商务合作
动脉网APP
可切换为仅中文
AbstractTuft cells have gained substantial attention over the past 10 years due to numerous reports linking them with type 2 immunity and microorganism-sensing capacity in many mucosal tissues. This heightened interest is fuelled by their unique ability to produce an array of biological effector molecules, including IL-25, allergy-related eicosanoids, and the neurotransmitter acetylcholine, enabling downstream responses in diverse cell types.
摘要簇状细胞在过去10年中受到了广泛关注,因为许多报道将它们与许多粘膜组织中的2型免疫和微生物感应能力联系起来。这种高度的兴趣得益于它们产生一系列生物效应分子的独特能力,包括IL-25,过敏相关类花生酸和神经递质乙酰胆碱,从而能够在不同细胞类型中产生下游反应。
Operating through G protein-coupled receptor-mediated signalling pathways reminiscent of type II taste cells in oral taste buds, tuft cells emerge as chemosensory sentinels that integrate luminal conditions, eliciting appropriate responses in immune, epithelial and neuronal populations. How tuft cells promote tissue alterations and adaptation to the variety of stimuli at mucosal surfaces has been explored in multiple studies in the past few years.
簇状细胞通过G蛋白偶联受体介导的信号传导途径运作,使人联想到口腔味蕾中的II型味觉细胞,它作为化学感应哨兵出现,整合了管腔条件,在免疫,上皮和神经元群体中引发了适当的反应。在过去几年的多项研究中,已经探索了簇状细胞如何促进组织改变和适应粘膜表面的各种刺激。
Since the initial recognition of the role of tuft cells, the discovery of diverse tuft cell effector functions and associated feedback loops have also revealed the complexity of tuft cell biology. Although earlier work largely focused on extraintestinal tissues, novel genetic tools and recent mechanistic studies on intestinal tuft cells established fundamental concepts of tuft cell activation and functions.
自从最初认识到簇状细胞的作用以来,多种簇状细胞效应子功能和相关反馈环的发现也揭示了簇状细胞生物学的复杂性。尽管早期的工作主要集中在肠外组织,但新的遗传工具和最近对肠绒毛细胞的机理研究确立了绒毛细胞活化和功能的基本概念。
This Review is an overview of intestinal tuft cells, providing insights into their development, signalling and interaction modules in immunity and other states.Key points.
本综述概述了肠道簇状细胞,为其在免疫和其他状态下的发育,信号传导和相互作用模块提供了见解。关键点。
Tuft cells are key players in mucosal tissues, orchestrating type 2 immunity and other antimicrobial responses that facilitate rapid adaptation to luminal signals.
簇状细胞是粘膜组织中的关键参与者,协调2型免疫和其他抗菌反应,促进快速适应管腔信号。
Tuft cell differentiation is influenced by diverse extrinsic cues, including microbial metabolites, cytokines and typical intestinal crypt niche signals, possibly contributing to their heterogeneous gene expression programmes.
簇状细胞分化受多种外在线索的影响,包括微生物代谢物,细胞因子和典型的肠隐窝生态位信号,可能有助于其异质基因表达程序。
Stimulated by specific ligands, small intestinal tuft cells generate a tailored output, selecting from their known repertoire of effector molecules consisting of IL-25, leukotrienes, prostaglandin D2 and acetylcholine.
在特定配体的刺激下,小肠簇状细胞产生定制的输出,从其已知的由IL-25,白三烯,前列腺素D2和乙酰胆碱组成的效应分子库中进行选择。
The canonical taste signalling components GNAT3 (also known as Gαgus), PLCβ2, IP3R2, Ca2+ flux and TRPM5 are now established as essential in intestinal tuft cells for connecting the input succinate–SUCNR1 to the output IL-25.
经典的味觉信号成分GNAT3(也称为Gαgus),PLCβ2,IP3R2,Ca2+通量和TRPM5现在已被确定为肠簇细胞中必不可少的成分,用于将输入琥珀酸-SUCNR1连接到输出IL-25。
Tuft cells act as initiators and responders, enabling two-way communication with epithelial and immune cells, and generating feedback loops with some of the effector molecules.
