商务合作
动脉网APP
可切换为仅中文
AbstractTCF1high progenitor CD8+ T cells mediate the efficacy of immunotherapy; however, the mechanisms that govern their generation and maintenance are poorly understood. Here, we show that targeting glycolysis through deletion of pyruvate kinase muscle 2 (PKM2) results in elevated pentose phosphate pathway (PPP) activity, leading to enrichment of a TCF1high progenitor-exhausted-like phenotype and increased responsiveness to PD-1 blockade in vivo.
摘要TCF1高祖细胞CD8+T细胞介导免疫治疗的功效;然而,控制其产生和维持的机制知之甚少。在这里,我们表明,通过删除丙酮酸激酶肌肉2(PKM2)靶向糖酵解导致戊糖磷酸途径(PPP)活性升高,导致TCF1高祖细胞耗竭样表型富集,并增加对体内PD-1阻断的反应性。
PKM2KO CD8+ T cells showed reduced glycolytic flux, accumulation of glycolytic intermediates and PPP metabolites and increased PPP cycling as determined by 1,2-13C glucose carbon tracing. Small molecule agonism of the PPP without acute glycolytic impairment skewed CD8+ T cells toward a TCF1high population, generated a unique transcriptional landscape and adoptive transfer of agonist-treated CD8+ T cells enhanced tumor control in mice in combination with PD-1 blockade and promoted tumor killing in patient-derived tumor organoids.
通过1,2-13C葡萄糖碳示踪测定,PKM2KO CD8+T细胞显示糖酵解通量降低,糖酵解中间体和PPP代谢物的积累以及PPP循环增加。没有急性糖酵解损伤的PPP的小分子激动作用使CD8+T细胞向TCF1高群体倾斜,产生了独特的转录景观,并且激动剂处理的CD8+T细胞的过继转移与PD-1阻断相结合增强了小鼠的肿瘤控制,并促进了患者来源的肿瘤类器官中的肿瘤杀伤。
Our study demonstrates a new metabolic reprogramming that contributes to a progenitor-like T cell state promoting immunotherapy efficacy..
我们的研究表明,一种新的代谢重编程有助于祖细胞样T细胞状态促进免疫治疗效果。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: A genetic screen targeting glycolytic enzymes identifies PKM as a potential regulator of T cell differentiation.Fig. 2: PKM2 is upregulated upon T cell activation in vitro and in vivo, and its deletion results in a less effector-differentiated phenotype.Fig. 3: Loss of PKM2 results in a progenitor-exhausted-like phenotype in CD8+ T cells in NSCLC.Fig.
图1:靶向糖酵解酶的遗传筛选将PKM鉴定为T细胞分化的潜在调节剂。图2:PKM2在体外和体内T细胞活化后上调,其缺失导致效应分化程度较低的表型。图3:PKM2的缺失导致NSCLC中CD8+T细胞的祖细胞耗尽样表型。图。
4: Loss of PKM2 results in a progenitor-exhausted-like phenotype in CD8+ T cells in melanoma.Fig. 5: PKM2 deletion generates T cells with progenitor signatures which enhance the efficacy of PD-1 checkpoint blockade.Fig. 6: PKM2 deletion in T cells results in decreased glycolytic flux and increased pentose phosphate pathway activity.Fig.
4: PKM2的缺失导致黑色素瘤中CD8+T细胞的祖细胞耗竭样表型。图5:PKM2缺失产生具有祖细胞特征的T细胞,其增强PD-1检查点阻断的功效。。图。
7: Pentose phosphate pathway agonism in T cells generates a progenitor phenotype distinct from that induced by hexokinase blockade.Fig. 8: Pentose phosphate pathway agonism results in tumor control in murine and human model systems..
7: T细胞中的戊糖磷酸途径激动作用产生不同于己糖激酶阻断诱导的祖细胞表型。图8:戊糖磷酸途径激动作用导致小鼠和人类模型系统中的肿瘤控制。。
Data availability
数据可用性
Source data for graphically presented data have been provided as Source Data files. Critical analysis outputs and metabolomic and carbon-tracing profiling data have been provided in the Supplementary Tables, with all other data supporting the findings available from the corresponding author on reasonable request.
图形显示数据的源数据已作为源数据文件提供。补充表中提供了关键分析输出以及代谢组学和碳追踪分析数据,所有其他数据支持通讯作者在合理要求下提供的发现。
All other reagents are available either commercially or from the corresponding author on reasonable request. RNA sequencing data are available in the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/gds). Associated accession numbers are: nontreated bulk RNA sequencing, GSE218141; anti-PD-1 bulk RNA sequencing, GSE114300 (ref.
所有其他试剂均可在商业上或根据合理要求从通讯作者处获得。RNA测序数据可在Gene Expression Omnibus中获得(http://www.ncbi.nlm.nih.gov/gds)。相关的登录号是:未处理的大量RNA测序,GSE218141;抗PD-1大量RNA测序,GSE114300(参考文献)。
8); bulk RNA sequencing of isolated adoptively co-transferred TILs, GSE216675; and bulk RNA sequencing of TCF1 reporter eGFP+ and eGFP− T cells from in vitro co-culture and metabolic manipulation, GSE238203. Mouse reference genomes are also available with the following NCBI RefSeq assembly numbers: mm9, GCF_000001635.18; GRCm38, GCF_000001635.20; and GRCm39, GCF_000001635.27.
8) ;分离的过继共转移TIL GSE216675的大量RNA测序;以及来自体外共培养和代谢操作的TCF1报告基因eGFP+和eGFP-T细胞的大量RNA测序,GSE238203。小鼠参考基因组也具有以下NCBI RefSeq装配号:mm9,GCF\U 000001635.18;;和GRCm39,GCF\U 000001635.27。
Source data are provided with this paper..
