商务合作
动脉网APP
可切换为仅中文
AbstractThe development of single-cell multi-omics technology has greatly enhanced our understanding of biology, and in parallel, numerous algorithms have been proposed to predict the protein abundance and/or chromatin accessibility of cells from single-cell transcriptomic information and to integrate various types of single-cell multi-omics data.
摘要单细胞多组学技术的发展极大地增强了我们对生物学的理解,同时,已经提出了许多算法来预测单细胞转录组信息中细胞的蛋白质丰度和/或染色质可及性,并整合各种类型的单细胞多组学数据。
However, few studies have systematically compared and evaluated the performance of these algorithms. Here, we present a benchmark study of 14 protein abundance/chromatin accessibility prediction algorithms and 18 single-cell multi-omics integration algorithms using 47 single-cell multi-omics datasets.
然而,很少有研究系统地比较和评估这些算法的性能。在这里,我们使用47个单细胞多组学数据集对14种蛋白质丰度/染色质可及性预测算法和18种单细胞多组学整合算法进行了基准研究。
Our benchmark study showed overall totalVI and scArches outperformed the other algorithms for predicting protein abundance, and LS_Lab was the top-performing algorithm for the prediction of chromatin accessibility in most cases. Seurat, MOJITOO and scAI emerge as leading algorithms for vertical integration, whereas totalVI and UINMF excel beyond their counterparts in both horizontal and mosaic integration scenarios.
我们的基准研究表明,总体totalVI和scArches在预测蛋白质丰度方面优于其他算法,而LS\U Lab在大多数情况下是预测染色质可及性的最佳算法。修拉(Seurat)、莫吉托(MOJITOO)和scAI(scAI)成为垂直集成的领先算法,而totalVI和UINMF在水平集成和镶嵌集成场景中都优于它们的同类算法。
Additionally, we provide a pipeline to assist researchers in selecting the optimal multi-omics prediction and integration algorithm..
此外,我们提供了一个管道,以帮助研究人员选择最佳的多组学预测和整合算法。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Workflow and multi-omics datasets for benchmarking.Fig. 2: Performance of 11 algorithms in predicting protein abundance from RNA expression.Fig. 3: Performance of nine algorithms in predicting chromatin accessibility information from RNA expression.Fig. 4: Benchmarking results for vertical integration.Fig.
图1:用于基准测试的工作流程和多组学数据集。图2:11种算法在从RNA表达预测蛋白质丰度方面的性能。图3:九种算法在从RNA表达预测染色质可及性信息方面的性能。。图。
5: Benchmarking results for horizontal integration.Fig. 6: Benchmarking results for mosaic integration..
5: 横向整合的基准测试结果。图6:mosaic集成的基准测试结果。。
Data availability
数据可用性
A summary of the multi-omics datasets used in the benchmark study, including the sequencing technologies and the websites where the raw data are available as follows: dataset 1 (human BMMCs): CITE-seq, GSE128639 (ref. 5); dataset 2 (human BMMCs): CITE-seq, GSE194122 (ref. 79); dataset 3 (human brain immune cells): CITE-seq, GSE201048 (ref.
基准研究中使用的多组学数据集的摘要,包括测序技术和原始数据可用的网站,如下所示:数据集1(人类BMMC):CITE-seq,GSE128639(参考文献5);数据集2(人类BMMC):CITE-seq,GSE194122(参考文献79);数据集3(人脑免疫细胞):CITE-seq,GSE201048(参考文献)。
80); dataset 4 (human CBMCs): CITE-seq, GSE100866 (ref. 1); dataset 5 (human glioblastomas): CITE-seq, GSM4972212 (ref. 81); dataset 6 (mouse glioblastomas): CITE-seq, GSE163120 (ref. 81); dataset 7 (mouse HSPCs): CITE-seq, GSE175702 (ref. 82); dataset 8 (human MALT tumor): CITE-seq, https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3; dataset 9–10 (mouse murine splenic myeloid cells): CITE-seq, GSE149544 (ref.
80);数据集4(人类CBMC):引用序列,GSE100866(参考文献1);数据集5(人类胶质母细胞瘤):CITE-seq,GSM4972212(参考文献81);数据集6(小鼠胶质母细胞瘤):CITE-seq,GSE163120(参考文献81);数据集7(小鼠HSPC):CITE-seq,GSE175702(参考文献82);数据集8(人类MALT肿瘤):CITE-seq,https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/malt_10k_protein_v3;数据集9-10(小鼠脾髓样细胞):CITE-seq,GSE149544(参考文献)。
83); dataset 11 (mouse naive brains): CITE-seq, GSE148127 (ref. 84); dataset 12–13 (human PBMCs): CITE-seq, GSE164378 (ref. 5); dataset 14–15 (human PBMCs): CITE-seq, https://zenodo.org/record/6348128#.Y5f40LJBzDU (ref. 30); dataset 21–22 (mouse spleen and lymph nodes): CITE-seq, GSE150599 (ref. 6); dataset 23–24 (human PBMCs): REAP-seq, GSE100501 (ref.