簇状细胞充当启动子和应答器,实现与上皮细胞和免疫细胞的双向通信,并与一些效应分子产生反馈环。
A central rheostat role for luminal succinate is emerging, positioning responsive tuft cells together with Paneth cells and their antimicrobial repertoires, microbiome composition, dietary fibres and Tritrichomonas protists in an interconnected network.
管腔琥珀酸盐的中心变阻器作用正在出现,将响应性簇状细胞与Paneth细胞及其抗菌谱,微生物组组成,膳食纤维和Tritrichomonas原生生物一起定位在一个相互关联的网络中。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Tuft cell heterogeneity across and within tissues.Fig. 2: Established signalling pathways in tuft cells of the small intestine.Fig. 3: Interactions between tuft cells, intestinal epithelial cells and immune cells.Fig. 4: Cross-regulation of tuft cells and the microbiome.
图1:组织内外的簇状细胞异质性。图2:在小肠簇状细胞中建立的信号传导途径。图3:簇状细胞,肠上皮细胞和免疫细胞之间的相互作用。图4:簇状细胞和微生物组的交叉调节。
Referencesvon Moltke, J. in Physiology of the Gastrointestinal Tract 6th edn (ed. Hamid, M.) 721–733 (Academic, 2018).Bezençon, C. et al. Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J. Comp. Neurol. 509, 514–525 (2008).Article .
参考文献von Moltke,J.《胃肠道生理学》第6版(ed.Hamid,M.)721-733(Academic,2018)。Bezençon,C。等人。表达Trpm5的鼠肠细胞主要是刷状细胞,并表达神经元和炎症细胞的标志物。J、 公司。神经病学。509514-525(2008)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).Article
Gerbe,F。等人。肠上皮簇状细胞启动对蠕虫寄生虫的2型粘膜免疫。自然529226-230(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).Article
von Moltke,J.,Ji,M.,Liang,H.E。&Locksley,R.M。Tuft细胞衍生的IL-25调节肠ILC2上皮反应回路。自然529221-225(2016)。文章
Google Scholar
谷歌学者
Howitt, M. R. et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 1329–1333 (2016).Article
Howitt,M.R。等人,簇状细胞,味觉化学感受细胞,协调肠道中的寄生虫2型免疫。科学3511329-1333(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
O’Leary, C. E., Schneider, C. & Locksley, R. M. Tuft cells – systemically dispersed sensory epithelia integrating immune and neural circuitry. Annu. Rev. Immunol. 37, 47–72 (2019).Article
O'Leary,C.E.,Schneider,C。&Locksley,R.M。Tuft细胞-系统分散的感觉上皮细胞,整合免疫和神经回路。。修订版Immunol。37,47-72(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Schneider, C. Tuft cell integration of luminal states and interaction modules in tissues. Pflug. Arch. 473, 1713–1722 (2021).Article
。P插头。拱门。4731713-1722(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).Article
Haber,A.L.等人,小肠上皮的单细胞研究。自然551333-339(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bornstein, C. et al. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559, 622–626 (2018).Article
Bornstein,C。等人。胸腺基质的单细胞定位鉴定产生IL-25的簇状上皮细胞。自然559622-626(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Nadjsombati, M. S. et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity 49, 33–41.e7 (2018).Article
Nadjsombati,M.S。等人。通过肠簇细胞检测琥珀酸盐会触发2型先天免疫回路。免疫力49,33-41.e7(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).Article
Montoro,D.T。等人。修订的气道上皮层次包括表达CFTR的离子细胞。自然560319-324(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).Article
Plasschaert,L.W。等人。气道上皮的单细胞图谱揭示了富含CFTR的肺离子细胞。自然560377-381(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Elmentaite, R. et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021).Article
Elmentaite,R。等人。人体肠道细胞在空间和时间上的映射。自然597250-255(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).Article
Smillie,C.S.等人。溃疡性结肠炎期间人类结肠的细胞内和细胞间重新布线。细胞178714-730.e22(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burclaff, J. et al. A proximal-to-distal survey of healthy adult human small intestine and colon epithelium by single-cell transcriptomics. Cell Mol. Gastroenterol. Hepatol. 13, 1554–1589 (2022).Article
Burclaff,J.等人。通过单细胞转录组学对健康成人小肠和结肠上皮的近端到远端调查。细胞分子胃肠道。肝病。131554-1589(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Billipp, T. E., Nadjsombati, M. S. & von Moltke, J. Tuning tuft cells: new ligands and effector functions reveal tissue-specific function. Curr. Opin. Immunol. 68, 98–106 (2021).Article
Billipp,T.E.,Nadjsombati,M.S。&von Moltke,J。Tuning tuft cells:新的配体和效应子功能揭示了组织特异性功能。货币。奥平。免疫。68,98-106(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schneider, C., O’Leary, C. E. & Locksley, R. M. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19, 584–593 (2019).Article
