商务合作
动脉网APP
可切换为仅中文
AbstractCancer cells require high levels of iron for rapid proliferation, leading to significant upregulation of cell-surface transferrin receptor 1 (TfR1), which mediates iron uptake by binding to the iron-carrying protein transferrin1,2,3. Leveraging this phenomenon and the fast endocytosis rate of TfR1 (refs.
摘要癌细胞需要高水平的铁才能快速增殖,导致细胞表面转铁蛋白受体1(TfR1)的显着上调,TfR1通过与携带铁的蛋白转铁蛋白1,2,3结合来介导铁的摄取。利用这种现象和TfR1的快速内吞率(参考文献)。
4,5), we developed transferrin receptor targeting chimeras (TransTACs), a heterobispecific antibody modality for membrane protein degradation. TransTACs are engineered to drive rapid co-internalization of a target protein of interest and TfR1 from the cell surface, and to enable target protein entry into the lysosomal degradation pathway.
4,5),我们开发了转铁蛋白受体靶向嵌合体(TransTACs),这是一种用于膜蛋白降解的异源双特异性抗体形式。TransTACs被设计为驱动目标蛋白和TfR1从细胞表面快速共内化,并使目标蛋白进入溶酶体降解途径。
We show that TransTACs can efficiently degrade a diverse range of single-pass, multi-pass, native or synthetic membrane proteins, including epidermal growth factor receptor, programmed cell death 1 ligand 1, cluster of differentiation 20 and chimeric antigen receptor. In example applications, TransTACs enabled the reversible control of human primary chimeric antigen receptor T cells and the targeting of drug-resistant epidermal growth factor receptor-driven lung cancer with the exon 19 deletion/T790M/C797S mutations in a mouse xenograft model.
我们表明,TransTACs可以有效降解多种单程,多程,天然或合成膜蛋白,包括表皮生长因子受体,程序性细胞死亡1配体1,分化簇20和嵌合抗原受体。在实例应用中,TransTACs能够可逆地控制人原代嵌合抗原受体T细胞,并在小鼠异种移植模型中靶向具有外显子19缺失/T790M/C797S突变的耐药表皮生长因子受体驱动的肺癌。
TransTACs represent a promising new family of bifunctional antibodies for precise manipulation of membrane proteins and targeted cancer therapy..
TransTACs代表了一种有前途的新的双功能抗体家族,用于精确操纵膜蛋白和靶向癌症治疗。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription$29.99 / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 51 print issues and online access$199.00 per yearonly $3.90 per issueLearn moreBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: TransTAC overview.Fig. 2: Designing TransTAC.Fig. 3: Degrading diverse membrane proteins with TransTACs.Fig. 4: Targeting TKI-resistant NSCLC with an EGFR TransTAC.Fig. 5: In vivo characterization.
图1:TransTAC概述。图2:设计TransTAC。图3:用TransTACs降解多种膜蛋白。图4:用EGFR-TransTAC靶向TKI抗性NSCLC。图5:体内表征。
Data availability
数据可用性
TFRC transcriptomics analyses were conducted using data from the MERAV database (http://merav.wi.mit.edu) and the DICE database (https://dice-database.org/). Source data are provided with this paper.
TFRC转录组学分析是使用MERAV数据库的数据进行的(http://merav.wi.mit.edu)和骰子数据库(https://dice-database.org/)。本文提供了源数据。
Code availability
代码可用性
Python scripts for TFRC transcriptomics analysis are available at https://github.com/garykbrixi/TFRC_analysis.
https://github.com/garykbrixi/TFRC_analysis.