83);数据集11(小鼠幼稚大脑):CITE-seq,GSE148127(参考文献84);数据集12-13(人类PBMC):CITE-seq,GSE164378(参考文献5);数据集14-15(人类PBMC):引用序列,https://zenodo.org/record/6348128#.Y5f40LJBzDU(参考文献30);数据集21-22(小鼠脾脏和淋巴结):CITE-seq,GSE150599(参考文献6);数据集23-24(人类PBMC):REAP-seq,GSE100501(参考文献)。
2); dataset 25–26 and dataset 40–41 (human PBMCs): DOGMA-seq, GSE156478 (ref. 18); datasets 27 and 42 (human PBMCs): TEA-seq, GSE158013 (ref. 71); dataset 28 (human PBMCs): inCITE-seq, GSE163480 (ref. 85); dataset 29 (skin of mouse): SHARE-seq, GSE140203 (ref. 3); dataset 30 (adult brain of mouse): SHARE-seq, GSE140203 (ref.
2) ;数据集25-26和数据集40-41(人类PBMC):DOGMA-seq,GSE156478(参考文献18);数据集27和42(人类PBMC):TEA-seq,GSE158013(参考文献71);数据集28(人类PBMC):inCITE-seq,GSE163480(参考文献85);数据集29(小鼠皮肤):SHARE-seq,GSE140203(参考文献3);数据集30(小鼠的成年大脑):SHARE-seq,GSE140203(参考文献)。
3); dataset 31 (adult brain of mouse): SNARE-seq, GSE126074 (ref. 4); dataset 32 (adult brain of mouse): ISSAAC-seq, https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11264/ (ref. 12); dataset 33 (adult brain of mouse): 10x Multiome, https://www.10xgenomics.com/resources/datasets/frozen-human-healthy-brai.
3) ;数据集31(小鼠的成年大脑):SNARE-seq,GSE126074(参考文献4);数据集32(小鼠的成年大脑):ISSAAC-seq,https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-11264/(参考文献12);数据集33(小鼠成年大脑):10倍多组,https://www.10xgenomics.com/resources/datasets/frozen-human-healthy-brai.
Code availability
代码可用性
We have uploaded the codes and scripts used for the benchmark study and figure plotting to a GitHub website, which can be accessed at https://github.com/QuKunLab/MultiomeBenchmarking/. Code is also available in the Zenodo repository via https://doi.org/10.5281/zenodo.10540843 (ref. 90).
https://github.com/QuKunLab/MultiomeBenchmarking/.Zenodo存储库中的代码也可以通过https://doi.org/10.5281/zenodo.10540843(参考文献90)。
ReferencesStoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).Article
参考Toeckius,M。等人。单细胞中同时表位和转录组测量。自然方法14865-868(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).Article
Peterson,V.M.等人。单细胞中蛋白质和转录物的多重定量。美国国家生物技术公司。35936-939(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).Article
Ma,S。等人。通过RNA和染色质的共享单细胞分析鉴定染色质潜力。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).Article
Chen,S.,Lake,B.B。&Zhang,K。同一细胞中转录组和染色质可及性的高通量测序。美国国家生物技术公司。371452-1457(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).Article
Hao,Y.等人。多模式单细胞数据的综合分析。细胞1843573-3587.e29(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gayoso, A. et al. Joint probabilistic modeling of single-cell multi-omic data with totalVI. Nat. Methods 18, 272–282 (2021).Article
Gayoso,A.等人。使用totalVI对单细胞多组学数据进行联合概率建模。自然方法18272-282(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, L., Zhang, J. & Nie, Q. DIRECT-NET: an efficient method to discover cis-regulatory elements and construct regulatory networks from single-cell multiomics data. Sci. Adv. 8, eabl7393 (2022).Article
Zhang,L.,Zhang,J。&Nie,Q。DIRECT-NET:从单细胞多组学数据中发现顺式调控元件并构建调控网络的有效方法。科学。Adv.8,eabl7393(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kartha, V. K. et al. Functional inference of gene regulation using single-cell multi-omics. Cell Genom. 2, 100166 (2022).Article
Kartha,V.K.等人。使用单细胞多组学进行基因调控的功能推断。细胞基因组。2100166(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, C., Virgilio, M. C., Collins, K. L. & Welch, J. D. Multi-omic single-cell velocity models epigenome–transcriptome interactions and improves cell fate prediction. Nat. Biotechnol. 41, 387–398 (2023).Article
Li,C.,Virgilio,M.C.,Collins,K.L。和Welch,J.D。多组单细胞速度模型表观基因组-转录组相互作用并改善细胞命运预测。美国国家生物技术公司。41387-398(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gorin, G., Svensson, V. & Pachter, L. Protein velocity and acceleration from single-cell multiomics experiments. Genome Biol. 21, 39 (2020).Article
Gorin,G.,Svensson,V。&Pachter,L。单细胞多组学实验的蛋白质速度和加速度。基因组生物学。21,39(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).Article
La Manno,G。等人。单细胞的RNA速度。自然560494-498(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xu, W. et al. ISSAAC-seq enables sensitive and flexible multimodal profiling of chromatin accessibility and gene expression in single cells. Nat. Methods 19, 1243–1249 (2022).Article
Xu,W。等人,ISSAAC-seq能够对单细胞中的染色质可及性和基因表达进行灵敏而灵活的多模式分析。自然方法191243-1249(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, Z., Ye, C., Wang, J. & Zhang, N. R. Surface protein imputation from single cell transcriptomes by deep neural networks. Nat. Commun. 11, 651 (2020).Article
Zhou,Z.,Ye,C.,Wang,J。&Zhang,N.R。通过深度神经网络从单细胞转录组中估算表面蛋白。国家公社。11651(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 20, 363–374 (2023).Article
Bennett,H.M.,Stephenson,W.,Rose,C.M。&Darmanis,S。通过下一代测序或质谱实现单细胞蛋白质组学。自然方法20363-374(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gatto, L. et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat. Methods 20, 375–386 (2023).Article
Gatto,L.等人。关于执行,基准测试和报告单细胞蛋白质组学实验的初步建议。自然方法20375-386(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lance, C. et al. Multimodal single cell data integration challenge: results and lessons learned. In Proc. NeurIPS 2021 Competitions and Demonstrations Track (eds. Kiela, D. et al.) 162–176 (PMLR, 2022).Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues.