Schneider,C.,O'Leary,C.E。和Locksley,R.M。簇状细胞对免疫反应的调节。国家免疫修订版。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kotas, M. E., O’Leary, C. E. & Locksley, R. M. Tuft cells: context- and tissue-specific programming for a conserved cell lineage. Annu. Rev. Pathol. 18, 311–335 (2023).Article
Kotas,M.E.,O'Leary,C.E。&Locksley,R.M。Tuft细胞:保守细胞谱系的上下文和组织特异性编程。。Pathol牧师。18311-335(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Silverman, J. B., Vega, P. N., Tyska, M. J. & Lau, K. S. Intestinal tuft cells: morphology, function, and implications for human health. Annu. Rev. Physiol. 86, 479–504 (2024).Article
Silverman,J.B.,Vega,P.N.,Tyska,M.J。&Lau,K.S。肠簇细胞:形态,功能和对人类健康的影响。。生理学评论。86479-504(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gerbe, F., Legraverend, C. & Jay, P. The intestinal epithelium tuft cells: specification and function. Cell Mol. Life Sci. 69, 2907–2917 (2012).Article
Gerbe,F.,Legraverend,C。&Jay,P。肠上皮簇状细胞:规格和功能。细胞分子生命科学。692907-2917(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van Es, J. H. et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104 (2012).Article
van Es,J.H。等人,Dll1+分泌祖细胞在隐窝损伤后恢复为干细胞。自然细胞生物学。141099-1104(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gerbe, F. et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J. Cell Biol. 192, 767–780 (2011).Article
Gerbe,F。等人。不同的ATOH1和Neurog3要求将簇状细胞定义为肠上皮中新的分泌细胞类型。J、 。192767-780(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bjerknes, M. et al. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev. Biol. 362, 194–218 (2012).Article
Bjerknes,M。等人。小鼠肠上皮刷状细胞谱系的起源。开发生物。362194-218(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yamashita, J., Ohmoto, M., Yamaguchi, T., Matsumoto, I. & Hirota, J. Skn-1a/Pou2f3 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice. PLoS ONE 12, e0189340 (2017).Article
Yamashita,J.,Ohmoto,M.,Yamaguchi,T.,Matsumoto,I。&Hirota,J。Skn-1a/Pou2f3作为主要调节剂在小鼠中产生表达Trpm5的化学感受细胞。PLoS ONE 12,e0189340(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matsumoto, I., Ohmoto, M., Narukawa, M., Yoshihara, Y. & Abe, K. Skn-1a (Pou2f3) specifies taste receptor cell lineage. Nat. Neurosci. 14, 685–687 (2011).Article
Matsumoto,I.,Ohmoto,M.,Narukawa,M.,Yoshihara,Y。&Abe,K。Skn-1a(Pou2f3)指定了味觉受体细胞谱系。自然神经科学。14685-687(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, X. S. et al. OCA-T1 and OCA-T2 are coactivators of POU2F3 in the tuft cell lineage. Nature 607, 169–175 (2022).Article
Wu,X.S.等人,OCA-T1和OCA-T2是簇状细胞谱系中POU2F3的共激活因子。自然607169-175(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Szczepanski, A. P. et al. POU2AF2/C11orf53 functions as a coactivator of POU2F3 by maintaining chromatin accessibility and enhancer activity. Sci. Adv. 8, eabq2403 (2022).Article
Szczepanski,A.P。等人POU2AF2/C11orf53通过维持染色质可及性和增强子活性而充当POU2F3的共激活剂。科学。广告8,eabq2403(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhou, C., Huang, H., Wang, Y., Sendinc, E. & Shi, Y. Selective regulation of tuft cell-like small cell lung cancer by novel transcriptional co-activators C11orf53 and COLCA2. Cell Discov. 8, 112 (2022).Article
Zhou,C.,Huang,H.,Wang,Y.,Sendinc,E。&Shi,Y。通过新型转录共激活因子C11orf53和COLCA2选择性调节簇状细胞样小细胞肺癌。细胞Discov。8112(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nadjsombati, M. S. et al. Genetic mapping reveals Pou2af2/OCA-T1-dependent tuning of tuft cell differentiation and intestinal type 2 immunity. Sci. Immunol. 8, eade5019 (2023).Article
Nadjsombati,M.S.等人的遗传作图揭示了簇状细胞分化和肠道2型免疫的Pou2af2/OCA-T1依赖性调节。科学。免疫。8,eade5019(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, L. et al. Tuft cells act as regenerative stem cells in the human intestine. Preprint at bioRxiv https://doi.org/10.1101/2024.03.17.585165 (2024).Zinina, V. V., Sauer, M., Nigmatullina, L., Kreim, N. & Soshnikova, N. TCF7L1 controls the differentiation of tuft cells in mouse small intestine.