ReferencesMayle, K. M., Le, A. M. & Kamei, D. T. The intracellular trafficking pathway of transferrin. Biochim. Biophys. Acta 1820, 264–281 (2012).Article
参考文献Mayle,K.M.,Le,A.M。和Kamei,D.T。转铁蛋白的细胞内运输途径。Biochim。生物物理。Acta 1820264-281(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cheng, Y., Zak, O., Aisen, P., Harrison, S. C. & Walz, T. Structure of the human transferrin receptor-transferrin complex. Cell 116, 565–576 (2004).Article
Cheng,Y.,Zak,O.,Aisen,P.,Harrison,S.C。&Walz,T。人转铁蛋白受体-转铁蛋白复合物的结构。细胞116565-576(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Candelaria, P. V., Leoh, L. S., Penichet, M. L. & Daniels-Wells, T. R. Antibodies targeting the Transferrin Receptor 1 (TfR1) as direct anti-cancer agents. Front. Immunol. 12, 607692 (2021).Article
Candelaria,P.V.,Leoh,L.S.,Penichet,M.L。和Daniels Wells,T.R。靶向转铁蛋白受体1(TfR1)作为直接抗癌剂的抗体。正面。免疫。12607692(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Iacopetta, B. J. & Morgan, E. H. The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes. J. Biol. Chem. 258, 9108–9115 (1983).Article
Iacopetta,B.J。&Morgan,E.H。兔网织红细胞转铁蛋白内吞作用和转铁蛋白铁摄取的动力学。J、 生物。化学。2589108-9115(1983)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ciechanover, A., Schwartz, A. L., Dautry-Varsat, A. & Lodish, H. F. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J. Biol. Chem. 258, 9681–9689 (1983).Article
Ciechanover,A.,Schwartz,A.L.,Dautry-Varsat,A。&Lodish,H.F。转铁蛋白和转铁蛋白受体在人肝癌细胞系中内化和再循环的动力学。溶酶体抑制剂的作用。J、 生物。化学。2589681–9689(1983)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rhee, K. & Zhou, X. Two in one: the emerging concept of bifunctional antibodies. Curr. Opin. Biotechnol. 85, 103050 (2024).Article
Rhee,K。&Zhou,X。二合一:双功能抗体的新兴概念。货币。奥平。生物技术。85103050(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wells, J. A. & Kumru, K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).Article
Wells,J.A。&Kumru,K。细胞外靶向蛋白质降解:药物发现的新兴模式。《药物目录》修订版。23126-140(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).Article
Cotton,A.D.,Nguyen,D.P.,Gramespacher,J.A.,Seiple,I.B。&Wells,J.A。开发用于降解细胞表面免疫检查点蛋白PD-L1的基于抗体的PROTAC。J、 美国化学。Soc.143593–598(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Marei, H. et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature https://doi.org/10.1038/s41586-022-05235-6 (2022).Article
Marei,H.等人。针对E3泛素连接酶的抗体降解受体。自然https://doi.org/10.1038/s41586-022-05235-6(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gramespacher, J. A., Cotton, A. D., Burroughs, P. W. W., Seiple, I. B. & Wells, J. A. Roadmap for optimizing and broadening antibody-based PROTACs for degradation of cell surface proteins. ACS Chem. Biol. 17, 1259–1268 (2022).Article
。ACS化学。生物学171259-1268(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Siepe, D. H., Picton, L. K. & Garcia, K. C. Receptor elimination by E3 ubiquitin ligase recruitment (REULR): a targeted protein degradation toolbox. ACS Synth. Bio. 12, 1081–1093 (2023).Article
Siepe,D.H.,Picton,L.K。&Garcia,K.C。通过E3泛素连接酶募集(REULR)消除受体:靶向蛋白质降解工具箱。ACS合成。生物学121081-1093(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).Article
Ahn,G。等人,LYTACs与脱唾液酸糖蛋白受体结合以进行靶向蛋白质降解。自然化学。生物学17937-946(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).Article
Banik,S.M.等人。溶酶体靶向嵌合体降解细胞外蛋白。自然584291-297(2020)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pance, K. et al. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01456-2 (2022).Article
Pance,K。等人。模块化细胞因子受体靶向嵌合体,用于靶向降解细胞表面和细胞外蛋白。美国国家生物技术公司。https://doi.org/10.1038/s41587-022-01456-2(2022年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, Y., Teng, P., Montgomery, N. T., Li, X. & Tang, W. Development of triantennary N-acetylgalactosamine conjugates as degraders for extracellular proteins. ACS Cent Sci 7, 499–506 (2021).Article
Zhou,Y.,Teng,P.,Montgomery,N.T.,Li,X。&Tang,W。三触角N-乙酰半乳糖胺缀合物作为细胞外蛋白降解物的开发。ACS Cent Sci 7499–506(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).Article
