商务合作
动脉网APP
可切换为仅中文
AbstractRNA editing is a crucial post-transcriptional process that influences gene expression and increases the diversity of the proteome as a result of amino acid substitution. Recently, the APOBEC3 family has emerged as a significant player in this mechanism, with APOBEC3A (A3A) having prominent roles in base editing during immune and stress responses.
摘要RNA编辑是一个关键的转录后过程,它会影响基因表达,并由于氨基酸取代而增加蛋白质组的多样性。最近,APOBEC3家族已成为该机制的重要参与者,APOBEC3A(A3A)在免疫和应激反应过程中的碱基编辑中起着重要作用。
APOBEC3B (A3B), another family member, has gained attention for its potential role in generating genomic DNA mutations in breast cancer. In this study, we coupled an inducible expression cell model with a novel methodology for identifying differential variants in RNA (DVRs) to map A3B-mediated RNA editing sites in a breast cancer cell model.
APOBEC3B(A3B)是另一个家族成员,因其在乳腺癌中产生基因组DNA突变的潜在作用而备受关注。在这项研究中,我们将诱导型表达细胞模型与用于鉴定RNA(DVR)中差异变体的新方法相结合,以在乳腺癌细胞模型中绘制A3B介导的RNA编辑位点。
Our findings indicate that A3B engages in selective RNA editing including targeting NEAT1 and MALAT1 long non-coding RNAs that are often highly expressed in tumour cells. Notably, the binding of these RNAs sequesters A3B and suppresses global A3B activity against RNA and DNA. Release of A3B from NEAT1/MALAT1 resulted in increased A3B activity at the expense of A3A activity suggesting a regulatory feedback loop between the two family members.
我们的研究结果表明,A3B参与选择性RNA编辑,包括靶向通常在肿瘤细胞中高度表达的NEAT1和MALAT1长非编码RNA。值得注意的是,这些RNA的结合隔离了A3B并抑制了针对RNA和DNA的整体A3B活性。从NEAT1/MALAT1释放A3B导致A3B活性增加,而以A3A活性为代价,这表明两个家族成员之间存在调节反馈回路。
This research substantially advances our understanding of A3B’s role in RNA editing, its mechanistic underpinnings, and its potential relevance in the pathogenesis of breast cancer..
这项研究大大提高了我们对A3B在RNA编辑中的作用,其机制基础及其在乳腺癌发病机制中的潜在相关性的理解。。
IntroductionRNA editing is a dynamic post-transcriptional process that modulates transcript sequences without altering the underlying genomic DNA sequence [1]. It plays a crucial role in expanding proteomic diversity and regulating gene expression in higher eukaryotes. Among the diverse mechanisms of RNA editing, two major types of modifications have been identified: deamination of adenine to inosine (A > I) or cytidine to uracil (C > U).
引言RNA编辑是一种动态的转录后过程,可调节转录序列而不改变潜在的基因组DNA序列。它在高等真核生物中扩大蛋白质组多样性和调节基因表达方面起着至关重要的作用。在RNA编辑的多种机制中,已经鉴定出两种主要类型的修饰:腺嘌呤脱氨为肌苷(A > I)或胞苷脱氨为尿嘧啶(C > U)。
These modifications impact on the cellular proteome as they are read as guanosine and uridine respectively during translation, thereby altering protein sequences encoded by genomic DNA [2, 3].In mammals, the APOBEC (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like) protein family, alongside the activation-induced cytidine deaminase (AICDA), are prominent members of the cytidine deaminases known for their roles in genomic editing and immune response regulation.
。在哺乳动物中,APOBEC(载脂蛋白B mRNA编辑酶,催化多肽样)蛋白家族以及激活诱导的胞苷脱氨酶(AICDA)是胞苷脱氨酶的重要成员,以其在基因组编辑和免疫应答调节中的作用而闻名。
[4]. While AICDA is recognised for its role in C > U mutation of DNA during antibody gene diversification, the APOBEC proteins have gained attention for their broader-spectrum roles in RNA editing [3, 5]. The human APOBEC family comprises ten members, APOBEC1, APOBEC2, and APOBEC4, that have restricted tissue expression, and the APOBEC3 genes that are more widely expressed, though predominantly in immune cells [6].
[4] 。虽然AICDA因其在抗体基因多样化过程中在DNA的C>U突变中的作用而被认可,但APOBEC蛋白因其在RNA编辑中更广泛的作用而受到关注[3,5]。人类APOBEC家族包括10个成员,APOBEC1,APOBEC2和APOBEC4,它们具有限制性的组织表达,以及更广泛表达的APOBEC3基因,尽管主要在免疫细胞中表达(6)。
Initially characterised for their ability to inhibit retroviruses and transposable elements by deaminating cytidines in single-stranded DNA, recent studies have revealed the involvement of APOBEC3 family members in RNA editing. Physiological conditions, such as interferon stimulation, hypoxia, and cellular crowding, can induce endogenous APOBEC3A (A3A)-mediated C > U RNA editing in monocytes and immune cells [7,8,9].
