商务合作
动脉网APP
可切换为仅中文
AbstractStudying the genetic regulation of protein expression (through protein quantitative trait loci (pQTLs)) offers a deeper understanding of regulatory variants uncharacterized by mRNA expression regulation (expression QTLs (eQTLs)) studies. Here we report cis-eQTL and cis-pQTL statistical fine-mapping from 1,405 genotyped samples with blood mRNA and 2,932 plasma samples of protein expression, as part of the Japan COVID-19 Task Force (JCTF).
。在这里,作为日本新型冠状病毒肺炎工作组(JCTF)的一部分,我们报告了来自1405个具有血液mRNA的基因分型样品和2932个蛋白质表达的血浆样品的顺式eQTL和顺式pQTL统计精细定位。
Fine-mapped eQTLs (n = 3,464) were enriched for 932 variants validated with a massively parallel reporter assay. Fine-mapped pQTLs (n = 582) were enriched for missense variations on structured and extracellular domains, although the possibility of epitope-binding artifacts remains. Trans-eQTL and trans-pQTL analysis highlighted associations of class I HLA allele variation with KIR genes.
精细定位的eQTL(n=3464)富集了932个变体,并通过大规模平行报告基因检测进行了验证。精细定位的pQTL(n=582)富含结构化和细胞外结构域的错义变异,尽管表位结合伪影的可能性仍然存在。反式eQTL和反式pQTL分析突出了I类HLA等位基因变异与KIR基因的关联。
We contrast the multi-tissue origin of plasma protein with blood mRNA, contributing to the limited colocalization level, distinct regulatory mechanisms and trait relevance of eQTLs and pQTLs. We report a negative correlation between ABO mRNA and protein expression because of linkage disequilibrium between distinct nearby eQTLs and pQTLs..
我们将血浆蛋白的多组织起源与血液mRNA进行了对比,这有助于有限的共定位水平,不同的调控机制以及eQTL和pQTL的性状相关性。我们报告了ABO mRNA和蛋白质表达之间的负相关,因为不同的附近eQTL和pQTL之间存在连锁不平衡。。
MainStudies of genetic regulation of mRNA expression (expression quantitative trait locus (eQTL) studies) is highly informative in interpreting associations between genetic variation and human diseases1,2. However, mRNA expression is a limited proxy of protein expression, which affects human phenotypes in a more direct manner3,4,5.Analysis of genetic regulation of protein expressions (protein QTL (pQTL) studies) is gaining popularity6,7,8,9,10,11, owing to the development of high-throughput affinity-based assays that enable one-shot measurements of thousands of proteins in large-scale biobank cohorts.
mRNA表达遗传调控的主要研究(表达数量性状基因座(eQTL)研究)在解释遗传变异与人类疾病之间的关联方面具有很高的信息量1,2。然而,mRNA表达是蛋白质表达的有限代表,它以更直接的方式影响人类表型3,4,5。蛋白质表达的遗传调控分析(蛋白质QTL(pQTL)研究)正在获得普及6,7,8,9,10,11,这是由于开发了基于高通量亲和力的检测方法,可以在大规模生物库队列中一次性测量数千种蛋白质。
Sun et al.7 performed a pQTL study in 3,301 samples on 3,622 plasma proteins measured using SOMAscan and identified nearly 2,000 pQTLs. Zhang et al.8 performed large-scale pQTL fine-mapping in European and African populations and discussed druggability. The UK Biobank (UKB) Pharma Proteomics Project (PPP) has performed pQTL mapping in more than 50,000 samples12,13,14, uncovering common and rare variant contributions to variation in protein expression that do not necessarily involve the effect of eQTLs in major tissues.Complementing such studies, having another layer of diversity by studying East Asian (EAS) populations would be promising because multi-cohort genetic and proteomic studies have been effective in identifying drug targets15,16,17,18.
Sun等[7]对3301个样本进行了pQTL研究,使用SOMAscan测量了3622个血浆蛋白,并鉴定了近2000个pQTL。Zhang等[8]在欧洲和非洲人群中进行了大规模pQTL精细定位,并讨论了可药用性。英国生物银行(UKB)制药蛋白质组学项目(PPP)已经在超过50000个样本中进行了pQTL作图12,13,14,揭示了蛋白质表达变异的常见和罕见变异贡献,这些变异不一定涉及eQTL在主要组织中的作用。作为这些研究的补充,通过研究东亚(EAS)人群获得另一层多样性将是有希望的,因为多队列遗传和蛋白质组学研究已经有效地鉴定了药物靶标15,16,17,18。
In addition, instead of using an external eQTL dataset to examine colocalization between eQTLs and pQTLs, building on earlier studies with multimodal measurements of mRNA and protein expression in the same sample set19 in this era of large-scale proteomics would be effective in identifying disease-causing variants in multiple layers as it minimizes the potential loss of discovery power due to differences in technical and clinical .
此外,在这个大规模蛋白质组学时代,建立在早期研究的基础上,对同一样本集中的mRNA和蛋白质表达进行多模式测量19,而不是使用外部eQTL数据集来检查eQTL和pQTL之间的共定位,这将有效地识别多层致病变异,因为它可以最大程度地减少由于技术和临床差异而导致的发现能力的潜在损失。
Data availability
数据可用性
The summary statistics of the QTL analyses and the RNA-seq expression matrix are available at the NBDC Human Database (accession no. hum0343). The QTL summary statistics are also available at https://japan-omics.jp/. Individual genotype data are available at the European Genome-phenome Archive (accession no.