Caianiello,D.F.等人。介导细胞外蛋白降解的双功能小分子。自然化学。生物学17947-953(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zheng, J. et al. Bifunctional compounds as molecular degraders for integrin-facilitated targeted protein degradation. J. Am. Chem. Soc. 144, 21831–21836 (2022).Article
Zheng,J。等人。双功能化合物作为整合素的分子降解剂促进了靶向蛋白质降解。J、 美国化学。Soc.14421831–21836(2022年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Miao, Y. et al. Bispecific aptamer chimeras enable targeted protein degradation on cell membranes. Angew. Chem. Int. Ed. 60, 11267–11271 (2021).Article
Miao,Y。等人。双特异性适体嵌合体使细胞膜上的靶向蛋白质降解成为可能。安吉。化学。内联编辑6011267-11271(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Ahn, G. et al. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).Article
Ahn,G.等人阐明了溶酶体靶向嵌合体靶向膜蛋白降解的细胞决定因素。科学382,eadf6249(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shen, F. & Dassama, L. M. K. Opportunities and challenges of protein-based targeted protein degradation. Chem. Sci. 14, 8433–8447 (2023).Article
Shen,F。&Dassama,L.M.K。基于蛋白质的靶向蛋白质降解的机遇和挑战。化学。科学。148433–8447(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kawabata, H. Transferrin and transferrin receptors update. Free Radic. Biol. Med. 133, 46–54 (2019).Article
川端康成,H。转铁蛋白和转铁蛋白受体更新。自由基。生物医学133,46-54(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Daniels, T. R. et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta 1820, 291–317 (2012).Article
Daniels,T.R.等人,《转铁蛋白受体和抗癌治疗剂的靶向递送》。生物化学。生物物理。Acta 1820291–317(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hogemann-Savellano, D. et al. The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5, 495–506 (2003).Article
转铁蛋白受体:一种潜在的人类癌症分子成像标志物。瘤形成5495-506(2003)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hopkins, C. R., Miller, K. & Beardmore, J. M. Receptor-mediated endocytosis of transferrin and epidermal growth factor receptors: a comparison of constitutive and ligand-induced uptake. J. Cell Sci. Suppl. 3, 173–186 (1985).Article
Hopkins,C.R.,Miller,K。&Beardmore,J.M。受体介导的转铁蛋白和表皮生长因子受体的内吞作用:组成型和配体诱导摄取的比较。J、 细胞科学。补充3173-186(1985)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hsu, V. W., Bai, M. & Li, J. Getting active: protein sorting in endocytic recycling. Nat. Rev. Mol. Cell Biol. 13, 323–328 (2012).Article
Hsu,V.W.,Bai,M。&Li,J。变得活跃:内吞再循环中的蛋白质分选。Nat。Rev。Mol。Cell Biol。13323-328(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shaul, Y. D. et al. MERAV: a tool for comparing gene expression across human tissues and cell types. Nucleic Acids Res. 44, D560–D566 (2016).Article
Shaul,Y.D.等人。MERAV:一种用于比较人体组织和细胞类型中基因表达的工具。核酸研究44,D560–D566(2016)。文章
MathSciNet
MathSciNet
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715 e1716 (2018).Article
Schmiedel,B.J.等人。遗传多态性对人类免疫细胞基因表达的影响。细胞1751701-1715 e1716(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klesmith, J. R. et al. Retargeting CD19 chimeric antigen receptor T cells via engineered CD19-fusion proteins. Mol. Pharm. 16, 3544–3558 (2019).Article
Klesmith,J.R。等人。通过工程化CD19融合蛋白重新靶向CD19嵌合抗原受体T细胞。摩尔药理学163544-3558(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Naqvi, S. A. et al. Insertion of a lysosomal enzyme cleavage site into the sequence of a radiolabeled neuropeptide influences cell trafficking in vitro and in vivo. Cancer Biother. Radiopharm. 25, 89–95 (2010).PubMed
。癌症生物群。放射性药物。25,89-95(2010)。PubMed出版社
Google Scholar
谷歌学者
Poreba, M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J. 287, 1936–1969 (2020).Article
Poreba,M。蛋白酶激活的前药:策略,挑战和未来方向。FEBS J.2871936-1969(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Anami, Y. et al. Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat. Commun. 9, 2512 (2018).Article
Anami,Y。等人。谷氨酸-缬氨酸-瓜氨酸接头可确保抗体-药物偶联物在小鼠体内的稳定性和功效。国家公社。92512(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goenaga, A. L. et al. Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Mol. Immunol. 44, 3777–3788 (2007).Article
Goenaga,A.L.等人。通过使用抗体噬菌体展示和体内策略鉴定和表征肿瘤抗原。分子免疫。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tillotson, B. J., Goulatis, L. I., Parenti, I., Duxbury, E. & Shusta, E. V. Engineering an anti-transferrin receptor ScFv for pH-sensitive binding leads to increased intracellular accumulation. PLoS ONE 10, e0145820 (2015).Article