。。
Code availability
代码可用性
Code for analysis of glycolytic screen data and RNA sequencing data were generated in R using field-standard previously reported packages and indicated parameters, which are described in the Methods and with the relevant source publications cited where appropriate. R code used in this manuscript is available on reasonable request from the corresponding author.
糖酵解筛选数据和RNA测序数据的分析代码是使用先前报道的现场标准软件包和指示参数在R中生成的,这些参数在方法中进行了描述,并在适当的情况下引用了相关的源出版物。本手稿中使用的R代码可根据通讯作者的合理要求获得。
Parameters and relevant filters for Partek Flow analyses, IPA and MetaboAnalyst analyses are described in the appropriate Methods sections..
Partek流量分析,IPA和MetaboAnalyst分析的参数和相关过滤器在适当的方法部分中进行了描述。。
ReferencesRestifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).Article
参考Restifo,N.P.,Dudley,M.E。和Rosenberg,S.A。癌症的过继免疫疗法:利用T细胞反应。国家免疫修订版。12269-281(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).Article
Rosenberg,S.A。&Restifo,N.P。过继细胞转移作为人类癌症的个性化免疫疗法。科学348,62-68(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Klebanoff, C. A., Rosenberg, S. A. & Restifo, N. P. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat. Med. 22, 26–36 (2016).Article
Klebanoff,C.A.,Rosenberg,S.A。&Restifo,N.P。基因工程T细胞免疫疗法治疗实体癌的前景。《自然医学》22,26-36(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rosenberg, S. A., Parkhurst, M. R. & Robbins, P. F. Adoptive cell transfer immunotherapy for patients with solid epithelial cancers. Cancer Cell 41, 646–648 (2023).Article
Rosenberg,S.A.,Parkhurst,M.R。&Robbins,P.F。用于实体上皮癌患者的过继性细胞转移免疫疗法。癌细胞41646-648(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).Article
Pardoll,D.M。癌症免疫治疗中免疫检查点的阻断。《国家癌症评论》12252-264(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sharma, P. & Allison, J. P. Dissecting the mechanisms of immune checkpoint therapy. Nat. Rev. Immunol. 20, 75–76 (2020).Article
Sharma,P。&Allison,J.P。剖析免疫检查点治疗的机制。国家免疫修订版。20,75-76(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).Article
Ribas,A。&Wolchok,J.D。使用检查点封锁的癌症免疫疗法。科学3591350-1355(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Markowitz, G. J. et al. Immune reprogramming via PD-1 inhibition enhances early-stage lung cancer survival. JCI Insight https://doi.org/10.1172/jci.insight.96836 (2018).Philip, M. & Schietinger, A. CD8(+) T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).Article .
Markowitz,G.J.等人。通过PD-1抑制进行免疫重编程可增强早期肺癌的存活率。JCI洞察https://doi.org/10.1172/jci.insight.96836(2018年)。Philip,M。&Schietinger,A。CD8(+)T细胞分化和癌症功能障碍。国家免疫修订版。22209-223(2022)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674 (2019).Article
Blank,C.U.等人定义“T细胞衰竭”。国家免疫修订版。19665-674(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Siddiqui, I. et al. Intratumoral Tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211 e110 (2019).Article
Siddiqui,I。等人。具有干细胞样特性的肿瘤内Tcf1(+)PD-1(+)CD8(+)T细胞响应疫苗接种和检查点阻断免疫疗法促进肿瘤控制。免疫力50195-211 e110(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Miller, B. C. et al. Subsets of exhausted CD8(+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).Article
Miller,B.C.等人。耗尽的CD8(+)T细胞亚群差异介导肿瘤控制并对检查点阻断作出反应。自然免疫。20326-336(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van Loosdregt, J. & Coffer, P. J. The role of WNT signaling in mature T cells: T cell factor is coming home. J. Immunol. 201, 2193–2200 (2018).Article
van Loosdregt,J。&Coque,P.J。WNT信号在成熟T细胞中的作用:T细胞因子正在回家。J、 免疫。2012193-2200(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).Article
Gattinoni,L。等人。Wnt信号传导阻止效应T细胞分化并产生CD8+记忆干细胞。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Escobar, G., Mangani, D. & Anderson, A. C. T cell factor 1: a master regulator of the T cell response in disease. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abb9726 (2020).Gebhardt, T., Park, S. L. & Parish, I. A. Stem-like exhausted and memory CD8(+) T cells in cancer. Nat. Rev.
Escobar,G.,Mangani,D。&Anderson,A.C。T细胞因子1:疾病中T细胞反应的主要调节剂。科学。免疫。https://doi.org/10.1126/sciimmunol.abb9726(2020年)。Gebhardt,T.,Park,S.L。和Parish,I.A。癌症中的干细胞样衰竭和记忆CD8(+)T细胞。自然修订版。
Cancer 23, 780–798 (2023).Article .