QTL分析和RNA-seq表达矩阵的汇总统计数据可在NBDC人类数据库(登录号hum0343)中获得。QTL摘要统计数据也可在https://japan-omics.jp/.个体基因型数据可在欧洲基因组-表型档案馆(登录号:。
EGAS00001006284). Publicly available datasets used are: BBJ and UKB fine-mapping; NBDC Human Database (accession no. hum0197) and https://www.finucanelab.org/data; the expression modifier score (https://www.finucanelab.org/data); the GTEx cis-eQTL data (https://gtexportal.org/home/datasets); the hg38 reference genome (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/); protein-specific annotations from UniProt, obtained through the UCSC Genome Browser (https://genome.ucsc.edu/cgi-bin/hgTables); protein QTL data from the ARIC study (http://nilanjanchatterjeelab.org/pwas/); and protein QTL data from the UKB PPP study (https://www.synapse.org/#!Synapse:syn51365301)..
EGAS0001006284)。;NBDC人类数据库(登录号hum0197)和https://www.finucanelab.org/data;表达式修饰符得分(https://www.finucanelab.org/data);GTEx顺式eQTL数据(https://gtexportal.org/home/datasets);hg38参考基因组(https://hgdownload.soe.ucsc.edu/goldenPath/hg38/);UniProt的蛋白质特异性注释,通过UCSC基因组浏览器获得(https://genome.ucsc.edu/cgi-bin/hgTables);来自ARIC研究的蛋白质QTL数据(http://nilanjanchatterjeelab.org/pwas/);和来自UKB PPP研究的蛋白质QTL数据(https://www.synapse.org/#哦!突触:syn51365301)。。
Code availability
代码可用性
The code used in this study is available at https://github.com/QingboWang/japan_covid_taskforce_multi_omics and has been deposited via Zenodo at https://doi.org/10.5281/zenodo.11169201 (ref. 69). The software and tools used for data analysis and visualization are: DEEP*HLA v.1.0.0 (https://zenodo.org/record/4478902)70; fastQTL v.2.165 (http://fastqtl.sourceforge.net); FINEMAP v.1.3.1 (http://www.christianbenner.com/); GATK v.4.1.9.0 LiftoverVcf (https://gatk.broadinstitute.org/); the GTEx pipeline (https://github.com/broadinstitute/gtex-pipeline); LeafCutter v.0.2.7 (https://davidaknowles.github.io/leafcutter/index.html); matplotlib v.3.3.4 (https://matplotlib.org); MPRAflow v.2.3.5 (https://mpraflow.readthedocs.io/en/latest/index.html); NumPy v.1.20.1 (https://numpy.org); OlinkAnalyze v.3.4.1 (https://cran.r-project.org/web/packages/OlinkAnalyze/index.html); pandas v.1.1.4 (https://pandas.pydata.org); pybedtools v.0.9.0 (https://daler.github.io/pybedtools/); PyWGCNA v.1.20.3 (https://github.com/mortazavilab/PyWGCNA); RSEM v.1.3.0 (https://deweylab.github.io/RSEM/); scikit-learn v.0.24.1 (https://scikit-learn.github.io/stable); SciPy v.1.6.2 (https://scipy.org/); seaborn v.0.11.1 (https://seaborn.pydata.org); STAR v.2.5.3a and v.2.6.0 (https://github.com/alexdobin/STAR); susieR v.0.11.43 (https://github.com/stephenslab/susieR); tensorQTL v.1.0.5 (https://github.com/broadinstitute/tensorqtl); TwoSampleMR v.0.5.7 (https://mrcieu.github.io/TwoSampleMR/articles/introduction.html); and VEP v.108 (https://asia.ensembl.org/Homo_sapiens/Tools/VEP/)..