Tillotson,B.J.,Goulatis,L.I.,Parenti,I.,Duxbury,E。&Shusta,E.V。设计用于pH敏感结合的抗转铁蛋白受体ScFv导致细胞内积累增加。PLoS ONE 10,e0145820(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Santomasso, B., Bachier, C., Westin, J., Rezvani, K. & Shpall, E. J. The other side of CAR T-Cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am. Soc. Clin. Oncol. Educ. Book 39, 433–444 (2019).Article
Santomasso,B.,Bachier,C.,Westin,J.,Rezvani,K。&Shpall,E.J。CAR T细胞疗法的另一面:细胞因子释放综合征,神经毒性和经济负担。美国社会临床。Oncol公司。教育。第39433-444卷(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Brandt, L. J. B., Barnkob, M. B., Michaels, Y. S., Heiselberg, J. & Barington, T. Emerging approaches for regulation and control of CAR T cells: a mini review. Front. Immunol. 11, 326 (2020).Article
Brandt,L.J.B.,Barnkob,M.B.,Michaels,Y.S.,Heiselberg,J。&Barington,T。调节和控制CAR T细胞的新兴方法:迷你评论。正面。免疫。11326(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Herbst, R. S. et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N. Engl. J. Med. 383, 1328–1339 (2020).Article
。N、 英语。J、 医学3831328-1339(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Friedman, M. et al. Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule. J. Mol. Biol. 376, 1388–1402 (2008).Article
Friedman,M.等人将进化导向靶向表皮生长因子受体结合affibody分子的肿瘤的低纳摩尔亲和力。J、 分子生物学。3761388-1402(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pierpont, T. M., Limper, C. B. & Richards, K. L. Past, present, and future of rituximab-the world’s first oncology monoclonal antibody therapy. Front. Oncol. 8, 163 (2018).Article
Pierpont,T.M.,Limper,C.B。&Richards,K.L。利妥昔单抗的过去,现在和未来-世界上第一种肿瘤单克隆抗体疗法。正面。Oncol公司。8163(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huotari, J. & Helenius, A. Endosome maturation. EMBO J. 30, 3481–3500 (2011).Article
Huotari,J。和Helenius,A。内体成熟。EMBO J.303481–3500(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fu, H., Jiang, Y., Wong, W. P. & Springer, T. A. Single-molecule imaging of von Willebrand factor reveals tension-dependent self-association. Blood 138, 2425–2434 (2021).Article
Fu,H.,Jiang,Y.,Wong,W.P。&Springer,T.A。von Willebrand因子的单分子成像揭示了张力依赖性自缔合。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).Article
Kobayashi,S。等人。EGFR突变和非小细胞肺癌对吉非替尼的耐药性。N、 英语。J、 医学352786-792(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).Article
Sequist,L.V.等人。获得对EGFR抑制剂抗性的肺癌的基因型和组织学进化。科学。翻译。医学杂志375RA26(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, H. A. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 19, 2240–2247 (2013).Article
Yu,H.A.等人对155例EGFR突变型肺癌患者EGFR-TKI治疗获得性耐药时的肿瘤标本进行了分析。临床。癌症研究192240-2247(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cross, D. A. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4, 1046–1061 (2014).Article
Cross,D.A.等人AZD9291是一种不可逆的EGFR TKI,克服了T790M介导的肺癌对EGFR抑制剂的耐药性。癌症发现。41046-1061(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leonetti, A. et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 121, 725–737 (2019).Article
Leonetti,A。等人。EGFR突变的非小细胞肺癌对osimertinib的耐药机制。Br.J.Cancer 121725-737(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thress, K. S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 21, 560–562 (2015).Article
Thress,K.S.等人获得的EGFR C797S突变介导了携带EGFR T790M的非小细胞肺癌对AZD9291的耐药性。《自然医学》21560-562(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ercan, D. et al. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene 29, 2346–2356 (2010).Article
Ercan,D。等人。EGFR T790M的扩增导致对不可逆EGFR抑制剂的抗性。癌基因292346-2356(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haikala, H. M. et al. EGFR inhibition enhances the cellular uptake and antitumor-activity of the HER3 antibody-drug conjugate HER3-DXd. Cancer Res. 82, 130–141 (2022).Article
。癌症研究82130-141(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cho, J. et al. Cetuximab response of lung cancer-derived EGF receptor mutants is associated with asymmetric dimerization. Cancer Res. 73, 6770–6779 (2013).Article