癌症23780-798(2023)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1(-)CD8(+) tumor-infiltrating T cells. Immunity 50, 181–194 e186 (2019).Article
Kurtulus,S。等人。检查点阻断免疫疗法诱导PD-1(-)CD8(+)肿瘤浸润性T细胞的动态变化。免疫力50181-194 e186(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).Article
Kishton,R.J.,Sukumar,M。&Restifo,N.P。T细胞寿命和肿瘤免疫治疗功能的代谢调节。细胞代谢。26,94-109(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Reina-Campos, M., Scharping, N. E. & Goldrath, A. W. CD8(+) T cell metabolism in infection and cancer. Nat. Rev. Immunol. 21, 718–738 (2021).Article
Reina Campos,M.,Scharping,N.E。和Goldrath,A.W。感染和癌症中的CD8(+)T细胞代谢。国家免疫修订版。21718-738(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van der Windt, G. J. & Pearce, E. L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249, 27–42 (2012).Article
van der Windt,G.J。&Pearce,E.L。T细胞分化和记忆发育过程中的代谢转换和燃料选择。免疫。第249版,第27-42页(2012年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, R. & Green, D. R. Metabolic reprogramming and metabolic dependency in T cells. Immunol. Rev. 249, 14–26 (2012).Article
Wang,R。&Green,D.R。T细胞中的代谢重编程和代谢依赖性。免疫。第249版,第14-26页(2012年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hermans, D. et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8(+) T cell stemness and antitumor immunity. Proc. Natl Acad. Sci. USA 117, 6047–6055 (2020).Article
Hermans,D。等人。乳酸脱氢酶抑制与IL-21协同促进CD8(+)T细胞干性和抗肿瘤免疫力。程序。国家科学院。科学。美国1176047–6055(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).Article
Pearce,E.L.等人。通过调节脂肪酸代谢增强CD8 T细胞记忆。自然460103-107(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).Article
Sukumar,M。等人。抑制糖酵解代谢增强CD8+T细胞记忆和抗肿瘤功能。J、 临床。投资。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Choi, H. et al. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. Cell Rep. 10, 1187–1201 (2015).Article
Choi,H。等人。单个基质细胞群的转录组分析确定了小鼠肺癌模型中的基质肿瘤串扰。Cell Rep.101187–1201(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).Article
Kanehisa,M。&Goto,S。KEGG:京都基因与基因组百科全书。核酸研究28,27-30(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).Article
Vardhana,S.A。等人,线粒体氧化磷酸化受损限制了暴露于持久性抗原的T细胞的自我更新。自然免疫。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Horton, B. L. et al. Lack of CD8(+) T cell effector differentiation during priming mediates checkpoint blockade resistance in non-small cell lung cancer. Sci. Immunol. 6, eabi8800 (2021).Article
Horton,B.L。等人。在引发过程中缺乏CD8(+)T细胞效应分化介导非小细胞肺癌的检查点阻断抗性。科学。免疫。6,eabi8800(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
DuPage, M. et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19, 72–85 (2011).Article
DuPage,M。等人。内源性T细胞对肺腺癌中表达的抗原的反应延迟了恶性肿瘤的进展。癌细胞19,72-85(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).Article
Hogquist,K.A。等人,T细胞受体拮抗肽诱导阳性选择。细胞76,17-27(1994)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jurica, M. S. et al. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6, 195–210 (1998).Article
Jurica,M.S.等人。1,6-二磷酸果糖对丙酮酸激酶的变构调节。结构6195-210(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gattinoni, L., Powell, D. J. Jr., Rosenberg, S. A. & Restifo, N. P. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383–393 (2006).Article
Gattinoni,L.,Powell,D.J.Jr.,Rosenberg,S.A。和Restifo,N.P。癌症过继免疫疗法:建立在成功的基础上。国家免疫修订版。6383-393(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ban, Y. et al. Radiation-activated secretory proteins of Scgb1a1 (+) club cells increase the efficacy of immune checkpoint blockade in lung cancer. Nat. Cancer 2, 919–931 (2021).Article
Ban,Y。等人。Scgb1a1(+)club细胞的辐射激活分泌蛋白增加了肺癌免疫检查点阻断的功效。《自然癌症》2919-931(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Luckey, C. J. et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc. Natl Acad. Sci. USA 103, 3304–3309 (2006).Article
记忆T细胞和记忆B细胞与长期造血干细胞共享自我更新的转录程序。程序。国家科学院。科学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).Article
Liberzon,A。等人。分子签名数据库(MSigDB)标志性基因集集合。细胞系统。1417-425(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ecker, C. et al. Differential reliance on lipid metabolism as a salvage pathway underlies functional differences of T cell subsets in poor nutrient environments. Cell Rep. 23, 741–755 (2018).Article
。Cell Rep.23741–755(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pucino, V. et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 30, 1055–1074 e1058 (2019).Article
Pucino,V。等人。慢性炎症部位的乳酸积累通过诱导CD4(+)T细胞代谢重新连接来促进疾病。细胞代谢。301055-1074 e1058(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Seki, S. M. et al. Modulation of PKM activity affects the differentiation of T(H)17 cells. Sci. Signal https://doi.org/10.1126/scisignal.aay9217 (2020).Kono, M. et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI Insight https://doi.org/10.1172/jci.insight.127395 (2019).Angiari, S.
Seki,S.M.等人。PKM活性的调节影响T(H)17细胞的分化。科学。信号https://doi.org/10.1126/scisignal.aay9217(2020年)。Kono,M。等人。丙酮酸激酶M2是Th1和Th17分化所必需的。JCI洞察https://doi.org/10.1172/jci.insight.127395(2019年)。。
et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity. Cell Metab. 31, 391–405 e398 (2020).Article .