Lance,C.等人,《多模式单细胞数据集成挑战:结果和经验教训》。在过程中。NeurIPS 2021竞赛和示范赛道(编辑Kiela,D.等人)162-176(PMLR,2022)。Bartosovic,M.,Kabbe,M。&Castelo-Branco,G。单细胞切割和标签概况复杂组织中的组蛋白修饰和转录因子。
Nat. Biotechnol. 39, 825–835 (2021).Article .
美国国家生物技术公司。39825-835(2021)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).Article
Mimitou,E.P.等人。单细胞中染色质可及性,基因表达和蛋白质水平的可扩展多模式分析。美国国家生物技术公司。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).Article
Stuart,T。等人。单细胞数据的综合集成。细胞1771888-1902.e21(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–887.e17 (2019).Article
Welch,J.D.等人,《单细胞多组学整合》比较和对比了脑细胞同一性的特征。细胞1771873-887.e17(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).Article
Lotfollahi,M.等人。通过转移学习将单细胞数据映射到参考地图集。美国国家生物技术公司。40121-130(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ashuach, T. et al. MultiVI: deep generative model for the integration of multimodal data. Nat. Methods 20, 1222–1231 (2023).Article
Ashuach,T。等人,《MultiVI:多模态数据集成的深度生成模型》。自然方法201222-1231(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lakkis, J. et al. A multi-use deep learning method for CITE-seq and single-cell RNA-seq data integration with cell surface protein prediction and imputation. Nat. Mach. Intell. 4, 940–952 (2022).Article
Lakkis,J.等人。一种用于CITE-seq和单细胞RNA-seq数据与细胞表面蛋白预测和插补整合的多用途深度学习方法。自然马赫数。因特尔。4940-952(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, K. E., Yost, K. E., Chang, H. Y. & Zou, J. BABEL enables cross-modality translation between multiomic profiles at single-cell resolution. Proc. Natl Acad. Sci. USA 118, e2023070118 (2021).Article
。程序。国家科学院。科学。美国118,E202307018(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Du, J.-H., Cai, Z. & Roeder, K. Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT. Proc. Natl Acad. Sci. USA 119, e2214414119 (2022).Article
Du,J.-H.,Cai,Z。&Roeder,K。通过scVAEIT进行单细胞多模式镶嵌整合和插补的稳健概率建模。程序。国家科学院。科学。美国119,e2214414119(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lan, M., Zhang, S. & Gao, L. Efficient generation of paired single-cell multiomics profiles by deep learning. Adv. Sci 10, 2301169 (2023).Article
Lan,M.,Zhang,S。&Gao,L。通过深度学习有效生成成对的单细胞多组学概况。Adv.Sci 102301169(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Wen, H. et al. Proc. 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Association for Computing Machinery, 2022).Yang, K. D. et al. Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat. Commun. 12, 31 (2021).Article
Wen,H。等人。第28届ACM SIGKDD知识发现和数据挖掘会议(计算机械协会,2022年)。Yang,K.D.等人。使用自动编码器在单细胞成像和测序数据之间进行多域翻译。国家公社。12,31(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).Article
Baysoy,A.,Bai,Z.,Satija,R。&Fan,R。单细胞多组学的技术前景和应用。Nat。Rev。Mol。Cell Biol。24695-713(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cheng, M., Li, Z. & Costa, I. G. MOJITOO: a fast and universal method for integration of multimodal single-cell data. Bioinformatics 38, i282–i289 (2022).Article
Cheng,M.,Li,Z.&Costa,I.G.MOJITOO:一种快速通用的多模式单细胞数据集成方法。生物信息学38,i282–i289(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lotfollahi, M., Litinetskaya, A. & Theis, F. J. Multigrate: single-cell multi-omic data integration. Preprint at bioRxiv https://doi.org/10.1101/2022.03.16.484643 (2022).Wang, R. H., Wang, J. & Li, S. C. Probabilistic tensor decomposition extracts better latent embeddings from single-cell multiomic data.