Cho,J。等人。肺癌衍生的EGF受体突变体的西妥昔单抗反应与不对称二聚化有关。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kurppa, K. J. et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37, 104–122 e112 (2020).Article
Kurppa,K.J.等人。治疗通过YAP介导的凋亡途径的转录重编程诱导肿瘤休眠。癌细胞37104-122 e112(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Richard, C. & Verdier, F. Transferrin receptors in erythropoiesis. Int. J. Mol. Sci. 21, 9713 (2020).Article
Richard,C。&Verdier,F。转铁蛋白受体在红细胞生成中的作用。Int.J.Mol.Sci。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, B. J. et al. Transferrin fusion technology: a novel approach to prolonging biological half-life of insulinotropic peptides. J. Pharmacol. Exp. Ther. 334, 682–692 (2010).Article
Kim,B.J.等人。转铁蛋白融合技术:延长促胰岛素肽生物半衰期的新方法。J、 药理学。实验温度。334682-692(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Su, L. Y. et al. Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor. Cell. Chem. Biol. https://doi.org/10.1016/j.chembiol.2024.01.002 (2024).Article
Su,L.Y.等人。使用工程细菌外膜囊泡与转铁蛋白受体介导的溶酶体靶向嵌合体融合的抗肿瘤免疫疗法。细胞。化学。生物。https://doi.org/10.1016/j.chembiol.2024.01.002(2024年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Giovannini, M. et al. Clinical significance of skin toxicity due to EGFR-targeted therapies. J. Oncol. 2009, 849051 (2009).Article
Giovannini,M.等人。EGFR靶向治疗引起的皮肤毒性的临床意义。J、 Oncol公司。2009849051(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pulgar, V. M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 12, 1019 (2018).Article
Pulgar,V.M。转胞吞作用跨越血脑屏障,新进展和挑战。正面。神经科学。121019(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sonoda, H. et al. A blood-brain-barrier-penetrating anti-human transferrin receptor antibody fusion protein for neuronopathic mucopolysaccharidosis II. Mol. Ther. 26, 1366–1374 (2018).Article
Sonoda,H。等人。一种穿透血脑屏障的抗人转铁蛋白受体抗体融合蛋白,用于神经病性粘多糖贮积症II。摩尔热。261366-1374(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Okuyama, T. et al. A phase 2/3 trial of pabinafusp alfa, IDS fused with anti-human transferrin receptor antibody, targeting neurodegeneration in MPS-II. Mol. Ther. 29, 671–679 (2021).Article
Okuyama,T。等人,针对MPS-II中的神经退行性疾病,将pabinafusp alfa,IDS与抗人转铁蛋白受体抗体融合的2/3期试验。摩尔热。29671-679(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Niewoehner, J. et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81, 49–60 (2014).Article
Niewohner,J.等人使用单价分子穿梭增加了治疗性抗体的大脑渗透性和效力。神经元81,49-60(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hultqvist, G., Syvanen, S., Fang, X. T., Lannfelt, L. & Sehlin, D. Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor. Theranostics 7, 308–318 (2017).Article
Hultqvist,G.,Syvanen,S.,Fang,X.T.,Lannfelt,L。&Sehlin,D。二价脑穿梭通过单价结合转铁蛋白受体增加抗体摄取。Theranostics 7308-318(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, R., Oldham, R. J., Teal, E., Beers, S. A. & Cragg, M. S. Fc-engineering for modulated effector functions-improving antibodies for cancer treatment. Antibodies 9, 64 (2020).Article
Liu,R.,Oldham,R.J.,Teal,E.,Beers,S.A。&Cragg,M.S.Fc工程用于调节效应子功能,改善癌症治疗抗体。抗体9,64(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, X., Mathieu, M. & Brezski, R. J. IgG Fc engineering to modulate antibody effector functions. Protein Cell 9, 63–73 (2018).Yamin, R. et al. Fc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacy. Nature 599, 465–470 (2021).Article
Wang,X.,Mathieu,M。&Brezski,R.J。IgG Fc工程调节抗体效应子功能。蛋白质细胞9,63-73(2018)。Yamin,R。等人。具有改善的抗SARS-CoV-2功效的Fc工程抗体疗法。自然599465-470(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saunders, K. O. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front. Immunol. 10, 1296 (2019).Article
Saunders,K.O。调节抗体效应子功能和循环半衰期的概念方法。正面。免疫。101296(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).Article
Roth,T.L.等人。用非病毒基因组靶向重编程人类T细胞功能和特异性。自然559405-409(2018)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank M. Bao, P. Budde and Zhou laboratory members for their input on the paper; P. Gokhale, K. Soroko, J. Alberta, the DFCI Experimental Therapeutics Core and DFCI Animal Research Facility for assistance with the animal experiments; J. Li for providing lung cancer cell lines; and E.