最初的特征是它们通过使单链DNA中的胞苷脱氨基来抑制逆转录病毒和转座因子的能力,最近的研究表明APOBEC3家族成员参与了RNA编辑。生理条件,如干扰素刺激,缺氧和细胞拥挤,可诱导单核细胞和免疫细胞内源性APOBEC3A(A3A)介导的C>U RNA编辑[7,8,9]。
The induction of RNA editing by A3A .
A3A诱导RNA编辑。
Data availability
数据可用性
The high through-put sequencing data, together with processed data files, was available on GEO database with accession number GSE245700 and GSE245701.
高通量测序数据以及处理过的数据文件可在GEO数据库中获得,登录号为GSE245700和GSE245701。
ReferencesQiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. Mol Biomed. 2023;4:25.Article
参考文献Qiu L,Jing Q,Li Y,Han J.RNA修饰:机制和治疗靶点。摩尔生物医学。2023年;4: 25、条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Slotkin W, Nishikura K. Adenosine-to-inosine RNA editing and human disease. Genome Med. 2013;5:105.Article
Slotkin W,Nishikura K.腺苷对肌苷RNA的编辑和人类疾病。基因组医学2013;5: 105、条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pecori R, Di Giorgio S, Paulo Lorenzo J, Nina Papavasiliou F. Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat Rev Genet. 2022;23:505–18.Article
Pecori R,Di Giorgio S,Paulo Lorenzo J,Nina Papavasiliou F.AID/APOBEC介导的DNA和RNA脱氨的功能和后果。Nat Rev Genet。2022年;23:505–18.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Conticello SG. The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9:229.Article
Conticello SG。AID/APOBEC核酸突变体家族。基因组生物学。2008年;9: 229条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fritz EL, Rosenberg BR, Lay K, Mihailovic A, Tuschl T, Papavasiliou FN. A comprehensive analysis of the effects of the deaminase AID on the transcriptome and methylome of activated B cells. Nat Immunol. 2013;14:749–55.Article
弗里茨·埃尔(Fritz EL),罗森伯格(Rosenberg BR),雷·K(Lay K),米哈伊洛维奇(Mihailovic A),塔什尔(Tuschl T),帕帕瓦西里奥(Papavasiliou)FN。全面分析脱氨酶辅助对活化B细胞转录组和甲基化组的影响。Nat免疫。2013年;14: 749-55.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Silvas TV, Schiffer CA. APOBEC3s: DNA-editing human cytidine deaminases. Protein Sci. 2019;28:1552–66.Article
Silvas TV,Schiffer CA。APOBEC3s:DNA编辑人类胞苷脱氨酶。蛋白质科学。2019年;28:1552–66.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sharma S, Patnaik SK, Taggart RT, Kannisto ED, Enriquez SM, Gollnick P. et al. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun. 2015;6:6881Article
。纳特公社。2015年;6: 6881条
PubMed
PubMed
Google Scholar
谷歌学者
Baysal BE, De Jong K, Liu B, Wang J, Patnaik SK, Wallace PK. et al. Hypoxia-inducible C-to-U coding RNA editing downregulates SDHB in monocytes. PeerJ. 2013;1:e152Article
Baysal BE,De Jong K,Liu B,Wang J,Patnaik SK,Wallace PK。等人。缺氧诱导的C-to-U编码RNA编辑下调单核细胞中的SDHB。PeerJ。2013;1: E152文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alqassim EY, Sharma S, Khan A, Emmons TR, Cortes Gomez E, Alahmari A, et al. RNA editing enzyme APOBEC3A promotes pro-inflammatory M1 macrophage polarization. Commun Biol. 2021;4:102.Article
Alqassim EY,Sharma S,Khan A,Emmons TR,Cortes Gomez E,Alahmari A等。RNA编辑酶APOBEC3A促进促炎性M1巨噬细胞极化。社区生物。2021年;4: 102、条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Barka A, Berrios KN, Bailer P, Schutsky EK, Wang T, Kohli RM. The base-editing enzyme APOBEC3A catalyzes cytosine deamination in RNA with low proficiency and high selectivity. ACS Chem Biol. 2022;17:629–36.Article