这项研究中使用的代码可以在https://github.com/QingboWang/japan_covid_taskforce_multi_omics并已通过Zenodo存放在https://doi.org/10.5281/zenodo.11169201(参考文献69)。用于数据分析和可视化的软件和工具是:DEEP*HLA v.1.0.0(https://zenodo.org/record/4478902)70;fastQTL v.2.165(http://fastqtl.sourceforge.net);FINEMAP v.1.3.1(http://www.christianbenner.com/);GATK v.4.1.9.0提升超过VCF(https://gatk.broadinstitute.org/);GTEx管道(https://github.com/broadinstitute/gtex-pipeline);(https://davidaknowles.github.io/leafcutter/index.html);matplotlib v.3.3.4(https://matplotlib.org);MPRAflow v.2.3.5(https://mpraflow.readthedocs.io/en/latest/index.html);NumPy v.1.20.1(https://numpy.org);OlinkAnalyze v.3.4.1(https://cran.r-project.org/web/packages/OlinkAnalyze/index.html);熊猫v.1.1.4(https://pandas.pydata.org);pybedtools v.0.9.0(https://daler.github.io/pybedtools/);PyWGCNA v.1.20.3(https://github.com/mortazavilab/PyWGCNA);RSEM v.1.3.0(https://deweylab.github.io/RSEM/);scikit学习v.0.24.1(https://scikit-learn.github.io/stable);SciPy v.1.6.2(https://scipy.org/);seaborn v.0.11.1(https://seaborn.pydata.org);STAR v.2.5.3a和v.2.6.0(https://github.com/alexdobin/STAR);苏西尔v.0.11.43(https://github.com/stephenslab/susieR);tensorQTL v.1.0.5(https://github.com/broadinstitute/tensorqtl);两个样本MR v.0.5.7(https://mrcieu.github.io/TwoSampleMR/articles/introduction.html);和VEP v.108(https://asia.ensembl.org/Homo_sapiens/Tools/VEP/)。。
ReferencesAguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).Article
参考文献Aguet,F。等人。遗传对人体组织中基因表达的影响。《自然》550204-213(2017)。文章
Google Scholar
谷歌学者
Aguet, F. et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).Article
Aguet,F。等人,《GTEx联盟人类组织遗传调控效应图谱》。科学3691318-1330(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).Article
Liu,Y.,Beyer,A。&Aebersold,R。关于细胞蛋白质水平对mRNA丰度的依赖性。细胞165535-550(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).Article
Buccitelli,C。&Selbach,M。mRNA,蛋白质和新兴的基因表达控制原理。Genet自然Rev。21630-644(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Umans, B. D., Battle, A. & Gilad, Y. Where are the disease-associated eQTLs? Trends Genet. 37, 109–124 (2021).Article
Umans,B.D.,Battle,A。&Gilad,Y。与疾病相关的eQTL在哪里?趋势Genet。37109-124(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pietzner, M. et al. Mapping the proteo-genomic convergence of human diseases. Science 374, eabj1541 (2021).Article
Pietzner,M.等人。绘制人类疾病的蛋白质基因组融合图。科学374,eabj1541(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).Article
Sun,B.B.等人,《人血浆蛋白质组基因组图谱》。自然558,73-79(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, J. et al. Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. Nat. Genet. 54, 593–602 (2022).Article
Zhang,J.等人。欧洲和非洲血统个体的血浆蛋白质组分析确定了顺式PQTL和蛋白质组关联研究的模型。纳特·吉内特。54593-602(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Koprulu, M. et al. Proteogenomic links to human metabolic diseases. Nat. Metab. 5, 516–528 (2023).Article
Koprulu,M。等人。蛋白质基因组学与人类代谢疾病的联系。自然代谢。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brown, A. A. et al. Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits. Nat. Commun. 14, 5062 (2023).Article
血液分子表型的遗传分析揭示了影响复杂性状的调控网络中的共同特性。国家公社。145062(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, J. H. et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat. Immunol. 24, 1540–1551 (2023).Article
赵,J。H。等人。循环炎症蛋白的遗传学确定了免疫介导的疾病风险和治疗靶点的驱动因素。自然免疫。241540-1551(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).Article
Sun,B.B.等人,《英国生物库中血浆蛋白质组学与遗传学和健康的关系》。自然622329-338(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dhindsa, R. S. et al. Rare variant associations with plasma protein levels in the UK Biobank. Nature 622, 339–347 (2023).Article
Dhindsa,R.S.等人。英国生物库中血浆蛋白水平的罕见变异关联。自然622339-347(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Eldjarn, G. H. et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 622, 348–358 (2023).Article
Eldjarn,G.H.等人。通过遗传学和疾病关联进行大规模血浆蛋白质组学比较。自然622348-358(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, F. et al. Genome-wide genotype-serum proteome mapping provides insights into the cross-ancestry differences in cardiometabolic disease susceptibility. Nat. Commun. 14, 896 (2023).Article
Xu,F。等人。全基因组基因型血清蛋白质组图谱提供了对心脏代谢疾病易感性的跨血统差异的见解。国家公社。14896(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, H. et al. Proteome-wide Mendelian randomization in global biobank meta-analysis reveals multi-ancestry drug targets for common diseases. Cell Genom. 2, 100195 (2022).Article
全球生物库荟萃分析中蛋白质组范围的孟德尔随机化揭示了常见疾病的多血统药物靶标。细胞基因组。2100 195(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Namba, S., Konuma, T., Wu, K.-H., Zhou, W. & Okada, Y. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genom. 2, 100190 (2022).Article
Namba,S.,Konuma,T.,Wu,K.-H.,Zhou,W。&Okada,Y。全球生物库荟萃分析时代基因组学驱动药物发现的实用指南。细胞基因组。2100190(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat. Metab. 2, 1135–1148 (2020).Article
Folkersen,L。等人。30931名个体中90种心血管蛋白质的基因组和药物靶标评估。自然代谢。21135-1148(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Battle, A. et al. Impact of regulatory variation from RNA to protein. Science 347, 664–667 (2015).Article