下载参考文献致谢我们感谢M.Bao,P.Budde和Zhou实验室成员在论文中的投入;P、 Gokhale,K。Soroko,J。Alberta,DFCI实验治疗核心和DFCI动物研究设施,用于协助动物实验;J、 李提供肺癌细胞系;和E。
Chouchani and S. Shin for the intact protein liquid chromatography–mass spectrometry experiment and data analysis. F.F. acknowledges funding support from the Fondation ARC pour la Recherche sur le Cancer. K.R. acknowledges funding support from a Chemical Biology T32 Training grant no. NIH T32GM139775.
Chouchani和S.Shin进行完整蛋白质液相色谱-质谱实验和数据分析。F、 F.感谢癌症研究基金会的资金支持。K、 R.感谢化学生物学T32培训资助号NIH T32GM139775的资金支持。
P.A.J. acknowledges funding support from grant no. NIH R35 CA220497 and American Cancer Society (grant no. CRP-17-111-01-CDD). X.Z. acknowledges funding support from grant nos. NIH R00EB030587 and NIH DP2GM154013 and the DFCI Helen Gurley Brown Foundation. Figs. 1a,b, 2a,d–g, 3a–d, 4a,e and 5a,e,g and Extended Data Figs.
P、 A.J.感谢资助号NIH R35 CA220497和美国癌症协会(资助号CRP-17-111-01-CDD)的资助。十、 Z.感谢NIH R00EB030587和NIH DP2GM154013以及DFCI Helen Gurley Brown基金会的资助。图1a,b,2a,d–g,3a–d,4a,e和5a,e,g和扩展数据图。
2a,b, 5a,b, 6a–e, 7a, 8a,c, 9a, 11a and 12d,h were created with BioRender.com.Author informationAuthors and AffiliationsDepartment of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USADingpeng Zhang, Jhoely Duque-Jimenez, Kaitlin Rhee & Xin ZhouDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USADingpeng Zhang, Kaitlin Rhee & Xin ZhouDepartment of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USAFrancesco Facchinetti, William W.
2a,b,5a,b,6a-e,7a,8a,c,9a,11a和12d,h是通过BioRender.com创建的。作者信息作者和附属机构癌症生物学系,达纳-法伯癌症研究所,波士顿,马萨诸塞州,美国,张丁鹏,朱利·杜克·希门尼斯,凯特林·Rhee和忻州哈佛医学院生物化学和分子药理学系,波士顿,马萨诸塞州,美国马萨诸塞州,达纳-法伯癌症研究所,美国弗朗西斯科·法奇内蒂,威廉·W。
Feng & Pasi A. JänneDepartment of Medicine, Harvard Medical School, Boston, MA, USAFrancesco Facchinetti, William W. Feng & Pasi A. JänneLowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USAFrancesco Facchinetti, William W. Feng & Pasi A. JänneHarvard University, Boston, MA, USAGaryk BrixiBelfer Cen.
