodman, T. et al. Fibroblast growth factor 10 is a negative regulator of postnatal neurogenesis in the mouse hypothalamus. Development 147, dev180950 (2020).Article
Goodman,T。等人。成纤维细胞生长因子10是小鼠下丘脑出生后神经发生的负调节剂。发展147,dev180950(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Recabal, A. et al. The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway. J. Neurochem. 156, 182–199 (2021).Article
Recabal,A。等人。FGF2诱导的tanycyte增殖涉及连接蛋白43半通道/嘌呤能依赖性途径。J、 神经化学。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Son, J. E. et al. Irx3 and Irx5 in Ins2-Cre cells regulate hypothalamic postnatal neurogenesis and leptin response. Nat. Metab. 3, 701–713 (2021).Article
Son,J.E.等人,Ins2-Cre细胞中的Irx3和Irx5调节下丘脑出生后神经发生和瘦素反应。自然代谢。3701-713(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dou, Z., Son, J. E. & Hui, C. C. Irx3 and Irx5 — novel regulatory factors of postnatal hypothalamic neurogenesis. Front. Neurosci. 15, 763856 (2021).Article
。正面。神经科学。15763856(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Makarenko, I. G., Ugrumov, M. V. & Calas, A. Axonal projections from the hypothalamus to the median eminence in rats during ontogenesis: diI tracing study. Anat. Embryol. 204, 239–252 (2001).Article
Makarenko,I.G.,Ugrumov,M.V。&Calas,A。个体发生过程中大鼠下丘脑到中位隆起的轴突投射:diI追踪研究。阿纳特。胚胎。204239-252(2001)。文章
Google Scholar
谷歌学者
Liu, F. et al. Direct and indirect roles of Fgf3 and Fgf10 in innervation and vascularisation of the vertebrate hypothalamic neurohypophysis. Development 140, 1111–1122 (2013).Article
Liu,F。等人。Fgf3和Fgf10在脊椎动物下丘脑神经垂体的神经支配和血管形成中的直接和间接作用。发展1401111-1122(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, F., Placzek, M. & Xu, H. Axon guidance effect of classical morphogens Shh and BMP7 in the hypothalamo-pituitary system. Neurosci. Lett. 553, 104–109 (2013).Article
Liu,F.,Placzek,M。&Xu,H。经典形态发生素Shh和BMP7在下丘脑-垂体系统中的轴突导向作用。神经科学。利特。553104-109(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Makarenko, I. G. DiI tracing of the hypothalamic projection systems during perinatal development. Front. Neuroanat. 8, 144 (2014).Article
Makarenko,I.G。围产期发育期间下丘脑投射系统的DiI追踪。正面。神经解剖学。8144(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jais, A. & Brüning, J. C. Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 (2022).Article
Jais,A。&Brüning,J.C。弓形核依赖性调节肥胖和糖尿病的代谢途径。内分泌。第43314–328版(2022年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gervais, M., Labouèbe, G., Picard, A., Thorens, B. & Croizier, S. EphrinB1 modulates glutamatergic inputs into POMC-expressing progenitors and controls glucose homeostasis. PLoS Biol. 18, e3000680 (2020).Article
Gervais,M.,Labouèbe,G.,Picard,A.,Thorens,B。&Croizier,S。EphrinB1调节谷氨酸能输入到表达POMC的祖细胞中并控制葡萄糖稳态。《公共科学图书馆·生物学》。18,e3000680(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bouret, S. G., Draper, S. J. & Simerly, R. B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24, 2797–2805 (2004).Article
Bouret,S.G.,Draper,S.J。&Simerly,R.B。从下丘脑弓状核到下丘脑区域的投射通路的形成,涉及小鼠进食行为的神经控制。J、 神经科学。242797-2805(2004)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van der Klaauw, A. A. et al. Human semaphorin 3 variants link melanocortin circuit development and energy balance. Cell 176, 729–742.e18 (2019).Article