Lotfollahi,M.,Litinetskaya,A。&Theis,F.J。Multigrate:单细胞多组数据集成。bioRxiv预印本https://doi.org/10.1101/2022.03.16.484643(2022年)。Wang,R.H.,Wang,J。&Li,S.C。概率张量分解从单细胞多组数据中提取更好的潜在嵌入。
Nucleic Acids Res. 51, e81 (2023).Article .
核酸研究51,e81(2023)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, H. J., Lin, Y., Geddes, T. A., Yang, J. Y. H. & Yang, P. CiteFuse enables multi-modal analysis of CITE-seq data. Bioinformatics 36, 4137–4143 (2020).Article
Kim,H.J.,Lin,Y.,Geddes,T.A.,Yang,J.Y.H.&Yang,P.CiteFuse能够对CITE-seq数据进行多模态分析。生物信息学364137-4143(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ma, A. et al. Single-cell biological network inference using a heterogeneous graph transformer. Nat. Commun. 14, 964 (2023).Article
Ma,A。等人。使用异构图转换器的单细胞生物网络推断。国家公社。14964(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jin, S., Zhang, L. & Nie, Q. scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles. Genome Biol. 21, 25 (2020).Article
Jin,S.,Zhang,L。&Nie,Q。scAI:一种无监督的方法,用于并行单细胞转录组和表观基因组图谱的综合分析。基因组生物学。21、25(2020年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Argelaguet, R. et al. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 21, 111 (2020).Article
Argelaguet,R。等人。MOFA+:多模式单细胞数据综合集成的统计框架。基因组生物学。21111(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, G. et al. A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data. Genome Biol. 23, 20 (2022).Article
Li,G。等人。用于单细胞RNA-seq和ATAC-seq数据的多视图分析的深度生成模型。基因组生物学。23、20(2022年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lynch, A. W. et al. MIRA: joint regulatory modeling of multimodal expression and chromatin accessibility in single cells. Nat. Methods 19, 1097–1108 (2022).Article
Lynch,A.W.等人,MIRA:单细胞中多模式表达和染色质可及性的联合调控模型。自然方法191097-1108(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Singh, R., Hie, B. L., Narayan, A. & Berger, B. Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities. Genome Biol. 22, 131 (2021).Article
Singh,R.,Hie,B.L.,Narayan,A。&Berger,B。Schema:度量学习能够解释异质单细胞模式的合成。基因组生物学。22131(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kriebel, A. R. & Welch, J. D. UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization. Nat. Commun. 13, 780 (2022).Article
Kriebel,A。R。&Welch,J。D。UINMF使用非负矩阵分解对单细胞多组数据集进行镶嵌集成。国家公社。13780(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Z. et al. scMoMaT jointly performs single cell mosaic integration and multi-modal bio-marker detection. Nat. Commun. 14, 384 (2023).Article
Zhang,Z。等人。scMoMaT联合进行单细胞镶嵌整合和多模式生物标记检测。国家公社。14384(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ghazanfar, S., Guibentif, C. & Marioni, J. C. Stabilized mosaic single-cell data integration using unshared features. Nat. Biotechnol. 42, 284–292 (2024).Article
Ghazanfar,S.,Guibentif,C。&Marioni,J.C。使用非共享特征稳定镶嵌单细胞数据集成。美国国家生物技术公司。42284-292(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
De Biasi, S. et al. Circulating mucosal-associated invariant T cells identify patients responding to anti-PD-1 therapy. Nat. Commun. 12, 1669 (2021).Article
De Biasi,S。等人。循环粘膜相关不变T细胞识别对抗PD-1治疗有反应的患者。国家公社。121669(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550–572 (2023).Article
Heumos,L.等人。跨模式单细胞分析的最佳实践。Genet自然Rev。24550-572(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Miao, Z., Humphreys, B. D., McMahon, A. P. & Kim, J. Multi-omics integration in the age of million single-cell data. Nat. Rev. Nephrol. 17, 710–724 (2021).Article
Miao,Z.,Humphreys,B.D.,McMahon,A.P。&Kim,J。百万单细胞数据时代的多组学整合。自然修订版Nephrol。1710-724(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Argelaguet, R., Cuomo, A. S. E., Stegle, O. & Marioni, J. C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 39, 1202–1215 (2021).Article
Argelaguet,R.,Cuomo,A.S.E.,Stegle,O.&Marioni,J.C。单细胞数据集成的计算原理和挑战。美国国家生物技术公司。391202-1215(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, J. et al. Data denoising with transfer learning in single-cell transcriptomics. Nat. Methods 16, 875–878 (2019).Article
Wang,J.等人。单细胞转录组学中转移学习的数据去噪。自然方法16875-878(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nat. Methods 15, 539–542 (2018).Article
Huang,M.等。SAVER:单细胞RNA测序的基因表达恢复。自然方法15539-542(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, Y. et al. WEDGE: imputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition. Brief. Bioinform. 22, bbab085 (2021).Article
Hu,Y。等人。WEDGE:使用有偏矩阵分解从单细胞RNA-seq数据集中估算基因表达值。简介。生物信息。22,bbab085(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Truong, K.-L. et al. Killer-like receptors and GPR56 progressive expression defines cytokine production of human CD4+ memory T cells. Nat. Commun. 10, 2263 (2019).Article
Truong,K.-L.等人。杀伤样受体和GPR56进行性表达定义了人类CD4+记忆T细胞的细胞因子产生。国家公社。102263(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fergusson, J. R. et al. CD161intCD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunol. 9, 401–413 (2016).Article