丙酮酸激酶M2的药理学激活抑制CD4(+)T细胞的致病性并抑制自身免疫。细胞代谢。31391-405 e398(2020)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stincone, A. et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. Camb. Philos. Soc. 90, 927–963 (2015).Article
Stincone,A。等人,《代谢的回归:戊糖磷酸途径的生物化学和生理学》。生物修订版Camb。菲洛斯。Soc.90927–963(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bouzier-Sore, A. K. & Bolanos, J. P. Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Front. Aging Neurosci. 7, 89 (2015).Article
Bouzier-Sore,A.K.&Bolanos,J.P。磷酸戊糖途径通量评估的不确定性低估了其对神经元葡萄糖消耗的贡献:与神经变性和衰老的相关性。正面。衰老神经科学。7,89(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jang, C., Chen, L. & Rabinowitz, J. D. Metabolomics and isotope tracing. Cell 173, 822–837 (2018).Article
Jang,C.,Chen,L。&Rabinowitz,J.D。代谢组学和同位素示踪。细胞173822-837(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xia, J., Psychogios, N., Young, N. & Wishart, D. S. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 37, W652–W660 (2009).Article
Xia,J.,Psychogios,N.,Young,N。&Wishart,D.S。MetaboAnalyst:用于代谢组学数据分析和解释的网络服务器。核酸研究37,W652–W660(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).Article
Pang,Z.等人,《MetaboAnalyst 5.0:缩小原始光谱与功能见解之间的差距》。核酸研究49,W388–W396(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Daneshmandi, S. et al. Blockade of 6-phosphogluconate dehydrogenase generates CD8(+) effector T cells with enhanced anti-tumor function. Cell Rep. 34, 108831 (2021).Article
Daneshmandi,S。等人。阻断6-磷酸葡萄糖酸脱氢酶产生具有增强的抗肿瘤功能的CD8(+)效应T细胞。细胞代表34108831(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ghergurovich, J. M. et al. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat. Chem. Biol. 16, 731–739 (2020).Article
Ghergurovich,J.M。等人。一种小分子G6PD抑制剂揭示了对戊糖磷酸途径的免疫依赖性。自然化学。生物学16731-739(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, C. et al. G6PD functions as a metabolic checkpoint to regulate granzyme B expression in tumor-specific cytotoxic T lymphocytes. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-003543 (2022).Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation.
Lu,C。等人。G6PD作为代谢检查点来调节肿瘤特异性细胞毒性T淋巴细胞中颗粒酶B的表达。J、 免疫疗法。癌症https://doi.org/10.1136/jitc-2021-003543(2022年)。。
Immunity 35, 871–882 (2011).Article .
免疫35871-882(2011)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hwang, S. et al. Correcting glucose-6-phosphate dehydrogenase deficiency with a small-molecule activator. Nat. Commun. 9, 4045 (2018).Article
Hwang,S.等人。用小分子激活剂纠正葡萄糖-6-磷酸脱氢酶缺乏症。国家公社。94045(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Raub, A. G. et al. Small-molecule activators of glucose-6-phosphate dehydrogenase (G6PD) bridging the dimer interface. ChemMedChem 14, 1321–1324 (2019).Article
Raub,A.G.等人。桥接二聚体界面的葡萄糖-6-磷酸脱氢酶(G6PD)的小分子激活剂。ChemMedChem 141321-1324(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Horikoshi, N. et al. Long-range structural defects by pathogenic mutations in most severe glucose-6-phosphate dehydrogenase deficiency. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2022790118 (2021).Garcia, A. A. et al. Stabilization of glucose-6-phosphate dehydrogenase oligomers enhances catalytic activity and stability of clinical variants.
Horikoshi,N。等人。最严重的葡萄糖-6-磷酸脱氢酶缺乏症中致病突变引起的远程结构缺陷。程序。国家科学院。科学。美国https://doi.org/10.1073/pnas.2022790118(2021年)。Garcia,A.A.等人。葡萄糖-6-磷酸脱氢酶寡聚体的稳定化增强了临床变体的催化活性和稳定性。
J. Biol. Chem. 298, 101610 (2022).Article .
J.生物学。化学。298, 101610 (2022).第[UNK]条。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, Q. et al. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat. Immunol. 16, 1044–1050 (2015).Article
Yang,Q。等人。TCF-1上调可识别骨髓中的早期先天性淋巴祖细胞。自然免疫。161044-1050(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8(+) T cells. Nat. Immunol. 22, 370–380 (2021).Article
Yao,C。等人。BACH2强制执行干细胞样CD8(+)T细胞的转录和表观遗传程序。自然免疫。22370-380(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roychoudhuri, R. et al. BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers. Nat. Immunol. 17, 851–860 (2016).Article
Roychoudhuri,R。等人,BACH2通过控制AP-1因子进入增强子来调节CD8(+)T细胞分化。自然免疫。17851-860(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rao, R. R., Li, Q., Gubbels Bupp, M. R. & Shrikant, P. A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation. Immunity 36, 374–387 (2012).Article
。豁免36374-387(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, M. V., Ouyang, W., Liao, W., Zhang, M. Q. & Li, M. O. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 39, 286–297 (2013).Article
Kim,M.V.,Ouyang,W.,Liao,W.,Zhang,M.Q。&Li,M.O。转录因子Foxo1控制中枢记忆CD8+T细胞对感染的反应。免疫39286-297(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Delpoux, A., Lai, C. Y., Hedrick, S. M. & Doedens, A. L. FOXO1 opposition of CD8(+) T cell effector programming confers early memory properties and phenotypic diversity. Proc. Natl Acad. Sci. USA 114, E8865–E8874 (2017).Article
Delpoux,A.,Lai,C.Y.,Hedrick,S.M。和Doedens,A.L.FOXO1反对CD8(+)T细胞效应器编程赋予早期记忆特性和表型多样性。程序。国家科学院。科学。美国114,E8865–E8874(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Podaza, E. et al. Novel co-culture strategies of tumor organoids with autologous T-cells reveal clinically relevant combinations of immune-checkpoint and targeted therapies. Preprint at bioRxiv https://doi.org/10.1101/2023.07.05.546622 (2023).Dijkstra, K. K. et al. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids.