Battle,A。等人。从RNA到蛋白质的调节变异的影响。科学347664-667(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, Q. S. et al. The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force. Nat. Commun. 13, 4830 (2022).Article
Wang,Q.S.等人。来自日本COVID-19工作组的465个COVID-19感染样本的全血转录调控情况。国家公社。134830(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Namkoong, H. et al. DOCK2 is involved in the host genetics and biology of severe COVID-19. Nature 609, 754–760 (2022).Article
Namkoong,H。等人,DOCK2参与了严重COVID-19的宿主遗传学和生物学。自然609754-760(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tewhey, R. et al. Direct identification of hundreds of expression-modulating variants using a multiplexed reporter assay. Cell 165, 1519–1529 (2016).Article
Tewhey,R。等人。使用多重报告基因测定法直接鉴定数百种表达调节变体。细胞1651519-1529(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gordon, M. G. et al. lentiMPRA and MPRAflow for high-throughput functional characterization of gene regulatory elements. Nat. Protoc. 15, 2387–2412 (2020).Article
Gordon,M.G.等人。lentiMPRA和MPRAflow用于基因调控元件的高通量功能表征。自然协议。152387-2412(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pietzner, M. et al. Synergistic insights into human health from aptamer- and antibody-based proteomic profiling. Nat. Commun. 12, 6822 (2021).Article
Pietzner,M.等人。基于适体和抗体的蛋白质组学分析对人类健康的协同见解。国家公社。126822(2021年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dammer, E. B. et al. Multi-platform proteomic analysis of Alzheimer’s disease cerebrospinal fluid and plasma reveals network biomarkers associated with proteostasis and the matrisome. Alzheimers Res. Ther. 14, 174 (2022).Article
Dammer,E.B.等人。阿尔茨海默病脑脊液和血浆的多平台蛋白质组学分析揭示了与蛋白质稳态和基质相关的网络生物标志物。阿尔茨海默病研究所。14174(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Katz, D. H. et al. Proteomic profiling platforms head to head: leveraging genetics and clinical traits to compare aptamer- and antibody-based methods. Sci. Adv. 8, eabm5164 (2022).Article
Katz,D.H.等人,《蛋白质组学分析平台面对面:利用遗传学和临床特征来比较基于适体和抗体的方法》。科学。Adv.8,eabm5164(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).Article
Hormozdiari,F。等人。GWAS和eQTL信号的共定位检测靶基因。上午J。嗯。Genet。991245-1260(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schreiber, G. The synthesis and secretion of plasma proteins in the liver. Pathology 10, 394 (1978).Article
Schreiber,G。肝脏中血浆蛋白的合成和分泌。病理学10394(1978)。文章
Google Scholar
谷歌学者
Jiang, L. et al. A quantitative proteome map of the human body. Cell 183, 269–283 (2020).Article
。细胞183269-283(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
He, B., Shi, J., Wang, X., Jiang, H. & Zhu, H.-J. Genome-wide pQTL analysis of protein expression regulatory networks in the human liver. BMC Biol. 18, 97 (2020).Article
He,B.,Shi,J.,Wang,X.,Jiang,H。&Zhu,H.-J。人类肝脏中蛋白质表达调控网络的全基因组pQTL分析。BMC生物。18,97(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Toikumo, S., Xu, H., Gelernter, J., Kember, R. L. & Kranzler, H. R. Integrating human brain proteomic data with genome-wide association study findings identifies novel brain proteins in substance use traits. Neuropsychopharmacology 47, 2292–2299 (2022).Article
Toikumo,S.,Xu,H.,Gelernter,J.,Kember,R.L。&Kranzler,H.R。将人脑蛋白质组学数据与全基因组关联研究结果相结合,确定了物质使用特征中的新型脑蛋白。神经精神药理学472292-2299(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mayr, C. What are 3′ UTRs doing? Cold Spring Harb. Perspect. Biol. 11, a034728 (2019).Article
Mayr,C.3'UTR在做什么?。透视图。生物学11,a034728(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Griesemer, D. et al. Genome-wide functional screen of 3′UTR variants uncovers causal variants for human disease and evolution. Cell 184, 5247–5260 (2021).Article
Griesemer,D。等人。3'UTR变体的全基因组功能筛选揭示了人类疾病和进化的因果变异。细胞1845247-5260(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).Article
Karczewski,K.J.等人。突变约束谱从141456人的变异中量化。《自然》581434-443(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ringvall, M. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J. Biol. Chem. 275, 25926–25930 (2000).Article
Ringvall,M。等人。缺乏N-脱乙酰酶/N-磺基转移酶-1的小鼠中硫酸乙酰肝素生物合成缺陷和新生儿致死率。J、 生物。化学。27525926–25930(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Reuter, M. S. et al. NDST1 missense mutations in autosomal recessive intellectual disability. Am. J. Med. Genet. A 164, 2753–2763 (2014).Article
Reuter,M.S.等人。常染色体隐性智力障碍中的NDST1错义突变。美国医学杂志Genet。1642753-2763(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Sakaue, S. et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 53, 1415–1424 (2021).Article
Sakaue,S.等人。220种人类表型的遗传关联跨群体图谱。纳特·吉内特。531415-1424(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kanai, M. et al. Insights from complex trait fine-mapping across diverse populations. Preprint at medRxiv https://doi.org/10.1101/2021.09.03.21262975v1 (2021).Okada, Y. et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese.
Kanai,M.等人。来自不同人群复杂性状精细定位的见解。medRxiv预印本https://doi.org/10.1101/2021.09.03.21262975v1(2021年)。冈田,Y。等人。深度全基因组测序揭示了与日本人进化和疾病风险相关的最新选择特征。
Nat. Commun. 9, 1631 (2018).Article .