Barka A,Berrios KN,Bailer P,Schutsky EK,Wang T,Kohli RM。碱基编辑酶APOBEC3A以低水平和高选择性催化RNA中的胞嘧啶脱氨。ACS化学生物学。2022年;17: 629-36.条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature. 2013;494:366–70.Article
。自然。2013年;494:366-70.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burns MB, Temiz NA, Harris RS. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet. 2013;45:977–83.Article
Burns MB,Temiz NA,Harris RS.APOBEC3B突变在多种人类癌症中的证据。纳特·吉内特。2013年;
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Salamango DJ, McCann JL, Demir O, Brown WL, Amaro RE, Harris RS. APOBEC3B nuclear localization requires two distinct N-terminal domain surfaces. J Mol Biol. 2018;430:2695–708.Article
Salamango DJ,McCann JL,Demir O,Brown WL,Amaro RE,Harris RS.APOBEC3B核定位需要两个不同的N端结构域表面。J摩尔生物学。2018年;
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Prohaska KM, Bennett RP, Salter JD, Smith HC. The multifaceted roles of RNA binding in APOBEC cytidine deaminase functions. Wiley Interdiscip Rev RNA. 2014;5:493–508.Article
Prohaska KM,Bennett RP,Salter JD,Smith HC。RNA结合在APOBEC胞苷脱氨酶功能中的多方面作用。Wiley Interdiscip Rev RNA。2014;5: 493-508.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Salter JD, Smith HC. Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands. Trends Biochem Sci. 2018;43:606–22.Article
Salter JD,Smith HC。模拟突变体的拥抱:APOBEC核酸配体的选择。趋势生物化学科学。2018年;43:606–22.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Periyasamy M, Patel H, Lai CF, Nguyen VTM, Nevedomskaya E, Harrod A, et al. APOBEC3B-mediated cytidine deamination is required for estrogen receptor action in breast cancer. Cell Rep. 2015;13:108–21.Article
Periyasamy M,Patel H,Lai CF,Nguyen VTM,Nevedomskaya E,Harrod A等。APOBEC3B介导的胞苷脱氨作用是乳腺癌雌激素受体作用所必需的。Cell Rep.2015;13: 108-21.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Serebrenik AA, Starrett GJ, Leenen S, Jarvis MC, Shaban NM, Salamango DJ, et al. The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase. Proc Natl Acad Sci USA. 2019;116:22158–63.Article
Serebrenik AA,Starrett GJ,Leenen S,Jarvis MC,Shaban NM,Salamango DJ等。脱氨酶APOBEC3B触发缺乏尿嘧啶DNA糖基化酶的细胞死亡。美国国家科学院院刊2019;116:22158–63.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang D, Li X, Li J, Lu Y, Zhao S, Tang X, et al. APOBEC3B interaction with PRC2 modulates microenvironment to promote HCC progression. Gut. 2019;68:1846–57.Article
Wang D,Li X,Li J,Lu Y,Zhao S,Tang X等。APOBEC3B与PRC2的相互作用调节微环境以促进HCC进展。肠道。2019年;68:1846-57.文章
PubMed
PubMed
Google Scholar
谷歌学者
Neums L, Suenaga S, Beyerlein P, Anders S, Koestler D, Mariani A. et al. VaDiR: an integrated approach to Variant Detection in RNA. Gigascience. 2018;7:1–13.Article
Neums L,Suenaga S,Beyerlein P,Anders S,Koestler D,Mariani A.等人。VaDiR:RNA变异检测的综合方法。Gigascience。2018年;7: 1-13.文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang J, Pan Y, Shen S, Lin L, Xing Y. rMATS-DVR: rMATS discovery of differential variants in RNA. Bioinformatics. 2017;33:2216–17.Article
Wang J,Pan Y,Shen S,Lin L,Xing Y.rMATS DVR:rMATS发现RNA中的差异变体。生物信息学。2017年;33:2216–17.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. Calling somatic SNVs and Indels with Mutect2. bioRxiv 2019.Zhang C, Lu Y, Chen B, Bai Z, Hervieu A, Licciardello M, et al. R-loop editing by DNA cytosine deaminase APOBEC3B determines the activity of estrogen receptor enhancers.