Podaza,E。等人。肿瘤类器官与自体T细胞的新型共培养策略揭示了免疫检查点和靶向治疗的临床相关组合。bioRxiv预印本https://doi.org/10.1101/2023.07.05.546622(2023年)。Dijkstra,K.K.等人。通过外周血淋巴细胞和肿瘤类器官的共培养产生肿瘤反应性T细胞。
Cell 174, 1586–1598 e1512 (2018).Article .
细胞1741586–1598 e1512(2018)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jin, J. et al. Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment. J. Immunother. 35, 283–292 (2012).Article
Jin,J.等人。将人肿瘤浸润淋巴细胞在透气瓶中生长至患者治疗所需数量的简化方法。J、 免疫疗法。35283-292(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Toriyama, K. et al. T cell-specific deletion of Pgam1 reveals a critical role for glycolysis in T cell responses. Commun. Biol. 3, 394 (2020).Article
Toriyama,K。等人。Pgam1的T细胞特异性缺失揭示了糖酵解在T细胞反应中的关键作用。Commun公司。生物学3394(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Siska, P. J. et al. Suppression of Glut1 and glucose metabolism by decreased Akt/mTORC1 signaling drives T cell impairment in B Cell leukemia. J. Immunol. 197, 2532–2540 (2016).Article
Siska,P.J。等人。通过减少Akt/mTORC1信号传导来抑制Glut1和葡萄糖代谢会导致B细胞白血病的T细胞损伤。J、 免疫。1972532-2540(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).Article
Ho,P.C.等人。磷酸烯醇丙酮酸是抗肿瘤T细胞反应的代谢检查点。细胞1621217-1228(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gemta, L. F. et al. Impaired enolase 1 glycolytic activity restrains effector functions of tumor-infiltrating CD8(+) T cells. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aap9520 (2019).Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis.
Gemta,L.F。等人,受损的烯醇化酶1糖酵解活性抑制肿瘤浸润性CD8(+)T细胞的效应功能。科学。免疫。https://doi.org/10.1126/sciimmunol.aap9520(2019年)。Chang,C.H.等人。通过有氧糖酵解对T细胞效应子功能的转录后控制。
Cell 153, 1239–1251 (2013).Article .
细胞1531239-1251(2013)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Telang, S. et al. Small molecule inhibition of 6-phosphofructo-2-kinase suppresses T cell activation. J. Transl. Med. 10, 95 (2012).Article
Telang,S。等人。6-磷酸果糖-2-激酶的小分子抑制抑制T细胞活化。J、 翻译。医学杂志10,95(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Quinn, W. J. et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020).Article
Quinn,W.J。等人。乳酸通过NAD(H)氧化还原状态限制T细胞增殖。Cell Rep.33108500(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mehta, M. M. et al. Hexokinase 2 is dispensable for T cell-dependent immunity. Cancer Metab. 6, 10 (2018).Article
Mehta,M.M.等人。己糖激酶2对于T细胞依赖性免疫是不必要的。癌症代谢。6,10(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gu, M. et al. NF-κB-inducing kinase maintains T cell metabolic fitness in antitumor immunity. Nat. Immunol. 22, 193–204 (2021).Article
Gu,M。等人。NF-κB诱导激酶在抗肿瘤免疫中维持T细胞代谢适应性。自然免疫。22193-204(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, R. et al. A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8(+) T cells. Nat. Cell Biol. 20, 21–27 (2018).Article
Ma,R。等人。Pck1指导的糖原代谢程序调节记忆CD8(+)T细胞的形成和维持。自然细胞生物学。20,21-27(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Utzschneider, D. T. et al. T cell factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections. Immunity 45, 415–427 (2016).Article
表达T细胞因子1的记忆样CD8(+)T细胞维持对慢性病毒感染的免疫应答。豁免45415-427(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shan, Q. et al. Tcf1 preprograms the mobilization of glycolysis in central memory CD8(+) T cells during recall responses. Nat. Immunol. 23, 386–398 (2022).Article
Shan,Q。等人,Tcf1预编程在回忆反应期间中枢记忆CD8(+)T细胞中糖酵解的动员。自然免疫。23386-398(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016).Article
Im,S.J.等人定义了在PD-1治疗后提供增殖爆发的CD8+T细胞。自然537417-421(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lu, S. et al. PKM2-dependent metabolic reprogramming in CD4(+) T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J. Mol. Med. 96, 585–600 (2018).Article
Lu,S。等人。CD4(+)T细胞中PKM2依赖性代谢重编程对于高同型半胱氨酸血症加速的动脉粥样硬化至关重要。J、 分子医学96585-600(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Walls, J. F. et al. Metabolic but not transcriptional regulation by PKM2 is important for natural killer cell responses. eLife https://doi.org/10.7554/eLife.59166 (2020).Kahan, S. M. et al. Intrinsic IL-2 production by effector CD8 T cells affects IL-2 signaling and promotes fate decisions, stemness, and protection.
Walls,J.F。等人。PKM2的代谢而非转录调控对于自然杀伤细胞反应很重要。埃利夫https://doi.org/10.7554/eLife.59166(2020年)。效应CD8 T细胞产生的内在IL-2影响IL-2信号传导并促进命运决定,干性和保护。
Sci. Immunol. 7, eabl6322 (2022).Article .