Nat.普通。91631(2018)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matoba, N. et al. GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat. Hum. Behav. 4, 308–316 (2020).Article
Matoba,N。等人对165084名日本人的GWAS鉴定出9个与饮食习惯相关的基因座。自然,哼,行为。4308-316(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tomofuji, Y. et al. Prokaryotic and viral genomes recovered from 787 Japanese gut metagenomes revealed microbial features linked to diets, populations, and diseases. Cell Genom. 2, 100219 (2022).Article
从787个日本肠道宏基因组中回收的原核和病毒基因组揭示了与饮食,种群和疾病相关的微生物特征。细胞基因组。2100219(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sakaue, S. et al. Functional variants in ADH1B and ALDH2 are non-additively associated with all-cause mortality in Japanese population. Eur. J. Hum. Genet. 28, 378–382 (2020).Article
Sakaue,S。等人。ADH1B和ALDH2的功能变异与日本人群的全因死亡率无累加关系。Eur.J.Hum.Genet。28378-382(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).Article
Bycroft,C。等人。具有深度表型和基因组数据的英国生物库资源。自然562203-209(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C.-C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).Article
Yamazaki,Y.,Zhao,N.,Caulfield,T.R.,Liu,C.-C.&Bu,G。载脂蛋白E和阿尔茨海默病:病理生物学和靶向策略。神经病学杂志。15501-518(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).Article
Võsa,U。等人。大规模的顺式和反式eQTL分析确定了数千个调节血液基因表达的遗传基因座和多基因评分。纳特·吉内特。531300–1310(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fauman, E. B. & Hyde, C. An optimal variant to gene distance window derived from an empirical definition of cis and trans protein QTLs. BMC Bioinformatics 23, 169 (2022).Article
Fauman,E.B。&Hyde,C。从顺式和反式蛋白QTL的经验定义得出的最佳变异到基因距离窗口。BMC生物信息学23169(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).Article
Boyle,E.A.,Li,Y.I。&Pritchard,J.K。复杂性状的扩展观点:从多基因到全基因。细胞1691177-1186(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).Article
Ferkingstad,E.等人。血浆蛋白质组与遗传学和疾病的大规模整合。纳特·吉内特。531712-1721(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hirata, J. et al. Genetic and phenotypic landscape of the major histocompatibilty complex region in the Japanese population. Nat. Genet. 51, 470–480 (2019).Article
Hirata,J.等人。日本人群主要组织相容性复合体区域的遗传和表型景观。纳特·吉内特。51470-480(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rajagopalan, S. & Long, E. O. Understanding how combinations of HLA and KIR genes influence disease. J. Exp. Med. 201, 1025–1029 (2005).Article
Rajagopalan,S.&Long,E.O。了解HLA和KIR基因的组合如何影响疾病。J、 实验医学2011025-1029(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moradi, S. et al. Structural plasticity of KIR2DL2 and KIR2DL3 enables altered docking geometries atop HLA-C. Nat. Commun. 12, 2173 (2021).Article
Moradi,S。等人。KIR2DL2和KIR2DL3的结构可塑性使HLA-C.Nat.Commun上的对接几何形状发生改变。122173(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sakaue, S. et al. Decoding the diversity of killer immunoglobulin-like receptors by deep sequencing and a high-resolution imputation method. Cell Genom. 2, 100101 (2022).Article
Sakaue,S.等人。通过深度测序和高分辨率插补方法解码杀伤性免疫球蛋白样受体的多样性。细胞基因组。2100101(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kanai, M. et al. A second update on mapping the human genetic architecture of COVID-19. Nature 621, E7–E26 (2023).Article
Kanai,M.等人。关于绘制COVID-19人类遗传结构的第二次更新。自然621,E7–E26(2023)。文章
Google Scholar
谷歌学者
Franks, A., Airoldi, E. & Slavov, N. Post-transcriptional regulation across human tissues. PLoS Comput. Biol. 13, e1005535 (2017).Article
Franks,A.,Airoldi,E。&Slavov,N。跨人体组织的转录后调控。PLoS计算机。生物学杂志13,e1005535(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gry, M. et al. Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10, 365 (2009).Article
Gry,M.等人。23种人类细胞系中RNA和蛋白质表达谱之间的相关性。BMC基因组学10365(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Takemon, Y. et al. Proteomic and transcriptomic profiling reveal different aspects of aging in the kidney. eLife 10, e62585 (2021).Article
。eLife 10,e62585(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Q. et al. Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes. Nat. Commun. 11, 2539 (2020).Article
Wang,Q.等人。125748个人类外显子组和15708个基因组中多核苷酸变异的景观。国家公社。112539(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article
Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pak, M. A. et al. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE 18, e0282689 (2023).Article
Pak,M.A.等人使用AlphaFold预测单个突变对蛋白质稳定性和功能的影响。PLoS ONE 18,e0282689(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Q. S. et al. Leveraging supervised learning for functionally informed fine-mapping of cis-eQTLs identifies an additional 20,913 putative causal eQTLs. Nat. Commun. 12, 3394 (2021).Article
Wang,Q.S.等人利用监督学习对顺式eQTL进行功能上知情的精细定位,确定了另外20913个推定的因果eQTL。国家公社。123394(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sharon, E. et al. Genetic variation in MHC proteins is associated with T cell receptor expression biases. Nat. Genet. 48, 995–1002 (2016).Article
。纳特·吉内特。48995-1002(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sonehara, K. et al. Genetic architecture of microRNA expression and its link to complex diseases in the Japanese population. Hum. Mol. Genet. 31, 1806–1820 (2022).Article
Sonehara,K.等人。日本人群中microRNA表达的遗传结构及其与复杂疾病的关系。嗯,摩尔·吉内特。311806-1820(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Akiyama, M. et al. Characterizing rare and low-frequency height-associated variants in the Japanese population. Nat. Commun. 10, 4393 (2019).Article
Akiyama,M.等人,描述了日本人群中罕见和低频与身高相关的变异。国家公社。104393(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Q. S. et al. Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision. NAR Genom. Bioinform. 5, lqad090 (2023).Article
Wang,Q.S.等人。估计基因水平的错误发现概率可提高eQTL统计精细定位精度。NAR Genom。生物信息。5,lqad090(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nevola, K. et al. OlinkAnalyze: Facilitate analysis of proteomic data from Olink. R version 3.4.1 https://cran.r-project.org/web/packages/OlinkAnalyze/index.html (2023).Naito, T. et al. A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes. Nat.