Feng&Pasi A.Jänne哈佛医学院医学系,马萨诸塞州波士顿,USAFrancesco Facchinetti,William W.Feng&Pasi A.JänneLowe胸腔肿瘤中心,达纳-法伯癌症研究所,马萨诸塞州波士顿,USAFrancesco Facchinetti,William W.Feng&Pasi A.JänneHarvard University,波士顿,马萨诸塞州,USAGaryk BrixiBelfer Cen。
PubMed Google ScholarJhoely Duque-JimenezView author publicationsYou can also search for this author in
PubMed Google ScholarJhoely Duque JimenezView作者出版物您也可以在
PubMed Google ScholarFrancesco FacchinettiView author publicationsYou can also search for this author in
PubMed Google ScholarFrancesco FacchinettiView作者出版物您也可以在
PubMed Google ScholarGaryk BrixiView author publicationsYou can also search for this author in
PubMed Google ScholarKaitlin RheeView author publicationsYou can also search for this author in
PubMed Google ScholarKaitlin RheeView作者出版物您也可以在
PubMed Google ScholarWilliam W. FengView author publicationsYou can also search for this author in
PubMed谷歌学者William W.FengView作者出版物您也可以在
PubMed Google ScholarPasi A. JänneView author publicationsYou can also search for this author in
PubMed Google ScholarPasi A.JänneView作者出版物您也可以在
PubMed Google ScholarXin ZhouView author publicationsYou can also search for this author in
PubMed Google ScholarXin ZhouView作者出版物您也可以在
PubMed Google ScholarContributionsD.Z. designed and performed the experiments unless otherwise stated. J.D.-J. performed cloning and protein expression, conducted the imaging colocalization analysis and western quantifications, and organized data. F.F. performed and analysed the CellTiter-Glo assays with the PC9 and DFCI243 cell lines.
PubMed谷歌学术贡献SD。Z、 除非另有说明,否则设计并进行实验。J、 D.-J.进行了克隆和蛋白质表达,进行了成像共定位分析和western定量,并组织了数据。F、 F.用PC9和DFCI243细胞系进行并分析了CellTiter-Glo测定。
G.B. carried out the transcriptomics analysis. D.Z., J.D.-J., F.F., K.R. and X.Z. cowrote the paper. F.F., W.W.F. and P.A.J. provided input on the lung cancer research. X.Z. conceived the study and supervised the project.Corresponding authorCorrespondence to.
G、 B.进行转录组学分析。D、 Z.,J.D.-J.,F.F.,K.R.和X.Z.共同撰写了这篇论文。F、 F.,W.W.F.和P.A.J.为肺癌研究提供了投入。十、 Z.构思了这项研究并监督了该项目。对应作者对应。
Xin Zhou.Ethics declarations
。道德宣言
Competing interests
相互竞争的利益
X.Z., D.Z. and K.R. have filed patent applications for the TransTAC technology. P.A.J. has received consulting fees from AstraZeneca, Boehringer-Ingelheim, Pfizer, Roche/Genentech, Takeda Oncology, ACEA Biosciences, Eli Lilly and Company, Araxes Pharma, Ignyta, Mirati Therapeutics, Novartis, LOXO Oncology, Daiichi Sankyo, Sanofi Oncology, Voronoi, SFJ Pharmaceuticals, Takeda Oncology, Transcenta, Silicon Therapeutics, Syndax, Nuvalent, Bayer, Esai, Biocartis, Allorion Therapeutics, Accutar Biotech, Monte Rosa, Scorpion Therapeutics, Merus, Frontier Medicines, Hongyun Biotechnology, Duality, Dizal Pharma and Abbvie; post-marketing royalties from DFCI owned intellectual property on EGFR mutations licensed to Lab Corp; sponsored research agreements with AstraZeneca, Daichi-Sankyo, PUMA, Boehringer-Ingelheim, Eli Lilly and Company, Revolution Medicines and Astellas Pharmaceuticals; and stock ownership in Gatekeeper Pharmaceuticals..