Benjamin D,Sato T,Cibulskis K,Getz G,Stewart C,Lichtenstein L.用Mutect2调用体细胞SNV和插入缺失。bioRxiv 2019。Zhang C,Lu Y,Chen B,Bai Z,Hervieu A,Licciardello M等。DNA胞嘧啶脱氨酶APOBEC3B的R环编辑决定了雌激素受体增强子的活性。
bioRxiv 2022.Gruber AR, Lorenz R, Bernhart SH, Neubock R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res. 2008;36:W70–74.Article .
bioRxiv 2022。Gruber AR,Lorenz R,Bernhart SH,Neubock R,Hofacker IL。维也纳RNA网络套件。核酸研究2008;36:W70-74。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mansi L, Tangaro MA, Lo Giudice C, Flati T, Kopel E, Schaffer AA, et al. REDIportal: millions of novel A-to-I RNA editing events from thousands of RNAseq experiments. Nucleic Acids Res. 2021;49:D1012–9.Article
Mansi L,Tangaro MA,Lo Giudice C,Flati T,Kopel E,Schaffer AA等。REDIportal:来自数千个RNAseq实验的数百万个新的A-to-I RNA编辑事件。核酸研究2021;49:D1012–9.文章
PubMed
PubMed
Google Scholar
谷歌学者
Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res. 1999;9:677–79.Article
Sherry ST,Ward M,Sirotkin K.dbSNP数据库,用于单核苷酸多态性和其他类别的微小遗传变异。基因组研究1999;9: 677-79.文章
PubMed
PubMed
Google Scholar
谷歌学者
Ramaswami G, Zhang R, Piskol R, Keegan LP, Deng P, O’Connell MA. et al. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods. 2013;10:128–132.Article
Ramaswami G,Zhang R,Piskol R,Keegan LP,Deng P,O'Connell MA。等。仅使用RNA测序数据识别RNA编辑位点。Nat方法。2013年;10: 128-132.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Porath HT, Knisbacher BA, Eisenberg E, Levanon EY. Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol. 2017;18:185.Article
波拉斯HT,克尼斯巴赫BA,艾森伯格E,莱瓦农EY。大量的A到I RNA编辑在后生动物中很常见,并且与dsRNA丰度相关。基因组生物学。2017年;18: 第185条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Butt Y, Sakhtemani R, Mohamad-Ramshan R, Lawrence MS, Bhagwat AS. Distinguishing preferences of human APOBEC3A and APOBEC3B for cytosines in hairpin loops, and reflection of these preferences in APOBEC-signature cancer genome mutations. Nat Commun. 2024;15:2369.Article
Butt Y,Sakhtemani R,Mohamad Ramshan R,Lawrence MS,Bhagwat AS。区分人类APOBEC3A和APOBEC3B对发夹环中胞嘧啶的偏好,以及这些偏好在APOBEC特征性癌症基因组突变中的反映。纳特公社。2024年;15: 第2369条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, et al. Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes. Nat Commun. 2024;15:2370.Article
Sanchez A,Ortega P,Sakhtemani R,Manjunath L,Oh S,Bournique E等。中尺度DNA特征影响APOBEC3A和APOBEC3B脱氨酶活性并塑造肿瘤突变景观。纳特公社。2024年;15: 2370条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jalili P, Bowen D, Langenbucher A, Park S, Aguirre K, Corcoran RB, et al. Quantification of ongoing APOBEC3A activity in tumor cells by monitoring RNA editing at hotspots. Nat Commun. 2020;11:2971.Article
Jalili P,Bowen D,Langenbucher A,Park S,Aguirre K,Corcoran RB等。通过监测热点处的RNA编辑来定量肿瘤细胞中正在进行的APOBEC3A活性。纳特公社。2020年;11: 2971条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY, Sundararaman B, et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods. 2016;13:508–14.Article
Van Nostrand EL,Pratt GA,Shishkin AA,Gelboin Burkhart C,Fang MY,Sundararaman B等。通过增强CLIP(eCLIP)在转录组范围内发现RNA结合蛋白结合位点。Nat方法。2016年;13:
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krakau S, Richard H, Marsico A. PureCLIP: capturing target-specific protein-RNA interaction footprints from single-nucleotide CLIP-seq data. Genome Biol. 2017;18:240.Article
。基因组生物学。2017年;18: 240、条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122.Article
。基因组生物学。2016年;17: 122、条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ursu A, Childs-Disney JL, Angelbello AJ, Costales MG, Meyer SM, Disney MD. Gini coefficients as a single value metric to define chemical probe selectivity. ACS Chem Biol. 2020;15:2031–40.Article