Huang,L.等人。簇状细胞在人体肠道中充当再生干细胞。bioRxiv预印本https://doi.org/10.1101/2024.03.17.585165(2024年)。Zinina,V.V.,Sauer,M.,Nigmatullina,L.,Kreim,N。&Soshnikova,N。TCF7L1控制小鼠小肠中簇状细胞的分化。
Cells 12, 1452 (2023).Article .
细胞121452(2023)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Noah, T. K. & Shroyer, N. F. Notch in the intestine: regulation of homeostasis and pathogenesis. Annu. Rev. Physiol. 75, 263–288 (2013).Article
Noah,T.K。&Shroyer,N.F。Notch在肠道中的作用:调节体内平衡和发病机制。。生理学评论。75263-288(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
VanDussen, K. L. et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139, 488–497 (2012).Article
VanDussen,K.L。等人。Notch信号调节肠隐窝基底柱状干细胞的增殖和分化。发展139488-497(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Herring, C. A. et al. Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst. 6, 37–51.e9 (2018).Article
Herring,C.A。等人。单细胞RNA-seq和成像数据的无监督轨迹分析揭示了肠道中替代的簇状细胞起源。细胞系统。6,37-51.e9(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Banerjee, A. et al. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology 159, 2101–2115.e5 (2020).Article
由肠道微生物产生的琥珀酸盐促进簇状细胞的规格以抑制回肠炎症。胃肠病学1592101-2115.e5(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gracz, A. D. et al. Sox4 promotes Atoh1-independent intestinal secretory differentiation toward tuft and enteroendocrine fates. Gastroenterology 155, 1508–1523.e10 (2018).Article
Gracz,A.D.等人Sox4促进Atoh1非依赖性肠道分泌分化为簇状和肠内分泌命运。胃肠病学1551508-1523.e10(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Coutry, N. et al. Cross talk between Paneth and tuft cells drives dysbiosis and inflammation in the gut mucosa. Proc. Natl Acad. Sci. USA 120, e2219431120 (2023).Article
Paneth和tuft细胞之间的串扰会导致肠道粘膜的生态失调和炎症。程序。国家科学院。科学。美国120,e2219431120(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhao, M. et al. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and gasdermin C. Immunity 55, 623–638.e5 (2022).Article
Zhao,M。等人。上皮STAT6 O-GlcNAcylation依赖于簇状细胞增生和gasdermin C驱动协同的抗蠕虫警报反应。免疫55623-638.e5(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lindholm, H. T. et al. BMP signaling in the intestinal epithelium drives a critical feedback loop to restrain IL-13-driven tuft cell hyperplasia. Sci. Immunol. 7, eabl6543 (2022).Article
Lindholm,H.T。等人,肠上皮中的BMP信号传导驱动关键的反馈回路,以抑制IL-13驱动的簇状细胞增生。科学。免疫。7,eabl6543(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, X. et al. IL-17RA-signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity 55, 237–253.e8 (2022).Article
Lin,X。等人。Lgr5+肠干细胞中的IL-17RA信号传导诱导转录因子ATOH1的表达以促进分泌细胞谱系的承诺。免疫力55237–253.e8(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiong, Z. et al. Intestinal Tuft-2 cells exert antimicrobial immunity via sensing bacterial metabolite N-undecanoylglycine. Immunity 55, 686–700.e7 (2022).Article
Xiong,Z.等人。肠簇-2细胞通过感知细菌代谢物N-十一烷基甘氨酸发挥抗菌免疫作用。免疫力55686–700.e7(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Howitt, M. R. et al. The taste receptor TAS1R3 regulates small intestinal tuft cell homeostasis. Immunohorizons 4, 23–32 (2020).Article
味觉受体TAS1R3调节小肠绒毛细胞稳态。免疫视野4,23-32(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, X. et al. Elevating EGFR-MAPK program by a nonconventional Cdc42 enhances intestinal epithelial survival and regeneration. JCI Insight 5, e135923 (2020).Article