Fergusson,J.R。等人CD161intCD8+T细胞:一种新型的富含肠道的高功能记忆CD8+T细胞群。粘膜免疫。9401-413(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kung, P. C., Goldstein, G., Reinherz, E. L. & Schlossman, S. F. Monoclonal antibodies defining distinctive human T cell surface antigens. Science 206, 347–349 (1979).Article
Kung,P.C.,Goldstein,G.,Reinherz,E.L。和Schlossman,S.F。单克隆抗体定义了独特的人类T细胞表面抗原。科学206347-349(1979)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liang, Y. & Tedder, T. F. Identification of a CD20-, FcϵRIβ-, and HTm4-Related gene family: sixteen new MS4A family members expressed in human and mouse. Genomics 72, 119–127 (2001).Article
Liang,Y。&Tedder,T。F。CD20-,FcϵRIβ和HTm4相关基因家族的鉴定:在人和小鼠中表达的十六个新的MS4A家族成员。基因组学72119-127(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ziegler-Heitbrock, H. W. L. & Ulevitch, R. J. CD14: cell surface receptor and differentiation marker. Immunol. Today 14, 121–125 (1993).Article
Ziegler-Heitbrock,H.W.L。和Ulevitch,R.J.CD14:细胞表面受体和分化标记。免疫。今天14121-125(1993)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).Article
Stuart,T.,Srivastava,A.,Madad,S.,Lareau,C.A。&Satija,R。使用Signac进行单细胞染色质状态分析。自然方法181333-1341(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Spitz, F. & Furlong, E. E. M. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).Article
Spitz,F。&Furlong,E.E.M。转录因子:从增强子结合到发育控制。Genet自然Rev。13613-626(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gertz, J. et al. Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol. Cell 52, 25–36 (2013).Article
Gertz,J.等人。细胞类型特异性和共享转录因子结合位点的独特性质。分子细胞52,25-36(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kang, R. et al. EnhancerDB: a resource of transcriptional regulation in the context of enhancers. Database 2019, bay141 (2019).Article
Kang,R。等人。增强子DB:增强子背景下的转录调控资源。数据库2019,bay141(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buergel, T. et al. Metabolomic profiles predict individual multidisease outcomes. Nat. Med. 28, 2309–2320 (2022).Article
Buergel,T。等人。代谢组学谱预测个体多疾病的结果。《自然医学》282309-2320(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lewis, S. M. et al. Spatial omics and multiplexed imaging to explore cancer biology. Nat. Methods 18, 997–1012 (2021).Article
Lewis,S.M.等人。探索癌症生物学的空间组学和多重成像。自然方法18997-1012(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, B. et al. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nat. Methods 19, 662–670 (2022).Article
。自然方法19662-670(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Linderman, G. C. et al. Zero-preserving imputation of single-cell RNA-seq data. Nat. Commun. 13, 192 (2022).Article
Linderman,G.C.等人。单细胞RNA-seq数据的保零插补。国家公社。13192(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yuan, H. & Kelley, D. R. scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks. Nat. Methods 19, 1088–1096 (2022).Article
Yuan,H。&Kelley,D。R。scBasset:使用卷积神经网络对单细胞ATAC-seq进行基于序列的建模。自然方法191088-1096(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792.e21 (2022).Article
Chen,A。等人。使用DNA纳米球图案阵列的小鼠器官发生的时空转录组图谱。细胞1851777-1792.e21(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).Article
Chen,K.H.,Boettiger,A.N.,Moffitt,J.R.,Wang,S。&Zhuang,X。单细胞中的空间分辨,高度多重RNA分析。科学348,aaa6090(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Su, G. et al. Spatial multi-omics sequencing for fixed tissue via DBiT-seq. STAR Protoc. 2, 100532 (2021).Article
Su,G。等人。通过DBiT-seq对固定组织进行空间多组学测序。恒星质子。2100 532(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Y. et al. High-plex protein and whole transcriptome co-mapping at cellular resolution with spatial CITE-seq. Nat. Biotechnol. 41, 1405–1409 (2023).Article
Liu,Y。等人。High-plex蛋白和全转录组在细胞分辨率下与空间CITE-seq共定位。美国国家生物技术公司。411405-1409(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).Article
Theodoris,C.V。等人。迁移学习可以在网络生物学中进行预测。自然618616-624(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cui, H. et al. scGPT: toward building a foundation model for single-cell multi-omics using generative AI. Nat. Methods 21, 1470–1480 (2024).Article
Cui,H.等人,《scGPT:使用生成人工智能建立单细胞多组学的基础模型》,《自然方法》211470-1480(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hao, M. et al. Large-scale foundation model on single-cell transcriptomics. Nat. Methods 21, 1481–1491 (2024).Article
Hao,M.等人。单细胞转录组学的大规模基础模型。自然方法211481-1491(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Swanson, E. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 10, e63632 (2021).Article
Swanson,E.等人。使用TEA-seq同时进行转录本,表位和染色质可及性的三峰单细胞测量。eLife 10,e63632(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hand, D. J. & Till, R. J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach. Learn. 45, 171–186 (2001).Article
。马赫。学习。45171-186(2001)。文章
Google Scholar
谷歌学者
Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218 (1985).Article
Hubert,L.和Arabie,P.比较分数。J、经典。2193-218(1985年)。文章
Google Scholar
谷歌学者
Strehl, A. & Ghosh, J. Cluster ensembles–a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002).