van der Klaauw,A.A.等人。人类信号素3变体将黑皮质素电路的发展和能量平衡联系起来。细胞176729-742.e18(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Coupé, B. et al. Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab. 15, 247–255 (2012).Article
Coupé,B。等人。促黑素皮质激素神经元中自噬的丧失会干扰轴突的生长并导致代谢失调。细胞代谢。15247-255(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, C. H. et al. Primary cilia mediate early life programming of adiposity through lysosomal regulation in the developing mouse hypothalamus. Nat. Commun. 11, 5772 (2020).Article
Lee,C.H.等人。初级纤毛通过发育中的小鼠下丘脑中的溶酶体调节介导肥胖的早期生活编程。国家公社。115772(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Swithers, S. E. Do metabolic signals stimulate intake in rat pups? Physiol. Behav. 79, 71–78 (2003).Article
Swithers,S.E。代谢信号是否刺激幼鼠的摄入?生理学。行为。79,71-78(2003)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Steculorum, S. M. & Bouret, S. G. Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 152, 4171–4179 (2011).Article
Steculorum,S.M.&Bouret,S.G.母亲糖尿病损害了下丘脑喂养回路的组织并损害了后代的瘦素敏感性。内分泌学1524171-4179(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bouret, S. G., Bates, S. H., Chen, S., Myers, M. G. Jr & Simerly, R. B. Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits. J. Neurosci. 32, 1244–1252 (2012).Article
Bouret,S.G.,Bates,S.H.,Chen,S.,Myers,M.G.Jr&Simerly,R.B。特定瘦素受体信号在下丘脑进食回路发育中的不同作用。J、 神经科学。321244-1252(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kamitakahara, A., Bouyer, K., Wang, C.-H. & Simerly, R. A critical period for the trophic actions of leptin on AgRP neurons in the arcuate nucleus of the hypothalamus. J. Comp. Neurol. 526, 133–145 (2018).Article
Kamitakahara,A.,Bouyer,K.,Wang,C.-H。&Simerly,R。瘦素对下丘脑弓状核AgRP神经元营养作用的关键时期。J、 公司。神经病学。526133-145(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mirzadeh, Z. et al. Perineuronal net formation during the critical period for neuronal maturation in the hypothalamic arcuate nucleus. Nat. Metab. 1, 212–221 (2019).Article
Mirzadeh,Z.等人。下丘脑弓状核神经元成熟关键时期的神经周围网形成。自然代谢。1212-221(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nilsson, I., Johansen, J. E., Schalling, M., Hökfelt, T. & Fetissov, S. O. Maturation of the hypothalamic arcuate agouti-related protein system during postnatal development in the mouse. Brain Res. Dev. Brain Res. 155, 147–154 (2005).Article
Nilsson,I.,Johansen,J.E.,Schalling,M.,Hökfelt,T。&Fetissov,S.O。小鼠出生后发育过程中下丘脑弓形刺豚相关蛋白系统的成熟。Brain Res.Dev.Brain Res.155147–154(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).Article
Bouret,S.G.,Draper,S.J。&Simerly,R.B。瘦素对调节摄食的下丘脑神经元的营养作用。科学304108-110(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Freeman, G. M. et al. GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron 78, 799–806 (2013).Article
Freeman,G.M。等人。GABA网络破坏了昼夜节律起搏器中的遗传振荡。神经元78799-806(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fan, J. et al. Vasoactive intestinal polypeptide (VIP)-expressing neurons in the suprachiasmatic nucleus provide sparse GABAergic outputs to local neurons with circadian regulation occurring distal to the opening of postsynaptic GABAA ionotropic receptors. J. Neurosci. 35, 1905–1920 (2015).Article .