Zhang,X。等人。通过非常规Cdc42提高EGFR-MAPK程序可增强肠上皮的存活和再生。JCI Insight 5,e135923(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Long, T. et al. RNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine. Gut 71, 1790–1802 (2022).Article
RNA结合蛋白DDX5指导簇状细胞的规格和功能,以调节肠道中的微生物库和疾病易感性。肠道711790-1802(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Basak, O. et al. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell 20, 177–190.e4 (2017).Article
Basak,O.等人,肠道类器官中Lgr5+干细胞的诱导静止能够分化产生激素的肠内分泌细胞。细胞干细胞20177-190.e4(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Eshleman, E. M. et al. Microbiota-derived butyrate restricts tuft cell differentiation via histone deacetylase 3 to modulate intestinal type 2 immunity. Immunity 57, 319–332.e6 (2024).Article
Eshleman,E.M。等人。微生物群衍生的丁酸盐通过组蛋白脱乙酰酶3限制簇状细胞分化以调节肠道2型免疫。免疫力57319–332.e6(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schumacher, M. A. et al. Sprouty2 limits intestinal tuft and goblet cell numbers through GSK3β-mediated restriction of epithelial IL-33. Nat. Commun. 12, 836 (2021).Article
Schumacher,M.A。等人Sprouty2通过GSK3β介导的上皮IL-33的限制来限制肠簇和杯状细胞的数量。国家公社。12836(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiong, X. et al. Sirtuin 6 maintains epithelial STAT6 activity to support intestinal tuft cell development and type 2 immunity. Nat. Commun. 13, 5192 (2022).Article
Xiong,X。等人Sirtuin 6维持上皮STAT6活性,以支持肠绒毛细胞发育和2型免疫。国家公社。135192(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Del Vecchio, A. et al. PCGF6 controls murine Tuft cell differentiation via H3K9me2 modification independently of Polycomb repression. Dev. Cell 59, 368–383.e7 (2024).Article
Del Vecchio,A。等人,PCGF6通过H3K9me2修饰独立于Polycomb抑制来控制鼠簇细胞分化。开发单元59368-383.e7(2024)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Manco, R. et al. Clump sequencing exposes the spatial expression programs of intestinal secretory cells. Nat. Commun. 12, 3074 (2021).Article
Manco,R.等人的Clump测序揭示了肠分泌细胞的空间表达程序。国家公社。123074(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Miller, C. N. et al. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. Nature 559, 627–631 (2018).Article
。自然559627-631(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Billipp, T. E. et al. Tuft cell-derived acetylcholine promotes epithelial chloride secretion and intestinal helminth clearance. Immunity 57, 1243–1259.e8 (2024).Article
。免疫力571243–1259.e8(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ndjim, M. et al. Tuft cell acetylcholine is released into the gut lumen to promote anti-helminth immunity. Immunity 57, 1260–1273.e7 (2024).Article
Ndjim,M。等人。簇状细胞乙酰胆碱被释放到肠腔中以促进抗蠕虫免疫力。免疫力571260–1273.e7(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schütz, B. et al. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 6, 87 (2015).PubMed
Schütz,B.等人。小鼠胃肠道和胆道胆碱能刷状细胞的化学编码和化学感受特性。正面。生理学。6,87(2015)。PubMed出版社
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zwick, R. K. et al. Epithelial zonation along the mouse and human small intestine defines five discrete metabolic domains. Nat. Cell Biol. 26, 250–262 (2024).Article
Zwick,R.K。等人。沿小鼠和人小肠的上皮分区定义了五个离散的代谢域。自然细胞生物学。26250–262(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
McKinley, E. T. et al. Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity. JCI Insight 2, e93487 (2017).Article