Nevola,K。等人。OlinkAnalyze:促进对来自Olink的蛋白质组学数据的分析。R版本3.4.1https://cran.r-project.org/web/packages/OlinkAnalyze/index.html(2023年)。Naito,T。等人。一种用于HLA插补和跨种族MHC精细定位1型糖尿病的深度学习方法。纳特。
Commun. 12, 1639 (2021).Article .
普通的。121639(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).Article
Giambartolomei,C。等人。使用汇总统计数据对成对遗传关联研究之间的共定位进行贝叶斯检验。PLoS Genet。10,e1004383(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 17, e1009440 (2021).Article
Wallace,C。一种更准确的共定位分析方法,允许多种因果变异。PLoS Genet。17,e1009440(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, Q. S. QingboWang/japan_covid_taskforce_multi_omics: v1.0 (v1.0). Zenodo https://doi.org/10.5281/zenodo.11169202 (2024).tatsuhikonaito/DEEP-HLA: First release of DEEP*HLA (v.1.0.0). Zenodo https://zenodo.org/records/4478902 (2021).Download referencesAcknowledgementsWe thank all the participants involved in this study, and all the members of the JCTF for their support.
Wang,Q.S.QingboWang/japan\u covid\u taskforce\u multi\u组学:v1.0(v1.0)。泽诺多https://doi.org/10.5281/zenodo.11169202(2024)。tatsuhikonaito/DEEP-HLA:DEEP*HLA的首次发布(v.1.0.0)。泽诺多https://zenodo.org/records/4478902(2021年)。下载参考文献致谢我们感谢参与本研究的所有参与者以及JCTF的所有成员的支持。
We thank J. Kitano, the e-Parcel Corporation and the Ascend Corporation for supporting the JCTF. This study was supported by the Japan Agency for Medical Research and Development (AMED) (nos. JP23kk0305022, JP22ek0410075, JP23km0405211, JP23km0405217, JP23ek0109594, JP23ek0410113, JP223fa627002, JP223fa627010, JP233fa627011, JP23zf0127008, JP23tm0524002, JP22fk0108510, JP21fk0108553, JP21fk0108431, JP20fk0108415 and JP20fk0108452), JST CREST (no.
我们感谢J.Kitano、e-Parcel Corporation和Ascend Corporation对JCTF的支持。。
JPMJCR20H2), JST FOREST (no. JPMJFR225Y), JST PRESTO (no. JPMJPR21R7), JST Moonshot R&D (nos. JPMJMS2021 and JPMJMS2024), MHLW (no. 20CA2054), JSPS KAKENHI (nos. 22H00476 and 23K14233), the Nakajima Foundation, the Uehara Memorial Foundation, the Takeda Science Foundation, the Mitsubishi Foundation and the Bioinformatics Initiative of the Osaka University Graduate School of Medicine, the Institute for Open and Transdisciplinary Research Initiatives, the Center for Infectious Disease Education and Research and the Center for Advanced Modality and DDS, Osaka University.
JPMJCR20H2),JST FOREST(编号JPMJFR225Y),JST PRESTO(编号JPMJPR21R7),JST Moonshot R&D(编号JPMJMS2021和JPMJMS2024),MHLW(编号20CA2054),JSPS KAKENHI(编号22H00476和23K14233),中岛基金会,上原纪念基金会,武田科学基金会,三菱基金会和大阪大学医学研究生院的生物信息学计划,开放和跨学科研究计划研究所,传染病教育与研究中心以及先进模式和大阪大学DDS。
The super-computing resource was provided by the Human Genome Center (University of Tokyo).Author informationAuthors and AffiliationsDepartment of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, JapanQingbo S. Wang, Kyuto Sonehara & Yukinori OkadaDepartment of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, JapanQingbo S.
超级计算资源由人类基因组中心(东京大学)提供。作者信息作者和附属机构东京大学医学研究生院基因组信息学系,东京,日本庆波S.Wang,Kyuto Sonehara&Yukinori OkadaDepartment of Statistical Genetics,大阪大学医学研究生院,Suita,日本庆波S。
Wa.