Ursu A,Childs Disney JL,Angelbello AJ,Costales MG,Meyer SM,Disney MD。基尼系数作为定义化学探针选择性的单值指标。ACS化学生物学。2020年;15: 2031-40.条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roux KJ, Kim DI, Burke B, May DG. BioID: a screen for protein-protein interactions. Curr Protoc Protein Sci. 2018;91:19 23 11–19 23 15.Article
Roux KJ,Kim DI,Burke B,May DG。BioID:蛋白质-蛋白质相互作用的筛选。Curr Protoc蛋白科学。2018年;91:19 23 11–19 23 15。条款
Google Scholar
谷歌学者
Bailey TL, Machanick P. Inferring direct DNA binding from ChIP-seq. Nucleic Acids Res. 2012;40:e128.Article
Bailey TL,Machanick P.从ChIP-seq推断直接DNA结合。核酸Res.2012;
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang Z, Li K, Huang W. Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci. 2020;77:3769–79.Article
Wang Z,Li K,Huang W.Long非编码RNA NEAT1中心基因调控。细胞分子生命科学。2020年;77:3769–79.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arun G, Aggarwal D, Spector DL. MALAT1 long non-coding RNA: functional implications. Noncoding RNA. 2020;6:22.PubMed
Arun G,Aggarwal D,Spector DL。。非编码RNA。2020;6: 22.PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martin AS, Salamango DJ, Serebrenik AA, Shaban NM, Brown WL, Harris RS. A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes. Sci Rep. 2019;9:497.Article
Martin AS,Salamango DJ,Serebrenik AA,Shaban NM,Brown WL,Harris RS.由APOBEC-Cas9编辑体复合物进行单碱基编辑的eGFP记者小组。Sci代表2019;9: 第497条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang YH, Guo XC, Zhong JB, Zhong DX, Huang XH, Fang ZY, et al. Discovery of APOBEC cytidine deaminases inhibitors using a BspH1 restriction enzyme-based biosensor. Chemistryselect 2022;7:e202201456.Petljak M, Dananberg A, Chu K, Bergstrom EN, Striepen J, von Morgen P, et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells.
Zhang YH,Guo XC,Zhong JB,Zhong DX,Huang XH,Fang ZY,et al。使用基于BspH1限制酶的生物传感器发现APOBEC胞苷脱氨酶抑制剂。化学选择2022;7: e202201456。Petljak M,Dananberg A,Chu K,Bergstrom EN,Striepen J,von Morgen P等。人类癌细胞中APOBEC3突变的机制。
Nature. 2022;607:799–807.Article .
自然。2022年;607:799-807。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–20.Article
癌症基因组图谱研究N,Weinstein JN,Collisson EA,Mills GB,Shaw KR,Ozenberger BA等。癌症基因组图谱泛癌症分析项目。纳特·吉内特。2013年;45:1113–20.文章
Google Scholar
谷歌学者
Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578:94–101.Article
Alexandrov LB,Kim J,Haradhvala NJ,Huang MN,Tian Ng AW,Wu Y等。人类癌症突变特征库。自然。2020年;578:94–101.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Maiti A, Hou S, Schiffer CA, Matsuo H. Interactions of APOBEC3s with DNA and RNA. Curr Opin Struct Biol. 2021;67:195–204.Article
Maiti A,Hou S,Schiffer CA,Matsuo H.APOBEC3s与DNA和RNA的相互作用。Curr Opin Struct Biol。2021年;67:195–204.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiao X, Yang H, Arutiunian V, Fang Y, Besse G, Morimoto C, et al. Structural determinants of APOBEC3B non-catalytic domain for molecular assembly and catalytic regulation. Nucleic Acids Res. 2017;45:7540.Article
Xiao X,Yang H,Arutiunian V,Fang Y,Besse G,Morimoto C等。用于分子组装和催化调节的APOBEC3B非催化结构域的结构决定因素。核酸研究2017;45:7540.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krokan HE, Saetrom P, Aas PA, Pettersen HS, Kavli B, Slupphaug G. Error-free versus mutagenic processing of genomic uracil-relevance to cancer. DNA Repair. 2014;19:38–47.Article
Krokan HE,Saetrom P,Aas PA,Pettersen HS,Kavli B,Slupphaug G.基因组尿嘧啶与癌症相关性的无错误与诱变处理。。2014年;19: 38-47.文章
PubMed
PubMed
Google Scholar
谷歌学者
Law EK, Sieuwerts AM, LaPara K, Leonard B, Starrett GJ, Molan AM, et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci Adv. 2016;2:e1601737.Article