科学。免疫。7,eabl6322(2022)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ji, Y. et al. Identification of the genomic insertion site of Pmel-1 TCR α and β transgenes by next-generation sequencing. PLoS ONE 9, e96650 (2014).Article
Ji,Y。等人。通过下一代测序鉴定Pmel-1 TCRα和β转基因的基因组插入位点。PLoS ONE 9,e96650(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Overwijk, W. W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).Article
Overwijk,W。W。等人。逆转自身反应性CD8+T细胞的功能耐受状态后的肿瘤消退和自身免疫。J、 实验医学198569-580(2003)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chang, K., Marran, K., Valentine, A. & Hannon, G. J. Packaging shRNA retroviruses. Cold Spring Harb. Protoc. 2013, 734–737 (2013).Article
Chang,K.,Marran,K.,Valentine,A。&Hannon,G.J。包装shRNA逆转录病毒。冷泉兔。普罗托克。2013734-737(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jacobi, A. M. et al. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes. Methods 121, 16–28 (2017).Article
Jacobi,A.M.等人简化了CRISPR工具,用于有效的基因组编辑,并简化了将其递送到哺乳动物细胞和小鼠受精卵中的方案。方法121,16-28(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kloss, C. C. et al. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 26, 1855–1866 (2018).Article
Kloss,C.C.等人。显性负性TGF-β受体增强PSMA靶向的人CAR T细胞增殖并增强前列腺癌的根除。。261855-1866(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).Article
Kim,D。等人,TopHat2:在存在插入,缺失和基因融合的情况下,转录组的准确比对。基因组生物学。14,R36(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol. 31, 46–53 (2013).Article
Trapnell,C。等人。用RNA-seq在转录本分辨率下对基因调控的差异分析。美国国家生物技术公司。31,46-53(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).Article
Trapnell,C。等人。RNA-seq的转录本组装和定量揭示了细胞分化过程中未注释的转录本和同工型转换。美国国家生物技术公司。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
R Core Team. R: A Language and environment for statistical computing (R Foundation for Statistical Computing, 2022).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies.
R核心团队。R: 统计计算的语言和环境(R Foundation for statistical computing,2022)。Wickham,H。ggplot2:用于数据分析的优雅图形。(斯普林格,2016)。Ritchie,M.E.等人limma为RNA测序和微阵列研究提供了差异表达分析的能力。
Nucleic Acids Res. 43, e47 (2015).Article .
核酸研究43,e47(2015)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).Article
Durinck,S.,Spellman,P.T.,Birney,E。&Huber,W。用于将基因组数据集与R/Bioconductor软件包biomaRt集成的映射标识符。自然协议。41184-1191(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440 (2005).Article
Durinck,S.等人,《BioMart和Bioconductor:生物数据库和微阵列数据分析之间的强大联系》。生物信息学213439-3440(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).Article
Mootha,V.K.等人,参与氧化磷酸化的PGC-1α反应基因在人类糖尿病中协同下调。纳特·吉内特。34267-273(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Korotkevic, G., Sukhov, V. & Sergushichev, A. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2019).Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).Article .
Korotkevic,G.,Sukhov,V。和Sergushichev,A。快速基因组富集分析。bioRxiv预印本https://doi.org/10.1101/060012(2019年)。Anders,S.,Pyl,P。T。&Huber,W。HTSeq-一种用于处理高通量测序数据的Python框架。生物信息学31166-169(2015)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Blighe, K., Rana, S. & Lewis, M. EnhancedVolcano: publication-ready volcano plots with enhanced colouring and labeling.
Andrews,S。FastQC:高通量序列数据的质量控制工具。巴巴拉姆生物信息学http://www.bioinformatics.babraham.ac.uk/projects/fastqc/(2010年)。Blighe,K.,Rana,S。&Lewis,M。EnhancedVolcano:具有增强的着色和标签的出版就绪的火山图。
GitHub https://github.com/kevinblighe/EnhancedVolcano (2018).Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell 166, 1324–1337 e1311 (2016).Article .
GitHubhttps://github.com/kevinblighe/EnhancedVolcano(2018年)。Chen,W.W.,Freinkman,E.,Wang,T.,Birsoy,K。&Sabatini,D.M。基质代谢物的绝对定量揭示了线粒体代谢的动力学。细胞1661324-1337 e1311(2016)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).Article
Pauli,C.等人。个性化的体外和体内癌症模型,以指导精准医学。癌症发现。7462-477(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank J. Xiang of the Genomics Resources Core Facility, J. McCormick, T. Baumgartner and P. Byrne of the Flow Cytometry Core Facility, K. Rhee of the Department of Microbiology and Immunology and G. Zhang of the Proteomics and Metabolomics Core Facility for their professional advice and technical expertise with RNA sequencing, FACS and steady-state and carbon-tracing metabolomics experiments.
下载参考文献致谢我们感谢基因组学资源核心设施的J.Xiang,流式细胞术核心设施的J.McCormick,T.Baumgartner和P.Byrne,微生物学和免疫学系的K.Rhee以及蛋白质组学和代谢组学核心设施的G.Zhang在RNA测序,FACS以及稳态和碳追踪代谢组学实验方面的专业建议和技术专业知识。
We thank A. Schietinger for helpful discussions and critical manuscript review. We thank S. B. Lee for animal colony management. We thank A. Irizarry for critical support in optimizing the PDTO platform. G.J.M. was supported by postdoctoral fellowships of National Cancer Institute T32 CA203702 and the National Center For Advancing Translational Sciences of the National Institutes of Health under award number KL2-TR-002385.
我们感谢A.Schietinger的有益讨论和批判性稿件审查。我们感谢S.B.Lee的动物群落管理。我们感谢A.Irizarry在优化PDTO平台方面提供的关键支持。G、 J.M.获得了美国国家癌症研究所T32 CA203702和美国国立卫生研究院国家转化科学促进中心的博士后奖学金,奖项编号为KL2-TR-002385。
The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was also supported by funds from The Neuberger Berman Foundation Lung Cancer Research Center; a generous gift from Jay and Vicky Furman; and generous funds donated by patients in the Division of Thoracic Surgery to N.K.A.