Fan,J。等人。视交叉上核中表达血管活性肠多肽(VIP)的神经元为局部神经元提供稀疏的GABA能输出,其昼夜节律调节发生在突触后GABAA离子型受体开放的远端。J、 神经科学。351905-1920(2015)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shao, Y.-Q., Fan, L., Wu, W.-Y., Zhu, Y.-J. & Xu, H.-T. A developmental switch between electrical and neuropeptide communication in the ventromedial hypothalamus. Curr. Biol. 32, 3137–3145.e3 (2022).Article
Shao,Y.-Q.,Fan,L.,Wu,W.-Y.,Zhu,Y.-J.&Xu,H.-T。腹内侧下丘脑中电和神经肽通讯之间的发育转换。货币。生物学323137-3145.e3(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Burdakov, D. & Karnani, M. M. Ultra-sparse connectivity within the lateral hypothalamus. Curr. Biol. 30, 4063–4070.e2 (2020).Article
Burdakov,D。&Karnani,M.M。下丘脑外侧的超稀疏连接。货币。生物学304063-4070.e2(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Newton, A. J. et al. AgRP innervation onto POMC neurons increases with age and is accelerated with chronic high-fat feeding in male mice. Endocrinology 154, 172–183 (2013).Article
Newton,A.J.等人,POMC神经元上的AgRP神经支配随着年龄的增长而增加,并且随着雄性小鼠的慢性高脂肪喂养而加速。内分泌学154172-183(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Baquero, A. F. et al. Developmental changes in synaptic distribution in arcuate nucleus neurons. J. Neurosci. 35, 8558–8569 (2015).Article
Baquero,A.F.等人。弓状核神经元突触分布的发育变化。J、 神经科学。358558-8569(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, C. F. et al. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909 (2013).Article
Yang,C.F。等人。下丘脑腹内侧的性二态神经元控制着两性的交配和雄性的攻击。细胞153896-909(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krause, W. C. et al. Oestrogen engages brain MC4R signalling to drive physical activity in female mice. Nature 599, 131–135 (2021).Article
Krause,W.C。等人,雌激素参与大脑MC4R信号传导以驱动雌性小鼠的身体活动。自然599131-135(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, M., Kim, D.-W., Zeng, H. & Anderson, D. J. Make war not love: the neural substrate underlying a state-dependent switch in female social behavior. Neuron 110, 841–856.e6 (2022).Article
。神经元110841–856.e6(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McCarthy, M. M. et al. The epigenetics of sex differences in the brain. J. Neurosci. 29, 12815–12823 (2009).Article
。J、 神经科学。2912815-12823(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bell, M. R. Comparing postnatal development of gonadal hormones and associated social behaviors in rats, mice, and humans. Endocrinology 159, 2596–2613 (2018).Article
Bell,M.R。比较了大鼠,小鼠和人类性腺激素的出生后发育和相关的社会行为。内分泌学1592596-2613(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Immenschuh, J. et al. Sex differences in distribution and identity of aromatase gene expressing cells in the young adult rat brain. Biol. Sex. Differ. 14, 54 (2023).Article
Immenschhu,J.等人。年轻成年大鼠脑中芳香化酶基因表达细胞分布和身份的性别差异。生物性别。不同。14,54(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shah, N. M. et al. Visualizing sexual dimorphism in the brain. Neuron 43, 313–319 (2004).Article
Shah,N.M.等人,《大脑两性异形的可视化》。神经元43313-319(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Knoedler, J. R. et al. A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior. Cell 185, 654–671.e22 (2024).Article
Knoedler,J.R.等人。性别和发情周期依赖性基因表达和行为的功能细胞框架。细胞185654-671.e22(2024)。文章
Google Scholar
谷歌学者
Gegenhuber, B., Wu, M. V., Bronstein, R. & Tollkuhn, J. Gene regulation by gonadal hormone receptors underlies brain sex differences. Nature 606, 153–159 (2022).Article
Gegenhuber,B.,Wu,M.V.,Bronstein,R。&Tollkuhn,J。性腺激素受体的基因调控是大脑性别差异的基础。自然606153-159(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Griffin, G. D. & Flanagan-Cato, L. M. Ovarian hormone action in the hypothalamic ventromedial nucleus: remodelling to regulate reproduction. J. Neuroendocrinol. 23, 465–471 (2011).Article