Law EK,Sieuwerts AM,LaPara K,Leonard B,Starrett GJ,Molan AM等。DNA胞嘧啶脱氨酶APOBEC3B促进ER阳性乳腺癌对他莫昔芬的耐药性。Sci Adv.2016;2: e1601737.条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Venkatesan S, Rosenthal R, Kanu N, McGranahan N, Bartek J, Quezada SA, et al. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann Oncol. 2018;29:563–72.Article
Venkatesan S,Rosenthal R,Kanu N,McGranahan N,Bartek J,Quezada SA等。观点:APOBEC突变在HIV和癌症进化中的耐药性和免疫逃逸。安·昂科尔。2018年;29:563–72.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Green AM, Weitzman MD. The spectrum of APOBEC3 activity: from anti-viral agents to anti-cancer opportunities. DNA Repair. 2019;83:102700.Article
Green AM,Weitzman MD。APOBEC3活性谱:从抗病毒药物到抗癌机会。。2019年;
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shi K, Carpenter MA, Kurahashi K, Harris RS, Aihara H. Crystal structure of the DNA Deaminase APOBEC3B Catalytic Domain. J Biol Chem. 2015;290:28120–30.Article
Shi K,Carpenter MA,Kurahashi K,Harris RS,Aihara H.DNA脱氨酶APOBEC3B催化结构域的晶体结构。生物化学杂志。2015年;290:28120–30.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hoopes JI, Cortez LM, Mertz TM, Malc EP, Mieczkowski PA, Roberts SA. APOBEC3A and APOBEC3B preferentially deaminate the lagging strand template during DNA replication. Cell Rep. 2016;14:1273–82.Article
Hoopes JI,Cortez LM,Mertz TM,Malc EP,Mieczkowski PA,Roberts SA。APOBEC3A和APOBEC3B在DNA复制过程中优先使滞后链模板脱氨基。Cell Rep.2016;14: 1273-82.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seplyarskiy VB, Soldatov RA, Popadin KY, Antonarakis SE, Bazykin GA, Nikolaev SI. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res. 2016;26:174–82.Article
Seplyarskiy VB,Soldatov RA,Popadin KY,Antonarakis SE,Bazykin GA,Nikolaev SI。APOBEC诱导的人类癌症突变在复制过程中强烈富集在滞后的DNA链上。基因组研究2016;26:174–82.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sui Y, Qi L, Zhang K, Saini N, Klimczak LJ, Sakofsky CJ, et al. Analysis of APOBEC-induced mutations in yeast strains with low levels of replicative DNA polymerases. Proc Natl Acad Sci USA. 2020;117:9440–50.Article
Sui Y,Qi L,Zhang K,Saini N,Klimczak LJ,Sakofsky CJ等。分析具有低复制DNA聚合酶水平的酵母菌株中APOBEC诱导的突变。美国国家科学院院刊2020;117:9440–50.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149:979–93.Article
Nik Zainal S,Alexandrov LB,Wedge DC,Van Loo P,Greenman CD,Raine K等。突变过程塑造了21种乳腺癌的基因组。细胞。2012年;149:979–93.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54.Article
Nik Zainal S,Davies H,Staaf J,Ramakrishna M,Glodzik D,Zou X等。560个乳腺癌全基因组序列中体细胞突变的概况。自然。2016年;534:47–54.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Taylor BJ, Nik-Zainal S, Wu YL, Stebbings LA, Raine K, Campbell PJ, et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife. 2013;2:e00534.Article
Taylor BJ,Nik Zainal S,Wu YL,Stebbings LA,Raine K,Campbell PJ等。DNA脱氨酶诱导断裂相关突变阵雨,暗示APOBEC3B和3A在乳腺癌kataegis中的作用。埃利夫。2013年;2: e00534条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell. 2014;55:791–802.Article
West JA,Davis CP,Sunwoo H,Simon MD,Sadreyev RI,Wang PI等。长非编码RNA NEAT1和MALAT1结合活性染色质位点。摩尔细胞。2014年;55:791–802.Article
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alonso de la Vega A, Temiz NA, Tasakis R, Somogyi K, Salgueiro L, Zimmer E, et al. Acute expression of human APOBEC3B in mice results in RNA editing and lethality. Genome Biol. 2023;24:267.Article
Alonso de la Vega A,Temiz NA,Tasakis R,Somogyi K,Salgueiro L,Zimmer E等。人APOBEC3B在小鼠中的急性表达导致RNA编辑和致死率。基因组生物学。2023年;24:267.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Driscoll CB, Schuelke MR, Kottke T, Thompson JM, Wongthida P, Tonne JM, et al. APOBEC3B-mediated corruption of the tumor cell immunopeptidome induces heteroclitic neoepitopes for cancer immunotherapy. Nat Commun. 2020;11:790.Article