。JCI Insight 2,e93487(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grunddal, K. V. et al. Adhesion receptor ADGRG2/GPR64 is in the GI-tract selectively expressed in mature intestinal tuft cells. Mol. Metab. 51, 101231 (2021).Article
Grunddal,K.V。等人。粘附受体ADGRG2/GPR64在胃肠道中在成熟的肠簇细胞中选择性表达。分子代谢。51101231(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gehart, H. et al. Identification of enteroendocrine regulators by real-time single-cell differentiation mapping. Cell 176, 1158–1173.e16 (2019).Article
Gehart,H.等人。通过实时单细胞分化图谱鉴定肠内分泌调节剂。细胞1761158-1173.e16(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ma, Z. et al. Single-cell transcriptomics reveals a conserved metaplasia program in pancreatic injury. Gastroenterology 162, 604–620.e20 (2022).Article
单细胞转录组学揭示了胰腺损伤中保守的化生程序。胃肠病学162604-620.e20(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Barr, J. et al. Injury-induced pulmonary tuft cells are heterogenous, arise independent of key type 2 cytokines, and are dispensable for dysplastic repair. Elife 11, e78074 (2022).Article
Barr,J。等人。损伤诱导的肺簇状细胞是异质的,独立于关键的2型细胞因子产生,并且对于发育异常修复是不必要的。Elife 11,e78074(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ualiyeva, S. et al. A nasal cell atlas reveals heterogeneity of tuft cells and their role in directing olfactory stem cell proliferation. Sci. Immunol. 9, eabq4341 (2024).Article
Ualiyeva,S。等人,《鼻细胞图谱》揭示了簇状细胞的异质性及其在指导嗅觉干细胞增殖中的作用。科学。免疫。9,eabq4341(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roper, S. D. & Chaudhari, N. Taste buds: cells, signals and synapses. Nat. Rev. Neurosci. 18, 485–497 (2017).Article
Roper,S.D。和Chaudhari,N。味蕾:细胞,信号和突触。神经科学杂志。18485-497(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lei, W. et al. Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine. Proc. Natl Acad. Sci. USA 115, 5552–5557 (2018).Article
Lei,W。等人。肠簇细胞表达的Sucnr1的激活触发小鼠小肠中的2型免疫。程序。国家科学院。科学。美国1155552-5557(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schneider, C. et al. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174, 271–284.e14 (2018).Article
Schneider,C。等人。代谢物触发的簇状细胞-ILC2电路驱动小肠重塑。细胞174271-284.e14(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
O’Leary, C. E., Feng, X., Cortez, V. S., Locksley, R. M. & Schneider, C. Interrogating the small intestine tuft cell–ILC2 circuit using in vivo manipulations. Curr. Protoc. 1, e77 (2021).Article
O'Leary,C.E.,Feng,X.,Cortez,V.S.,Locksley,R.M。和Schneider,C。使用体内操作询问小肠簇状细胞-ILC2电路。货币。普罗托克。1,e77(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Perniss, A. et al. A succinate/SUCNR1-brush cell defense program in the tracheal epithelium. Sci. Adv. 9, eadg8842 (2023).Article
Perniss,A。等人。气管上皮中的琥珀酸盐/SUCNR1刷状细胞防御程序。科学。Adv.9,eadg8842(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Luo, X. C. et al. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc. Natl Acad. Sci. USA 116, 5564–5569 (2019).Article
Luo,X.C.等人。寄生蠕虫旋毛虫的感染激活了肠簇细胞中Tas2r介导的信号通路。程序。国家科学院。科学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, S. et al. Oral berberine ameliorates high-fat diet-induced obesity by activating TAS2Rs in tuft and endocrine cells in the gut. Life Sci. 311, 121141 (2022).Article
Sun,S。等人。口服小檗碱通过激活肠道绒毛和内分泌细胞中的TAS2Rs来改善高脂饮食诱导的肥胖。生命科学。311121141(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lei, H. et al. Tuft cells utilize taste signaling molecules to respond to the pathobiont microbe Ruminococcus gnavus in the proximal colon. Front. Immunol. 14, 1259521 (2023).Article