Griffin,G.D。和Flanagan Cato,L.M。下丘脑腹内侧核中的卵巢激素作用:重塑以调节生殖。J、 神经内分泌。23465-471(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cabrera Zapata, L. E., Bollo, M. & Cambiasso, M. J. Estradiol-mediated axogenesis of hypothalamic neurons requires ERK1/2 and ryanodine receptors-dependent intracellular ca rise in male rats. Front. Cell. Neurosci. 13, 122 (2019).Article
Cabrera-Zapata,L.E.,Bollo,M。&Cambiasso,M.J。雌二醇介导的下丘脑神经元轴突发生需要雄性大鼠ERK1/2和ryanodine受体依赖性细胞内钙升高。正面。细胞。神经科学。13122(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cisternas, C. D. et al. Estradiol-dependent axogenesis and Ngn3 expression are determined by XY sex chromosome complement in hypothalamic neurons. Sci. Rep. 10, 8223 (2020).Article
Cisternas,C.D。等人。雌二醇依赖性轴突发生和Ngn3表达由下丘脑神经元中的XY性染色体补体决定。科学。代表108223(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tekendo-Ngongang, C., Muenke, M. & Kruszka, P. in GeneReviews® (eds Adam, M. P. et al.) https://www.ncbi.nlm.nih.gov/books/NBK1530/ (Univ. Washington, Seattle, 2000).Diaz, C. & Puelles, L. Developmental genes and malformations in the hypothalamus. Front. Neuroanat. 14, 607111 (2020).Article .
Tekendo Ngongang,C.,Muenke,M。和Kruszka,P。在GeneReviews®(编辑Adam,M.P。等人)https://www.ncbi.nlm.nih.gov/books/NBK1530/(华盛顿大学,西雅图,2000年)。Diaz,C。&Puelles,L。下丘脑的发育基因和畸形。正面。神经解剖学。14607111(2020)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Angulo, M. A., Butler, M. G. & Cataletto, M. E. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J. Endocrinol. Invest. 38, 1249–1263 (2015).Article
。J、 内分泌。投资。381249-1263(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Maillard, J. et al. Loss of Magel2 impairs the development of hypothalamic anorexigenic circuits. Hum. Mol. Genet. 25, 3208–3215 (2016).Article
Maillard,J。等人。Magel2的缺失会损害下丘脑厌食回路的发育。嗯,摩尔·吉内特。253208-3215(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mercer, R. E. et al. Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice. PLoS Genet. 9, e1003207 (2013).Article
Mercer,R.E。等人。小鼠下丘脑弓状核中瘦素介导的POMC神经元去极化需要Magel2。PLoS Genet。9,e1003207(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Anthwal, N. et al. Conditional deletion of neurogenin-3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity. Dis. Model. Mech. 6, 1133–1145 (2013).PubMed
Anthwal,N。等人。使用Nkx2.1iCre条件性删除neurogenin-3会产生一个小鼠模型,用于集中控制喂养,活动和肥胖。Dis。型号。机械。61133-1145(2013)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moir, L. et al. Disruption of the homeodomain transcription factor orthopedia homeobox (Otp) is associated with obesity and anxiety. Mol. Metab. 6, 1419–1428 (2017).Article
Moir,L。等人。同源域转录因子orthopedia同源框(Otp)的破坏与肥胖和焦虑有关。分子代谢。61419-1428(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Farooqi, I. S. Monogenic obesity syndromes provide insights into the hypothalamic regulation of appetite and associated behaviors. Biol. Psychiatry 91, 856–859 (2022).Article
Farooqi,I.S。单基因肥胖综合征提供了对食欲和相关行为的下丘脑调节的见解。生物学精神病学91856-859(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Loos, R. J. F. & Yeo, G. S. H. The genetics of obesity: from discovery to biology. Nat. Rev. Genet. 23, 120–133 (2022).Article
Loos,R.J.F.&Yeo,G.S.H。肥胖的遗传学:从发现到生物学。Genet自然Rev。23120-133(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Loid, P. et al. Rare variants in genes linked to appetite control and hypothalamic development in early-onset severe obesity. Front. Endocrinol. 11, 81 (2020).Article
Loid,P.等人。早发性严重肥胖症中与食欲控制和下丘脑发育相关的基因中的罕见变异。正面。。11,81(2020)。文章
Google Scholar
谷歌学者