华盛顿州。
PubMed Google ScholarTakanori HasegawaView author publicationsYou can also search for this author in
PubMed Google ScholarTakanori HasegawaView作者出版物您也可以在
PubMed Google ScholarHo NamkoongView author publicationsYou can also search for this author in
PubMed Google ScholarHo NamkoongView作者出版物您也可以在
PubMed Google ScholarRyunosuke SaikiView author publicationsYou can also search for this author in
PubMed Google ScholarRyunosuke SaikiView作者出版物您也可以在
PubMed Google ScholarRyuya EdahiroView author publicationsYou can also search for this author in
PubMed Google ScholarRyuya EdahiroView作者出版物您也可以在
PubMed Google ScholarKyuto SoneharaView author publicationsYou can also search for this author in
PubMed Google ScholarKyuto SoneharaView作者出版物您也可以在
PubMed Google ScholarHiromu TanakaView author publicationsYou can also search for this author in
PubMed Google ScholarHiromu TanakaView作者出版物您也可以在
PubMed Google ScholarShuhei AzekawaView author publicationsYou can also search for this author in
PubMed Google ScholarShuhei AzekawaView作者出版物您也可以在
PubMed Google ScholarShotaro ChubachiView author publicationsYou can also search for this author in
PubMed Google ScholarShotaro ChubachiView作者出版物您也可以在
PubMed Google ScholarYugo TakahashiView author publicationsYou can also search for this author in
PubMed Google ScholarSaori SakaueView author publicationsYou can also search for this author in
PubMed Google ScholarSaori SakaueView作者出版物您也可以在
PubMed Google ScholarShinichi NambaView author publicationsYou can also search for this author in
PubMed Google ScholarShinichi NambaView作者出版物您也可以在
PubMed Google ScholarKenichi YamamotoView author publicationsYou can also search for this author in
PubMed Google ScholarKenichi YamamotoView作者出版物您也可以在
PubMed Google ScholarYuichi ShiraishiView author publicationsYou can also search for this author in
PubMed Google ScholarYuichi ShiraishiView作者出版物您也可以在
PubMed Google ScholarKenichi ChibaView author publicationsYou can also search for this author in
PubMed Google ScholarKenichi ChibaView作者出版物您也可以在
PubMed Google ScholarHiroko TanakaView author publicationsYou can also search for this author in
PubMed Google ScholarHiroko TanakaView作者出版物您也可以在
PubMed Google ScholarHideki MakishimaView author publicationsYou can also search for this author in
PubMed Google ScholarHideki MakishimaView作者出版物您也可以在
PubMed Google ScholarYasuhito NannyaView author publicationsYou can also search for this author in
PubMed Google ScholarYasuhito NannyaView作者出版物您也可以在
PubMed Google ScholarZicong ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarZicong ZhangView作者出版物您也可以在
PubMed Google ScholarRika TsujikawaView author publicationsYou can also search for this author in
PubMed Google ScholarRika TsujikawaView作者出版物您也可以在
PubMed Google ScholarRyuji KoikeView author publicationsYou can also search for this author in
PubMed Google Scholaryuji KoikeView作者出版物您也可以在
PubMed Google ScholarTomomi TakanoView author publicationsYou can also search for this author in
PubMed Google Scholartomimi TakanoView作者出版物您也可以在
PubMed Google ScholarMakoto IshiiView author publicationsYou can also search for this author in
PubMed Google ScholarMakoto Ishiview作者出版物您也可以在
PubMed Google ScholarAkinori KimuraView author publicationsYou can also search for this author in
PubMed Google ScholarAkinori KimuraView作者出版物您也可以在
PubMed Google ScholarFumitaka InoueView author publicationsYou can also search for this author in
PubMed Google ScholarFumitaka InoueView作者出版物您也可以在
PubMed Google ScholarTakanori KanaiView author publicationsYou can also search for this author in
PubMed Google ScholarTakanori KanaiView作者出版物您也可以在
PubMed Google ScholarKoichi FukunagaView author publicationsYou can also search for this author in
PubMed Google ScholarKoichi FukunagaView作者出版物您也可以在
PubMed Google ScholarSeishi OgawaView author publicationsYou can also search for this author in
PubMed Google ScholarSeishi OgawaView作者出版物您也可以在
PubMed Google ScholarSeiya ImotoView author publicationsYou can also search for this author in
PubMed Google ScholarSeiya ImotoView作者出版物您也可以在
PubMed Google ScholarSatoru MiyanoView author publicationsYou can also search for this author in
PubMed Google ScholarSatoru MiyanoView作者出版物您也可以在
PubMed Google ScholarYukinori OkadaView author publicationsYou can also search for this author in
PubMed Google ScholarYukinori OkadaView作者出版物您也可以在
PubMed Google ScholarConsortiaJapan COVID-19 Task ForceQingbo S. Wang, Takanori Hasegawa, Ho Namkoong, Ryunosuke Saiki, Ryuya Edahiro, Kyuto Sonehara, Hiromu Tanaka, Shuhei Azekawa, Shotaro Chubachi, Shinichi Namba, Kenichi Yamamoto, Yasuhito Nannya, Ryuji Koike, Tomomi Takano, Makoto Ishii, Akinori Kimura, Takanori Kanai, Koichi Fukunaga, Seishi Ogawa, Seiya Imoto, Satoru Miyano & Yukinori OkadaContributionsQ.S.W.
PubMed Google ScholarConsortiaJapan COVID-19特别工作组王庆波,长谷川孝,何南光,斋木龙之介,枝野良彦,松原京人,田中弘,泽川淑平,竹木昭太郎,南坂信一,山本健一,南洋安仁,小池龙治,高野智美,石井Makoto Ishi,木村明彦,金奈高野,福永光一,小川精工,井本清一,宫野佐藤和由纪RI冈田贡献Q。S、 W。
and Y.O. designed the study. Q.S.W., Y.T., H.N., T.H., S.I., S.M. and Y.O. analyzed the data. Q.S.W. wrote the manuscript. Y.O. reviewed and edited the manuscript. H.N. and Y.O. supervised the work. All authors and the JCTF contributed to the generation of the primary data incorporated in the study, provided inputs and approved the manuscript.Corresponding authorsCorrespondence to.