Strehl,A。&Ghosh,J。Cluster ensembles–用于组合多个分区的知识重用框架。J、 马赫。学习。第3583-617号决议(2002年)。
Google Scholar
谷歌学者
Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).Article
。J、 计算机。应用。数学。20,53-65(1987)。文章
Google Scholar
谷歌学者
Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).Article
Luecken,M.D.等人,《单细胞基因组学中地图集级数据整合的基准测试》。自然方法19,41-50(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).Article
Korsunsky,I。等人。单细胞数据与和谐的快速,灵敏和准确整合。自然方法161289-1296(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Büttner, M., Miao, Z., Wolf, F. A., Teichmann, S. A. & Theis, F. J. A test metric for assessing single-cell RNA-seq batch correction. Nat. Methods 16, 43–49 (2019).Article
Büttner,M.,Miao,Z.,Wolf,F.A.,Teichmann,S.A。&Theis,F.J。评估单细胞RNA-seq批次校正的测试指标。自然方法16,43-49(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Luecken, M. D. et al. A sandbox for prediction and integration of DNA, RNA, and proteins in single cells. In Proc. Neural Information Processing Systems Track on Datasets and Benchmarks (eds. Vanschoren, J. & Yeung, S.) 13 (NeurIPS, 2021).Kumar, P. et al. Single-cell transcriptomics and surface epitope detection in human brain epileptic lesions identifies pro-inflammatory signaling.
。在过程中。神经信息处理系统跟踪数据集和基准(编辑Vanschoren,J。&Yeung,S。)13(NeurIPS,2021)。Kumar,P。等人。人脑癫痫病变中的单细胞转录组学和表面表位检测可识别促炎信号传导。
Nat. Neurosci. 25, 956–966 (2022).Article .
自然神经科学。。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).Article
Pombo-Antunes,A.R.等人。胶质母细胞瘤中髓样细胞在物种和疾病阶段的单细胞分析揭示了巨噬细胞的竞争和特化。自然神经科学。24595-610(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Konturek-Ciesla, A. et al. Temporal multimodal single-cell profiling of native hematopoiesis illuminates altered differentiation trajectories with age. Cell Rep. 42, 112304 (2023).Article
Konturek-Ciesla,A。等人。天然造血的时间多模式单细胞分析阐明了随着年龄的增长分化轨迹的改变。细胞代表42112304(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lukowski, S. W. et al. Absence of Batf3 reveals a new dimension of cell state heterogeneity within conventional dendritic cells. iScience 24, 102402 (2021).Article
Lukowski,S.W。等人。Batf3的缺失揭示了常规树突状细胞内细胞状态异质性的新维度。iScience 24102402(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Golomb, S. M. et al. Multi-modal single-cell analysis reveals brain immune landscape plasticity during aging and gut microbiota dysbiosis. Cell Rep. 33, 108438 (2020).Article
Golomb,S.M.等人。多模式单细胞分析揭示了衰老和肠道微生物群失调期间大脑免疫景观的可塑性。Cell Rep.33108438(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chung, H. et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Methods 18, 1204–1212 (2021).Article
Chung,H.等人。体内核蛋白和RNA的联合单细胞测量。自然方法181204-1212(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dou, J. et al. Bi-order multimodal integration of single-cell data. Genome Biol. 23, 112 (2022).Article
Dou,J。等人。单细胞数据的双阶多模式整合。基因组生物学。23112(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kimmel, J. C. et al. Murine single-cell RNA-seq reveals cell-identity-and tissue-specific trajectories of aging. Genome Res. 29, 2088–2103 (2019).Article
Kimmel,J.C。等人。鼠单细胞RNA-seq揭示了细胞身份和组织特异性衰老轨迹。基因组研究292088-2103(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lyu, P. et al. Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina. Cell Rep. 37, 109994 (2021).Article
Lyu,P。等人。控制哺乳动物视网膜中时间模式,神经发生和细胞命运规范的基因调控网络。Cell Rep.37109994(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, W. et al. Spatial transcriptomics reveal neuron–astrocyte synergy in long-term memory. Nature 627, 374–381 (2024).Article
空间转录组学揭示了长期记忆中神经元与星形胶质细胞的协同作用。自然627374-381(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, Y. et al. Benchmarking algorithms for single-cell multi-omics prediction and integration. Zenodo https://doi.org/10.5281/zenodo.10540843 (2024).Download referencesAcknowledgementsThis work was supported by the National Natural Science Foundation of China grants (T2125012 to K.Q.), the National Key R&D Program of China (2020YFA0112200 and 2022YFA1303200 to K.Q.), the National Natural Science Foundation of China grants (32170668 to B.L.; 12371383 and 61972368 to F.C.), CAS Project for Young Scientists in Basic Research YSBR-005 (to K.Q.), Anhui Province Science and Technology Key Program (202003a07020021 to K.Q.), the Fundamental Research Funds for the Central Universities (YD2070002019, WK9110000141 and WK2070000158 to K.Q.; WK0010000085 to Y.H.), Anhui Provincial Natural Science Foundation (2308085QA07 to Y.H.) and China Postdoctoral Science Foundation (2023M733383 to Y.H.).