Shugart, Y. Y. et al. Two British women studies replicated the association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) and BMI. Eur. J. Hum. Genet. 17, 1050–1055 (2009).Article
Shugart,Y。Y。等人。两项英国女性研究复制了脑源性神经营养因子(BDNF)中Val66Met多态性与BMI之间的关联。Eur。J。Hum。Genet。171050-1055(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brewer, K. M., Brewer, K. K., Richardson, N. C. & Berbari, N. F. Neuronal cilia in energy homeostasis. Front. Cell Dev. Biol. 10, 1082141 (2022).Article
。正面。细胞开发生物学。101082141(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guo, D.-F. et al. The BBSome in POMC and AgRP neurons is necessary for body weight regulation and sorting of metabolic receptors. Diabetes 68, 1591–1603 (2019).Article
Guo,D.-F.等人。POMC和AgRP神经元中的BBSome对于体重调节和代谢受体的分选是必需的。糖尿病681591-1603(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guo, D.-F. et al. The BBSome controls energy homeostasis by mediating the transport of the leptin receptor to the plasma membrane. PLoS Genet. 12, e1005890 (2016).Article
Guo,D.-F.等人。BBSome通过介导瘦素受体向质膜的转运来控制能量稳态。PLoS Genet。12,e1005890(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Woo Baidal, J. A. et al. Risk factors for childhood obesity in the first 1,000 days: a systematic review. Am. J. Prev. Med. 50, 761–779 (2016).Article
Woo Baidal,J.A.等人,《前1000天儿童肥胖的危险因素:系统综述》。Am.J.前。医学杂志50761-779(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Larqué, E. et al. From conception to infancy - early risk factors for childhood obesity. Nat. Rev. Endocrinol. 15, 456–478 (2019).Article
Larqué,E.等人,《从受孕到婴儿期-儿童肥胖的早期危险因素》。《国家内分泌杂志》。15456-478(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Furigo, I. C. & Dearden, L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front. Endocrinol. 13, 1078955 (2022).Article
Furigo,I.C.&Dearden,L。调节母亲肥胖对后代下丘脑发育和后期功能影响的机制。正面。。131078955(2022)。文章
Google Scholar
谷歌学者
Lemes, S. F. et al. Maternal consumption of high-fat diet in mice alters hypothalamic notch pathway, NPY cell population and food intake in offspring. Neuroscience 371, 1–15 (2018).Article
Lemes,S.F.等人,《小鼠高脂饮食的母体消耗会改变后代的下丘脑notch通路,NPY细胞群和食物摄入量》。神经科学371,1-15(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dearden, L., Buller, S., Furigo, I. C., Fernandez-Twinn, D. S. & Ozanne, S. E. Maternal obesity causes fetal hypothalamic insulin resistance and disrupts development of hypothalamic feeding pathways. Mol. Metab. 42, 101079 (2020).Article
Dearden,L.,Buller,S.,Furigo,I.C.,Fernandez-Twinn,D.S。&Ozanne,S.E。母亲肥胖会导致胎儿下丘脑胰岛素抵抗并破坏下丘脑喂养途径的发展。分子代谢。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bae-Gartz, I. et al. Maternal obesity alters neurotrophin-associated MAPK signaling in the hypothalamus of male mouse offspring. Front. Neurosci. 13, 962 (2019).Article
。神经科学。13962(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gali Ramamoorthy, T., Begum, G., Harno, E. & White, A. Developmental programming of hypothalamic neuronal circuits: impact on energy balance control. Front. Neurosci. 9, 126 (2015).Article
Gali Ramamoorthy,T.,Begum,G.,Harno,E。&White,A。下丘脑神经元回路的发育编程:对能量平衡控制的影响。正面。神经科学。9126(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Catalano, P. M., Presley, L., Minium, J. & Hauguel-de Mouzon, S. Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 32, 1076–1080 (2009).Article
Catalano,P.M.,Presley,L.,Minium,J。&Hauguel de Mouzon,S。肥胖母亲的胎儿在子宫内产生胰岛素抵抗。糖尿病护理321076-1080(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chandrasekaran, S. et al. Exposure to gestational diabetes mellitus prior to 26 weeks is related to the presence of mediobasal hypothalamic gliosis in children. Diabetes 71, 2552–2556 (2022).Article