内容完全由作者负责,不一定代表美国国立卫生研究院的官方观点。这项工作也得到了纽伯格伯曼基金会肺癌研究中心的资助;杰伊和维姬·弗曼的慷慨礼物;以及胸外科患者向N.K.A.捐赠的慷慨资金。
The funding organizations played no role in experimental design, data analysis or manuscript preparation.Author informationAuthor notesDiamile A. TavarezPresent address: Regeneron Pharmaceuticals, Tarrytown, NY, USAEnrique PodazaPresent address: Gritstone Bio, Boston, MA, USAMichael J. P. CrowleyPresent address: SalioGen Therapeutics, Lexington, MA, USAM.
资助组织在实验设计,数据分析或稿件准备方面没有发挥任何作用。作者信息作者注释Diamile A.Tavarez目前的地址:Regeneron Pharmaceuticals,Tarrytown,NY,USAERIQUE PODAZA目前的地址:Grittone Bio,Boston,MA,USAMACHAEL J.P.Crowley目前的地址:SalioGen Therapeutics,Lexington,MA,USAM。
Laura MartinPresent address: Altos Labs, Redwood City, CA, USAThese authors contributed equally: Yi Ban, Diamile A. Tavarez, Liron Yoffe, Enrique Podaza.Authors and AffiliationsDepartme.
劳拉·马丁(LauraMartinPresent)地址:美国加利福尼亚州红木市阿尔托斯实验室(Altos Labs),这些作者做出了同样的贡献:伊班(Yi Ban),戴米尔·塔瓦雷斯(DiamileA.Tavarez),利隆·约菲(LironYoffe),恩里克·波达扎(EnriquePodaza)。作者和附属机构。
PubMed Google ScholarYi BanView author publicationsYou can also search for this author in
PubMed Google ScholarYi BanView作者出版物您也可以在
PubMed Google ScholarDiamile A. TavarezView author publicationsYou can also search for this author in
PubMed Google Scholardimile A.TavarezView作者出版物您也可以在
PubMed Google ScholarLiron YoffeView author publicationsYou can also search for this author in
PubMed Google ScholarLiron YoffeView作者出版物您也可以在
PubMed Google ScholarEnrique PodazaView author publicationsYou can also search for this author in
PubMed Google ScholarEnrique PodazaView作者出版物您也可以在
PubMed Google ScholarYongfeng HeView author publicationsYou can also search for this author in
PubMed Google ScholarYongfeng HeView作者出版物您也可以在
PubMed Google ScholarMitchell T. MartinView author publicationsYou can also search for this author in
PubMed谷歌ScholarMitchell T.MartinView作者出版物您也可以在
PubMed Google ScholarMichael J. P. CrowleyView author publicationsYou can also search for this author in
PubMed Google Scholarmamichael J.P.CrowleyView作者出版物您也可以在
PubMed Google ScholarTito A. SandovalView author publicationsYou can also search for this author in
PubMed Google ScholarTito A.SandovalView作者出版物您也可以在
PubMed Google ScholarDingcheng GaoView author publicationsYou can also search for this author in
PubMed Google ScholarDingcheng GaoView作者出版物您也可以在
PubMed Google ScholarM. Laura MartinView author publicationsYou can also search for this author in
Laura Martiniview作者出版物您也可以在
PubMed Google ScholarOlivier ElementoView author publicationsYou can also search for this author in
PubMed Google ScholarOlivier ElementoView作者出版物您也可以在
PubMed Google ScholarJuan R. Cubillos-RuizView author publicationsYou can also search for this author in
PubMed Google ScholarJuan R.Cubillos RuizView作者出版物您也可以在
PubMed Google ScholarTimothy E. McGrawView author publicationsYou can also search for this author in
PubMed Google ScholarTimothy E.McGrawView作者出版物您也可以在
PubMed Google ScholarNasser K. AltorkiView author publicationsYou can also search for this author in
PubMed Google ScholarNasser K.AltorkiView作者出版物您也可以在
PubMed Google ScholarVivek MittalView author publicationsYou can also search for this author in
PubMed Google ScholarVivek MittalView作者出版物您也可以在
PubMed Google ScholarContributionsG.J.M. and V.M. conceptualized the project and designed the experiments. G.J.M. performed the mouse experiments with assistance from Y.B., D.A.T., Y.H. and M.T.M. G.J.M., E.P., M.L.M. and O.E. designed the immunocompetent human PDTO platform and E.P.
PubMed谷歌学术贡献。J、 M.和V.M.将该项目概念化并设计了实验。G、 J.M.在Y.B.,D.A.T.,Y.H.和M.T.M.G.J.M.,E.P.,M.L.M.和O.E.的帮助下进行了小鼠实验。设计了免疫活性人PDTO平台和E.P。
performed experiments with the samples from patients. Y.B., D.A.T., Y.H., M.T.M. and D.G. provided suggestions and technical support for experiments. D.G. aided in sorting cells. M.J.P.C. and L.Y. provided code and support for RNA sequencing analyses. T.A.S. provided technical support for Seahorse analyses.
用患者的样本进行了实验。Y、 B.,D.A.T.,Y.H.,M.T.M.和D.G.为实验提供了建议和技术支持。D、 G.有助于分选细胞。M、 J.P.C.和L.Y.为RNA测序分析提供了代码和支持。T、 A.S.为海马分析提供了技术支持。
J.R.C.-R. and T.E.M. provided guidance on analysis and interpretation of metabolic data generated in the study. J.R.C.-R. provided guidance on interpretation of T cell differentiation data generated in the study. V.M. and N.K.A. provided project oversight and support. G.J.M. wrote the manuscript. G.J.M.