十、 Z.,D.Z.和K.R.已经为TransTAC技术提交了专利申请。P、 A.J.已从阿斯利康、勃林格殷格翰、辉瑞、罗氏/基因泰克、武田肿瘤学、ACEA生物科学、礼来公司、阿拉克斯制药、伊格尼塔、米拉蒂治疗公司、诺华、洛索肿瘤学、第一三共、赛诺菲肿瘤学、沃罗诺、SFJ制药、武田肿瘤学、Transcenta、硅治疗学、Syndax、Nuvalent、拜耳、Esai、生物艺术、Allorion治疗学、Accutar Biotech、Monte Rosa、蝎子治疗学、Merus、Frontier Medicines获得咨询费,红云生物技术,Duality,Dizal Pharma和Abbvie;DFCI拥有授权给Lab Corp的EGFR突变知识产权的上市后版税;赞助与阿斯利康,Daichi Sankyo,PUMA,勃林格殷格翰,礼来公司,Revolution Medicines和Astellas Pharmaceuticals的研究协议;。。
Peer review
同行评审
Peer review information
同行评审信息
Nature thanks Manuel Penichet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然》杂志感谢曼努埃尔·佩尼切特(ManuelPenichet)和另一位匿名审稿人对这项工作的同行评议做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended data figures and tablesExtended Data Fig. 1 TFRC expression analysis.(a) t-statistics, P values, and n of samples for the overall and pairwise comparison of TFRC expression in healthy and tumor tissues.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据图和表扩展数据图1 TFRC表达分析。(a) 样本的t统计量,P值和n,用于健康和肿瘤组织中TFRC表达的整体和成对比较。
t-statistics and P values were determined by unpaired two-tailed Welch’s t-tests. t-statistic less than 0 means that tumor has higher expression of TFRC than normal tissues. Overall, and in 14 out of 19 tissue pairs, tumor tissue TFRC expression is significantly higher than in normal tissue. Female reproductive tissues include the endometrium, cervix, fallopian tubes, myometrium, ovary, placenta, and uterus.
t统计量和P值由不成对的两尾韦尔奇t检验确定。t统计量小于0意味着肿瘤比正常组织具有更高的TFRC表达。总体而言,在19个组织对中的14个中,肿瘤组织TFRC表达显着高于正常组织。女性生殖组织包括子宫内膜、子宫颈、输卵管、子宫肌层、卵巢、胎盘和子宫。
Central nervous system tissues include the basal ganglia, brainstem, cerebral cortex, hippocampus, spinal cord, and vestibular nuclei superior. Brain tissues include the hypothalamus, pituitary gland, thalamus, ganglia, and ganglion nodose. (b) Box plots of relative TFRC mRNA expression levels in different subsets of immune cells.
中枢神经系统组织包括基底神经节,脑干,大脑皮层,海马,脊髓和前庭上核。脑组织包括下丘脑,垂体,丘脑,神经节和神经节结节。(b) 免疫细胞不同亚群中相对TFRC mRNA表达水平的箱形图。
TFRC is upregulated by approximately 6-fold in activated CD4+ and CD8+ T cells compared to inactivated T cells. Data are presented as mean values ± s.d. (c) t-statistics, P values, and n of samples for comparison of TFRC expression in CD4+ and CD8+ T cells. t-statistics and P values were determined by unpaired two-tailed Welch’s t-tests.
与灭活的T细胞相比,TFRC在活化的CD4+和CD8+T细胞中上调约6倍。数据表示为样品的平均值±s.d.(c)t统计量,P值和n,用于比较CD4+和CD8+t细胞中TFRC的表达。t统计量和P值由不成对的两尾韦尔奇t检验确定。
t-statistic greater than 0 means that activated cells have higher TFRC than non-activated cells. In Extended Data Fig. 1b and Fig. 1d box plots, the minima and maxima are represented by whiskers that extend to values within 1.5 times the interquartile range (IQR) from the quartiles, with outliers depicted as individual points.
t统计量大于0意味着活化细胞比未活化细胞具有更高的TFRC。在扩展数据图1b和图1d箱形图中,最小值和最大值由晶须表示,晶须延伸到四分位数四分位数间距(IQR)的1.5倍以内,异常值表示为单个点。
The IQR, spanning.
IQR,跨越。
Nature (2024). https://doi.org/10.1038/s41586-024-07947-3Download citationReceived: 10 May 2023Accepted: 14 August 2024Published: 25 September 2024DOI: https://doi.org/10.1038/s41586-024-07947-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《自然》(2024)。https://doi.org/10.1038/s41586-024-07947-3Download引文接收日期:2023年5月10日接收日期:2024年8月14日发布日期:2024年9月25日OI:https://doi.org/10.1038/s41586-024-07947-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。