Chandrasekaran,S。等人。在26周之前暴露于妊娠期糖尿病与儿童中基底下丘脑神经胶质增生有关。糖尿病712552-2556(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wataya, T. et al. Minimization of exogenous signals in ES cell culture induces rostral hypothalamic differentiation. Proc. Natl Acad. Sci. USA 105, 11796–11801 (2008).Article
。程序。国家科学院。科学。美国10511796-11801(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, L. et al. Differentiation of hypothalamic-like neurons from human pluripotent stem cells. J. Clin. Invest. 125, 796–808 (2015).Article
Wang,L.等人。从人多能干细胞分化下丘脑样神经元。J、 临床。投资。125796-808(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, L. et al. PC1/3 deficiency impacts pro-opiomelanocortin processing in human embryonic stem cell-derived hypothalamic neurons. Stem Cell Reports 8, 264–277 (2017).Article
Wang,L。等人。PC1/3缺乏会影响人胚胎干细胞衍生的下丘脑神经元中阿片黑皮质素的加工。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Merkle, F. T. et al. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 142, 633–643 (2015).Article
Merkle,F.T.等人。从人多能干细胞产生神经肽能下丘脑神经元。发展142633-643(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kano, M. et al. Tanycyte-like cells derived from mouse embryonic stem culture show hypothalamic neural stem/progenitor cell functions. Endocrinology 160, 1701–1718 (2019).Article
来自小鼠胚胎干细胞培养物的Tanycyte样细胞显示下丘脑神经干/祖细胞功能。内分泌学1601701-1718(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Miwata, T. et al. Generation of hypothalamic neural stem cell-like cells in vitro from human pluripotent stem cells. Stem Cell Reports 18, 869–883 (2023).Article
Miwata,T。等人。从人多能干细胞体外产生下丘脑神经干细胞样细胞。干细胞报告18869-883(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kasai, T. et al. Hypothalamic contribution to pituitary functions is recapitulated in vitro using 3D-cultured human iPS cells. Cell Rep. 30, 18–24.e5 (2020).Article
Kasai,T。等人。使用3D培养的人iPS细胞在体外概括了下丘脑对垂体功能的贡献。Cell Rep.30,18–24.e5(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rajamani, U. et al. Super-obese patient-derived iPSc hypothalamic neurons exhibit obesogenic signatures and hormone responses. Cell Stem Cell 22, 698–712.e9 (2018).Article
Rajamani,U。等人。超肥胖患者来源的iPSc下丘脑神经元表现出肥胖特征和激素反应。细胞干细胞22698-712.e9(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, W.-K. et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 28, 1657–1670.e10 (2021).Article
Huang,W.-K.等人。从人诱导的多能干细胞产生下丘脑弓形类器官。细胞干细胞281657–1670.e10(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kowalko, J. Utilizing the blind cavefish to understand the genetic basis of behavioral evolution. J. Exp. Biol. 223, jeb208835 (2020).Article
Kowalko,J。利用盲洞穴鱼来了解行为进化的遗传基础。J、 实验生物。223,jeb208835(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kashash, Y., Smarsh, G., Zilkha, N., Yovel, Y. & Kimchi, T. Alone, in the dark: the extraordinary neuroethology of the solitary blind mole rat. eLife 11, e78295 (2022).Article
Kashash,Y.,Smarsh,G.,Zilkha,N.,Yovel,Y。&Kimchi,T。独自在黑暗中:孤独盲鼹鼠的非凡神经行为学。eLife 11,e78295(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by the Wellcome Trust (212247/Z/18/Z) to M.P., the NIH (R01MH126676) to S.B. and the Lundbeckfonden grant (R361-2020-2654) to D.W.K.Author informationAuthors and AffiliationsSchool of Biosciences, University of Sheffield, Sheffield, UKMarysia Placzek & Kavitha ChinnaiyaBateson Centre, University of Sheffield, Sheffield, UKMarysia PlaczekNeuroscience Institute, University of Sheffield, Sheffield, UKMarysia PlaczekDanish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, DenmarkDong Won KimDepartment of Biomedicine, Aarhus University, Aarhus, DenmarkDong Won KimSolomon H.