Y.O.设计了这项研究。Q、 S.W.,Y.T.,H.N.,T.H.,S.I.,S.M.和Y.O.分析了数据。Q、 S.W.写了手稿。Y、 O.审查并编辑了手稿。H、 N.和Y.O.监督了这项工作。所有作者和JCTF都为研究中纳入的主要数据的产生做出了贡献,提供了投入并批准了手稿。通讯作者通讯。
Qingbo S. Wang, Ho Namkoong or Yukinori Okada.Ethics declarations
Qingbo S.Wang,Ho Namkoong或Yukinori Okada。道德宣言
Competing interests
相互竞争的利益
Q.S.W. is an employee of Calico Life Sciences. The other authors declare no competing interests.
Q、 S.W.是Calico Life Sciences的员工。其他作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Genetics thanks Anders Malarstig, Clint Miller and Maik Pietzner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
自然遗传学感谢Anders Malarstig,Clint Miller和Maik Pietzner以及另一位匿名审稿人对这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Overview of the study.We performed mRNA expression QTL (eQTL) fine-mapping from 1,019 RNA-sequenced samples, pQTL fine-mapping from 1,384 protein measured samples, as well as mRNA or protein specific QTL fine-mapping from 998 samples with both measures, all genotyped and processed in a single platform as part of the Japan COVID-19 Task Force20.
Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1研究概述。我们从1019个RNA测序样品中进行了mRNA表达QTL(eQTL)精细定位,从1384个蛋白质测量样品中进行了pQTL精细定位,以及从998个样品中进行了mRNA或蛋白质特异性QTL精细定位,这两种测量均在单一平台上进行了基因分型和处理,作为日本新型冠状病毒肺炎工作组20的一部分。
Massive parallel reporter assay (MPRA) was performed for validation of a subset of fine-mapped eQTLs.Extended Data Fig. 2 eQTL fine-mapping expanded.a. Comparison of the numbers of eQTLs in our dataset compared to the previous release. b. Functional score (the expression modifier score = EMS) enrichment in eQTLs along with the posterior inclusion probability (PIP).
进行大规模平行报告基因测定(MPRA)以验证精细定位的eQTL的子集。扩展数据图2扩展了eQTL精细映射。a.与之前版本相比,我们数据集中eQTL数量的比较。b、 eQTL中的功能评分(表达修饰评分=EMS)富集以及后验包含概率(PIP)。
c. Percentage of expression modifying variants (emvars) experimentally validated in massive parallel reporter assay (MPRA). Tier 1 corresponds to FDR < 0.01 and tier 2 to FDR < 0.1. n in each bin = 7,418, 2,060, 685, 885 and 317 variants. d. Percentage of agreement between the direction of variant effects in eQTL or MPRA study.
c、 在大规模平行报告基因测定(MPRA)中通过实验验证的表达修饰变体(EMVAR)的百分比。第1层对应于FDR<0.01,第2层对应于FDR<0.1。每个箱中的n=7418、2060、685、885和317个变体。d、 eQTL或MPRA研究中变异效应方向之间的一致性百分比。
n in each bin = 7,418, 2,992 and 955 variants.Supplementary informationSupplementary InformationSupplementary Tables 1 and 2, Figs. 1–26 and Note.Reporting SummarySupplementary Data 1–5Supplementary Data 1: List of tier 1 and 2 expression-modifying variants (EMVars) identified in the massively parallel reporter assay (MPRA).
每个箱中的n=74182992和955个变体。补充信息补充信息补充表1和2,图1-26和注释。报告摘要补充数据1-5补充数据1:在大规模并行报告分析(MPRA)中鉴定出的第1层和第2层表达修饰变体(EMVAR)列表。
Supplementary Data 2: Classification of per-gene regulatory patterns into mRNA/protein-specific or shared regulations. Supplementary Data 3: List of complex trait-colocalizing putative causal QTLs. Supplementary Data 4: List of significa.
补充数据2:将每个基因调控模式分类为mRNA/蛋白质特异性或共享调控。补充数据3:复杂性状共定位推定因果QTL的列表。补充数据4:重要信息列表。
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleWang, Q.S., Hasegawa, T., Namkoong, H. et al. Statistically and functionally fine-mapped blood eQTLs and pQTLs from 1,405 humans reveal distinct regulation patterns and disease relevance.
转载和许可本文引用本文Wang,Q.S.,Hasegawa,T.,Namkoong,H。等人。来自1405名人类的统计和功能精细定位的血液eQTL和pQTL揭示了不同的调控模式和疾病相关性。
Nat Genet (2024). https://doi.org/10.1038/s41588-024-01896-3Download citationReceived: 21 July 2023Accepted: 06 August 2024Published: 24 September 2024DOI: https://doi.org/10.1038/s41588-024-01896-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Genet(2024)。https://doi.org/10.1038/s41588-024-01896-3Download引文接收日期:2023年7月21日接收日期:2024年8月6日发布日期:2024年9月24日OI:https://doi.org/10.1038/s41588-024-01896-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供