Hu,Y.等人。单细胞多组学预测和整合的基准算法。泽诺多https://doi.org/10.5281/zenodo.10540843(2024年)。下载参考文献致谢这项工作得到了国家自然科学基金资助(T2125012授予K.Q.),国家重点研发计划(2020YFA0112200和2022YFA1303200授予K.Q.),国家自然科学基金资助(32170668授予B.L.;12371383和61972368授予F.C.),中国科学院基础研究青年科学家项目YSBR-005(授予K.Q.),安徽省科技重点项目(202003a07020021授予K.Q.),中央大学基础研究基金(YD207002019,WK9110000141和WK0141)207000158至K.Q.;WK0010000085至Y.H.),安徽省自然科学基金(2308085QA07至Y.H.)和中国博士后科学基金(2023M733383至Y.H.)。
We thank the USTC supercomputing center and the School of Life Science Bioinformatics Center for providing computing resources for this project.Author informationAuthor notesThese authors contributed equally: Yinlei Hu, Siyuan Wan, Yuanhanyu Luo.Authors and AffiliationsDepartment of Oncology, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, ChinaYinlei Hu, Siyuan Wan, Yuanzhe Li, Wentao Deng, Chen Jiang, Zongcheng Yang & Kun QuInstitute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, ChinaYinlei Hu, Siyuan Wan, Yuanzhe Li, Wentao Deng, Chen Jiang & Kun QuSchool of Mathematical Science, University of Science and Technology of China, Hefei, ChinaYinlei Hu & Falai ChenSchool of Artificial Intelligence and Data Science, University of Sc.
我们感谢USTC超级计算中心和生命科学学院生物信息学中心为该项目提供计算资源。作者信息作者注意到这些作者做出了同样的贡献:胡银磊,万思源,罗元汉。作者及所属单位中国科学技术大学第一附属医院肿瘤科,中国科学技术大学生命科学与医学系基础医学院,合肥,胡银磊,万思源,李元哲,邓文涛,陈江,杨宗成,昆昆人工智能研究所,合肥综合国家科学中心,合肥,胡银磊,万思源,李元哲,邓文涛,陈江,昆曲中国科学技术大学数学科学学院,合肥,胡银磊,陈法来,南理工大学人工智能与数据科学学院。
PubMed Google ScholarSiyuan WanView author publicationsYou can also search for this author in
PubMed Google ScholarSiyuan WanView作者出版物您也可以在
PubMed Google ScholarYuanhanyu LuoView author publicationsYou can also search for this author in
PubMed Google ScholarYuanhanyu LuoView作者出版物您也可以在
PubMed Google ScholarYuanzhe LiView author publicationsYou can also search for this author in
PubMed Google ScholarYuanzhe LiView作者出版物您也可以在
PubMed Google ScholarTong WuView author publicationsYou can also search for this author in
PubMed Google ScholarTong WuView作者出版物您也可以在
PubMed Google ScholarWentao DengView author publicationsYou can also search for this author in
PubMed Google ScholarWentao DengView作者出版物您也可以在
PubMed Google ScholarChen JiangView author publicationsYou can also search for this author in
PubMed Google ScholarChen JiangView作者出版物您也可以在
PubMed Google ScholarShan JiangView author publicationsYou can also search for this author in
PubMed Google ScholarShan JiangView作者出版物您也可以在
PubMed Google ScholarYueping ZhangView author publicationsYou can also search for this author in
PubMed Google ScholarYueping ZhangView作者出版物您也可以在
PubMed Google ScholarNianping LiuView author publicationsYou can also search for this author in
PubMed Google ScholarZongcheng YangView author publicationsYou can also search for this author in
PubMed Google ScholarZongcheng YangView作者出版物您也可以在
PubMed Google ScholarFalai ChenView author publicationsYou can also search for this author in
PubMed Google ScholarFalai ChenView作者出版物您也可以在
PubMed Google ScholarBin LiView author publicationsYou can also search for this author in
PubMed Google ScholarBin LiView作者出版物您也可以在
PubMed Google ScholarKun QuView author publicationsYou can also search for this author in
PubMed Google ScholarKun QuView作者出版物您也可以在
PubMed Google ScholarContributionsK.Q., B.L. and F.C. conceived the project. Y.H., S.W. and Y. Luo designed the framework and performed data analysis with help from T.W., S.J., Y.Z., N.L. and Z.Y. Y. Li, W.D. and C.J. contributed in the revision. B.L., Y.H. and K.Q. wrote the manuscript with input from all authors.