。
Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USASeth BlackshawDepartment of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USASeth BlackshawDepartment of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USASeth BlackshawInstitute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USASeth BlackshawKavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USASeth BlackshawAuthorsMarysia PlaczekView author publicationsYou can also search for this author in.
约翰·霍普金斯大学医学院神经科学系,马里兰州巴尔的摩,USASeth Blackshaw,约翰·霍普金斯大学医学院眼科,巴尔的摩,马里兰州,USASeth Blackshaw,约翰·霍普金斯大学医学院神经病学系,巴尔的摩,马里兰州,USASeth BlackshawInstitute for Cell Engineering,约翰·霍普金斯大学医学院,巴尔的摩,马里兰州,USASeth BlackshawKavli Neuroscience Discovery Institute,约翰·霍普金斯大学医学院,巴尔的摩,USASeth BlackshawAuthorsMarysia PlaczekView author Publications你也可以在中搜索这位作者。(笑声)。
PubMed Google ScholarKavitha ChinnaiyaView author publicationsYou can also search for this author in
PubMed Google ScholarKavitha ChinnaiyaView作者出版物您也可以在
PubMed Google ScholarDong Won KimView author publicationsYou can also search for this author in
PubMed Google ScholarDong Won KimView作者出版物您也可以在
PubMed Google ScholarSeth BlackshawView author publicationsYou can also search for this author in
PubMed Google ScholarSeth BlackshawView作者出版物您也可以在
PubMed Google ScholarContributionsAll authors contributed to all aspects of the preparation of this manuscript.Corresponding authorsCorrespondence to
PubMed谷歌学术贡献所有作者都为这份手稿的准备工作做出了贡献。通讯作者通讯
Marysia Placzek or Seth Blackshaw.Ethics declarations
玛丽西亚哭泣或赛斯·布莱克肖。伦理声明
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Reviews Endocrinology thanks Karine Rizzoti, Julie Chowen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然评论》内分泌学感谢Karine Rizzoti,Julie Chowen和另一位匿名审稿人对这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsReprints and permissionsAbout this articleCite this articlePlaczek, M., Chinnaiya, K., Kim, D.W. et al. Control of tuberal hypothalamic development and its implications in metabolic disorders..
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权利和许可打印和许可本文引用本文Placzek,M.,Chinnaiya,K.,Kim,D.W.等人控制下丘脑结节发育及其对代谢紊乱的影响。。
Nat Rev Endocrinol (2024). https://doi.org/10.1038/s41574-024-01036-1Download citationAccepted: 29 August 2024Published: 23 September 2024DOI: https://doi.org/10.1038/s41574-024-01036-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Rev Endocrinol(2024)。https://doi.org/10.1038/s41574-024-01036-1Download引文接受日期:2024年8月29日发布日期:2024年9月23日OI:https://doi.org/10.1038/s41574-024-01036-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供