J、 R.C.-R.和T.E.M.为研究中产生的代谢数据的分析和解释提供了指导。J、 R.C.-R.为解释研究中产生的T细胞分化数据提供了指导。五、 M.和N.K.A.提供了项目监督和支持。G、 J.M.写了手稿。G、 J.M。
and V.M. edited the manuscript with input from other authors. All authors discussed the results and conclusions drawn from the studies.Corresponding authorCorrespondence to.
V.M.在其他作者的意见下编辑了手稿。所有作者都讨论了从研究中得出的结果和结论。对应作者对应。
Vivek Mittal.Ethics declarations
维韦克·米塔尔。道德宣言
Competing interests
相互竞争的利益
J.R.C.-R. is a scientific consultant for NextRNA Therapeutics and Autoimmunity Biologic Solutions and holds patents on IRE1α modulation for the treatment of disease. O.E. is supported by Janssen, J&J, Astra-Zeneca, Volastra and Eli Lilly research grants. He is a scientific advisor and equity holder in Freenome, Owkin, Volastra Therapeutics and One Three Biotech and a paid scientific advisor to Champions Oncology and Pionyr Immunotherapeutics.
J、 R.C.-R.是NextRNA治疗和自身免疫生物解决方案的科学顾问,拥有IRE1α调节治疗疾病的专利。O、 E.得到了杨森、强生、阿斯特拉·捷利康、沃拉斯特拉和礼来研究基金的支持。他是Freenome,Owkin,Volastra Therapeutics和One Three Biotech的科学顾问和股东,也是Champions Oncology和Pionyr Immunotherapeutics的付费科学顾问。
The other authors declare no competing interests..
其他作者声明没有利益冲突。。
Peer review
同行评审
Peer review information
同行评审信息
Nature Immunology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: S. Houston in collaboration with the Nature Immunology team.
Nature Immunology感谢匿名审稿人对这项工作的同行评议做出的贡献。主要处理编辑:S.Houston与Nature Immunology团队合作。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Glycolysis signatures are enriched in tumor-infiltrating T cells from larger tumors, both in mice treated with IgG control and in mice treated with anti-PD-1.a, Gene set enrichment analysis using the KEGG Glycolysis / Gluconeogenesis dataset for differences in glycolytic gene signatures in tumor-infiltrating CD8 + T cells between: anti-PD-1-treated progressing (Group 3) and anti-PD-1-treated regressing (Group 2) tumors at early timepoints; anti-PD-1-treated progressing (Group 6) and anti-PD-1-treated regressing (Group 4) tumors at later timepoints; and anti-PD-1-treated progressing (Group 6) and anti-PD-1-treated partially regressing (Group 5) tumors at later timepoints.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1在用IgG对照处理的小鼠和用抗PD-1处理的小鼠中,糖酵解特征在来自较大肿瘤的肿瘤浸润性T细胞中富集。a,使用KEGG糖酵解/糖异生数据集进行基因集富集分析用于早期时间点抗PD-1处理的进展(组3)和抗PD-1处理的消退(组2)肿瘤之间肿瘤浸润性CD8+T细胞中糖酵解基因特征的差异;在较晚的时间点,抗PD-1治疗的进展(第6组)和抗PD-1治疗的消退(第4组)肿瘤;和抗PD-1治疗的进展(第6组)和抗PD-1治疗的部分消退(第5组)肿瘤在稍后的时间点。
b, Heatmap showing normalized expression of selected genes from the KEGG Glycolysis / Gluconeogenesis dataset across groups. Numbers: (a-b) n = 3-8 biological replicates per group. Statistics: (a) GSEA by fgsea package in R.Extended Data Fig. 2 Expression and presentation of Ova257-264 in ova-GFP-expressing cell lines, characterization of antigen-specific T cell phenotypes elicited by in vitro co-culture with antigen-expressing tumor cells, and pyruvate kinase isoform expression characteristics in CD8 + T cells.a,b, Contour plots displaying PD-L1 and MHC I-Ova257-264 (left) and GFP and MHC I-Ova257-264 (right) in HKP1-ova-GFP cells (a) or B16F10-ova-GFP cells (b) with (blue) or without (red) overnight stimulation with 20 ng/mL IFNγ.
b、 热图显示来自KEGG糖酵解/糖异生数据集的选定基因在各组之间的标准化表达。。统计学:(a)R中fgsea包装的GSEA。扩展数据图2 Ova257-264在表达ova-GFP的细胞系中的表达和呈递,通过与表达抗原的肿瘤细胞体外共培养引发的抗原特异性T细胞表型的表征,以及CD8+T细胞中丙酮酸激酶同种型的表达特征。a,b,在HKP1 ova-GFP细胞(a)或B16F10 ova-GFP细胞(b)中显示PD-L1和MHC I-Ova257-264(左)以及GFP和MHC I-Ova257-264(右)的等高线图用(蓝色)或不用(红色)过夜刺激20 ng/mL IFNγ。
c, Schematic for co-culture experiment. d, Histograms of IFNγ and GzmB expression on days 3-10 of the experiment. e, Mean fluorescence intensities of checkpoint proteins evaluated in naï.
c、 共培养实验示意图。d、 实验第3-10天IFNγ和GzmB表达的直方图。e、 在naï中评估的检查点蛋白的平均荧光强度。
Nat Immunol (2024). https://doi.org/10.1038/s41590-024-01963-1Download citationReceived: 02 August 2023Accepted: 13 August 2024Published: 26 September 2024DOI: https://doi.org/10.1038/s41590-024-01963-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Immunol(2024)。https://doi.org/10.1038/s41590-024-01963-1Download引文接收日期:2023年8月2日接收日期:2024年8月13日发布日期:2024年9月26日OI:https://doi.org/10.1038/s41590-024-01963-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供