PubMed谷歌学术贡献SK。Q、 ,B.L.和F.C.构思了这个项目。Y、 H.,S.W.和Y.Luo设计了框架,并在T.W.,S.J.,Y.Z.,N.L.和Z.Y.Y的帮助下进行了数据分析。Li,W.D.和C.J.参与了修订。B、 L.,Y.H.和K.Q.在所有作者的意见下撰写了手稿。
K.Q. supervised the entire project. All authors read and approved the final manuscript.Corresponding authorsCorrespondence to.
K、 Q.监督整个项目。。通讯作者通讯。
Falai Chen, Bin Li or Kun Qu.Ethics declarations
Falai Chen,Bin Li或Kun Qu.道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Methods thanks Jinmiao Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editors: Hui Hua and Lin Tang, in collaboration with the Nature Methods team.
Nature Methods感谢陈金淼和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审报告。主要处理编辑:Hui Hua和Lin Tang,与Nature Methods团队合作。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Performance of eleven algorithms in predicting RC protein abundance from RNA expression.a, b, Average PCC (a) and CMD (b) values between the reference and predicted RC protein expression for the intra-dataset scenario, that is, the training and test sets are from the same datasets.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1十一种算法在从RNA表达预测RC蛋白丰度方面的性能。a,b,参考和预测的RC蛋白表达之间的平均PCC(a)和CMD(b)值用于数据集内场景,即训练和测试集来自相同的数据集。
The X and Y axes are the cell‒cell and protein‒protein PCC/CMD, respectively, and the dashed lines are the medians of all algorithms’ results. Error bar: standard deviation of 23 datasets. Data are presented as mean values +/- 0.5xSD. c, d, Same as (a) and (b), but the results were predicted for the inter-dataset scenario, that is, the training and test sets are from different datasets.
X轴和Y轴分别是细胞-细胞和蛋白质-蛋白质PCC/CMD,虚线是所有算法结果的中位数。误差线:23个数据集的标准偏差。数据表示为平均值+/-0.5xSD。c、 d,与(a)和(b)相同,但结果是针对数据集间场景预测的,即训练集和测试集来自不同的数据集。
Error bar: standard deviation of 10 datasets. e, Average RMSE values between the reference data and the predicted results for the intra-dataset scenario (X axes) and inter-dataset scenario (Y axes). Error bars: standard deviation of 23 datasets (X axes) or 10 datasets (Y axes). Data are presented as mean values +/− 0.5xSD.
误差线:10个数据集的标准偏差。e、 数据集内场景(X轴)和数据集间场景(Y轴)的参考数据和预测结果之间的平均RMSE值。误差线:23个数据集(X轴)或10个数据集(Y轴)的标准偏差。数据表示为平均值+/-0.5xSD。
f, g, Rank index (RI) values of eleven algorithms in the intra-dataset (f) and inter-dataset (g) scenarios. h, The overall performance of eleven algorithms in both intra-dataset and inter-dataset scenarios. Source data for this figure are provided.Source dataExtended Data Fig. 2 Performance of eleven algorithms in predicting RU protein abundance from RNA expression.a, b, Average PCC (a) and CMD (b) values between the reference and predicted RU protein abundance for the intra-dataset scenario, that is, the training and test sets are from the same datasets.
f、 g,数据集内(f)和数据集间(g)场景中11种算法的排名指数(RI)值。h、 11种算法在数据集内和数据集间场景中的总体性能。提供了该数字的源数据。源数据扩展数据图2十一种算法在从RNA表达预测RU蛋白丰度方面的性能。a,b,参考和预测RU蛋白丰度之间的平均PCC(a)和CMD(b)值对于数据集内场景,即训练和测试集来自相同的数据集。
The X and Y axes are the cell‒cell and protein‒pr.
X轴和Y轴是细胞-细胞和蛋白质-pr。
Nat Methods (2024). https://doi.org/10.1038/s41592-024-02429-wDownload citationReceived: 14 April 2023Accepted: 19 August 2024Published: 25 September 2024DOI: https://doi.org/10.1038/s41592-024-02429-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat方法(2024)。https://doi.org/10.1038/s41592-024-02429-wDownload引文接收日期:2023年4月14日接收日期:2024年8月19日发布日期:2024年9月25日OI:https://doi.org/10.1038/s41592-024-02429-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供