Driscoll CB,Schuelke MR,Kottke T,Thompson JM,Wongthida P,Tonne JM等。APOBEC3B介导的肿瘤细胞免疫肽组的破坏诱导了用于癌症免疫治疗的异源新表位。纳特公社。2020年;11: 790条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Isozaki H, Sakhtemani R, Abbasi A, Nikpour N, Stanzione M, Oh S, et al. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature. 2023;620:393–401.Article
Isozaki H,Sakhtemani R,Abbasi A,Nikpour N,Stanzione M,Oh S等。治疗诱导的APOBEC3A驱动持续性癌细胞的进化。自然。2023年;620:393–401.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Russo M, Crisafulli G, Sogari A, Reilly NM, Arena S, Lamba S, et al. Adaptive mutability of colorectal cancers in response to targeted therapies. Science. 2019;366:1473–80.Article
Russo M,Crisafulli G,Sogari A,Reilly NM,Arena S,Lamba S等。结直肠癌对靶向治疗的适应性变异性。科学。2019年;366:1473-80.文章
PubMed
PubMed
Google Scholar
谷歌学者
Ma W, Ho DW, Sze KM, Tsui YM, Chan LK, Lee JM. et al. APOBEC3B promotes hepatocarcinogenesis and metastasis through novel deaminase-independent activity. Mol Carcinog. 2019;58:643–53.Article
Ma W,Ho DW,Sze KM,Tsui YM,Chan LK,Lee JM。等。APOBEC3B通过新的脱氨酶非依赖性活性促进肝癌发生和转移。摩尔癌症。2019年;58:643–53.文章
PubMed
PubMed
Google Scholar
谷歌学者
Petljak M, Alexandrov LB, Brammeld JS, Price S, Wedge DC, Grossmann S, et al. Characterizing mutational signatures in human cancer cell lines reveals Episodic APOBEC mutagenesis. Cell. 2019;176:1282–94.e1220.Article
Petljak M,Alexandrov LB,Brammeld JS,Price S,Wedge DC,Grossmann S等。表征人类癌细胞系中的突变特征揭示了APOBEC突变的情节。细胞。2019年;176:1282–94.e1220.文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Butler K, Banday AR. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J Hematol Oncol. 2023;16:31.Article
Butler K,Banday AR.APOBEC3介导的癌症突变:原因,临床意义和治疗潜力。J Hematol Oncol。2023年;16: 31、条款
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jakobsdottir GM, Brewer DS, Cooper C, Green C, Wedge DC. APOBEC3 mutational signatures are associated with extensive and diverse genomic instability across multiple tumour types. BMC Biol. 2022;20:117.Article
Jakobsdottir总经理,Brewer DS,Cooper C,Green C,Wedge DC。APOBEC3突变特征与多种肿瘤类型的广泛和多样的基因组不稳定性有关。BMC生物。2022年;20: 第117条
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank Dr. Alexia Hervieu Viches, and Dr. Alexandra Vasile form the Institute of Cancer Research, London, for helpful discussions and contributing to the idea of this work. We are grateful for the Scientific Computing facility at the Institute of Cancer Research, and NeoTrident Technology Ltd.
下载参考文献致谢我们感谢伦敦癌症研究所的Alexia Hervieu Viches博士和Alexandra Vasile博士进行了有益的讨论,并为这项工作的想法做出了贡献。我们感谢癌症研究所和NeoTrident Technology Ltd的科学计算设施。
for providing computational resources and relevant training. This work was financially supported by The Institute of Cancer Research (London, United Kingdom). CZ was sponsored by Shanghai Pujiang Programme (22PJD104), and Science and Technology Commission of Shanghai Municipality (23S11901100).Author informationAuthor notesThese authors contributed equally: Chi Zhang, Yu-Jing Lu.Authors and AffiliationsCentre for Cancer Drug Discovery, The Institute of Cancer Research, London, UKChi Zhang, Bingjie Chen, Costas Mitsopoulos, Olivia Rossanese & Paul A.
提供计算资源和相关培训。这项工作得到了癌症研究所(英国伦敦)的财政支持。CZ由上海浦江计划(22PJD104)和上海市科学技术委员会(23S11901100)赞助。作者信息作者注意到,这些作者做出了同样的贡献:张弛,陆玉静。癌症药物发现的作者和附属机构,伦敦癌症研究所,张UKChi,陈炳杰,Costas Mitsopoulos,Olivia Rossanese&Paul A。
ClarkeShanghai Institute of Biological Products, Shanghai, ChinaChi Zhang, Mei Wang, Feifei Xiong & Xiuling LiGuangdong Medicine-Engineering Interdisciplinary Technology Research Centre, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, ChinaYu-Jing LuGMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, ChinaBingjie ChenAuthorsChi ZhangView author publicationsYou can also search for this author in.
中国上海克拉克斯上海生物制品研究所张驰,王梅,熊飞飞和秀玲广东工业大学生物医学与制药科学学院李光东医学工程跨学科技术研究中心,广州,中国广州医科大学生命科学联合学院,广州,广东,中国陈秉杰作者张驰观点作者出版物你也可以在中搜索这位作者。
PubMed Google ScholarYu-Jing LuView author publicationsYou can also search for this author in
PubMed Google ScholarYu Jing LuView作者出版物您也可以在
PubMed Google ScholarMei WangView author publicationsYou can also search for this author in
PubMed Google Scholarmaei WangView作者出版物您也可以在
PubMed Google ScholarBingjie ChenView author publicationsYou can also search for this author in
PubMed Google ScholarBingjie ChenView作者出版物您也可以在
PubMed Google ScholarFeifei XiongView author publicationsYou can also search for this author in
PubMed谷歌学者Feifei XiongView作者出版物您也可以在
PubMed Google ScholarCostas MitsopoulosView author publicationsYou can also search for this author in
PubMed Google ScholarCostas MitsopoulosView作者出版物您也可以在
PubMed Google ScholarOlivia RossaneseView author publicationsYou can also search for this author in
PubMed Google ScholarOlivia RossaneseView作者出版物您也可以在
PubMed Google ScholarXiuling LiView author publicationsYou can also search for this author in
PubMed Google ScholarXiuling LiView作者出版物您也可以在
PubMed Google ScholarPaul A. ClarkeView author publicationsYou can also search for this author in
PubMed Google ScholarPaul A.ClarkeView作者出版物您也可以在
PubMed Google ScholarContributionsCZ, XL, OR, and PAC, conceived this study and provided grant support. CZ, YL, MW, FX, and XL conducted the experiments and analysis unless otherwise noted. CZ, YL, and BC, conducted analysis on WGS data. KM provided guidance on data analysis using sequencing data.
PubMed Google ScholarContributionsCZ,XL,OR和PAC构思了这项研究并提供了资助。。CZ,YL和BC对WGS数据进行了分析。KM提供了使用测序数据进行数据分析的指导。
CZ, XL, and PAC prepared the manuscript.Corresponding authorsCorrespondence to.
CZ,XL和PAC准备了手稿。通讯作者通讯。
Xiuling Li or Paul A. Clarke.Ethics declarations
李秀玲或保罗·克拉克。道德宣言
Competing interests
相互竞争的利益
CZ, KM, OR, and PAC are current or past employees of The Institute of Cancer Research, which has a commercial interest in the discovery and development of A3B inhibitors and operates a reward to inventors’ scheme. Separately, CZ, MW, FX, and XL are employees of Shanghai Institute of Biological Products, an entity presently engaged in the commercial development of therapeutic biologics.
CZ,KM,OR和PAC是癌症研究所(Institute of Cancer Research)的现任或前任员工,该研究所对A3B抑制剂的发现和开发具有商业利益,并对发明人的计划进行奖励。另外,CZ、MW、FX和XL是上海生物制品研究所的员工,该研究所目前从事治疗性生物制品的商业开发。
No conflicts of interest have been reported by the remaining authors..
其余作者没有报告利益冲突。。
Ethics approval and consent to participate
道德批准和同意参与
The authors confirm that all methods were performed in accordance with the relevant guidelines and regulations.
作者确认,所有方法均按照相关指南和法规进行。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplemental MaterialSupplemental Figure 1Supplemental Figure 2Supplemental Figure 3Supplemental Figure 4Supplemental Figure 5Supplemental Figure 6Supplemental Figure 7Supplemental Figure 8Supplemental Figure 9Supplemental Figure 10Supplemental Figure 11Supplemental Figure 12Supplemental Figure 13Supplemental List 1Supplemental List 2Rights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充材料补充图1补充图2补充图3补充图4补充图5补充图6补充图7补充图8补充图9补充图10补充图11补充图12补充图13补充列表1补充列表2权利和权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleZhang, C., Lu, YJ., Wang, M. et al. Characterisation of APOBEC3B-Mediated RNA editing in breast cancer cells reveals regulatory roles of NEAT1 and MALAT1 lncRNAs.
转载和许可本文引用本文Zhang,C.,Lu,YJ。,Wang,M。等人。乳腺癌细胞中APOBEC3B介导的RNA编辑的表征揭示了NEAT1和MALAT1 lncRNA的调节作用。
Oncogene (2024). https://doi.org/10.1038/s41388-024-03171-5Download citationReceived: 16 November 2023Revised: 30 August 2024Accepted: 13 September 2024Published: 25 September 2024DOI: https://doi.org/10.1038/s41388-024-03171-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
癌基因(2024)。https://doi.org/10.1038/s41388-024-03171-5Download引文接收日期:2023年11月16日修订日期:2024年8月30日接受日期:2024年9月13日发布日期:2024年9月25日OI:https://doi.org/10.1038/s41388-024-03171-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供