Lei,H。等人。簇状细胞利用味觉信号分子对近端结肠中的病原微生物Ruminococcus gnavus作出反应。正面。免疫。141259521(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kim, D. H. et al. A type 2 immune circuit in the stomach controls mammalian adaptation to dietary chitin. Science 381, 1092–1098 (2023).Article
Kim,D.H.等人。胃中的2型免疫回路控制哺乳动物对饮食几丁质的适应。科学3811092-1098(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, Z., Zhao, Z., Margolskee, R. & Liman, E. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J. Neurosci. 27, 5777–5786 (2007).Article
Zhang,Z.,Zhao,Z.,Margolskee,R。&Liman,E。转导通道TRPM5由味觉细胞中的细胞内钙门控。J、 神经科学。275777-5786(2007)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hisatsune, C. et al. Abnormal taste perception in mice lacking the type 3 inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 282, 37225–37231 (2007).Article
Hisatsune,C。等人。缺乏3型肌醇1,4,5-三磷酸受体的小鼠的异常味觉。J、 生物。化学。28237225-37231(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gao, N. et al. Voltage-gated sodium channels in taste bud cells. BMC Neurosci. 10, 20 (2009).Article
Gao,N。等人。味蕾细胞中的电压门控钠通道。BMC神经科学。10,20(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Taruno, A. et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495, 223–226 (2013).Article
Taruno,A。等人。CALHM1离子通道介导甜味,苦味和鲜味的嘌呤能神经传递。自然495223-226(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ma, Z. et al. CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes. Neuron 98, 547–561.e10 (2018).Article
Ma,Z。等人。CALHM3对于GPCR介导的味觉的快速离子通道介导的嘌呤能神经传递至关重要。神经元98547-561.e10(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Feng, X. et al. Tuft cell IL-17RB restrains IL-25 bioavailability and reveals context-dependent ILC2 hypoproliferation. Preprint at bioRxiv https://doi.org/10.1101/2024.03.04.583299 (2024).Arige, V. et al. Functional determination of calcium-binding sites required for the activation of inositol 1,4,5-trisphosphate receptors.
Feng,X。等人。簇状细胞IL-17RB抑制IL-25的生物利用度,并揭示背景依赖性ILC2增殖不足。bioRxiv预印本https://doi.org/10.1101/2024.03.04.583299(2024年)。Arige,V。等人。肌醇1,4,5-三磷酸受体激活所需钙结合位点的功能测定。
Proc. Natl Acad. Sci. USA 119, e2209267119 (2022).Article .
Proc。国家科学院。滑雪。美国电话:119,e2209267119(2022)。第条。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shindo, Y. et al. Lrmp/Jaw1 is expressed in sweet, bitter, and umami receptor-expressing cells. Chem. Senses 35, 171–177 (2010).Article
。化学。感官35171-177(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chang, C. Y. et al. Tumor suppressor p53 regulates intestinal type 2 immunity. Nat. Commun. 12, 3371 (2021).Article
Chang,C.Y。等人。肿瘤抑制因子p53调节肠道2型免疫。国家公社。123371(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
McGinty, J. W. et al. Tuft-cell-derived leukotrienes drive rapid anti-helminth immunity in the small intestine but are dispensable for anti-protist immunity. Immunity 52, 528–541.e7 (2020).Article
McGinty,J.W。等人。簇状细胞衍生的白三烯在小肠中驱动快速的抗蠕虫免疫,但对于抗原生免疫是不必要的。免疫力52528–541.e7(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wilson, S. C. et al. Organizing structural principles of the IL-17 ligand-receptor axis. Nature 609, 622–629 (2022).Article
Wilson,S.C.等人,《组织IL-17配体-受体轴的结构原理》。自然609622-629(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, X., Bechara, R., Zhao, J., McGeachy, M. J. & Gaffen, S. L. IL-17 receptor-based signaling and implications for disease. Nat. Immunol. 20, 1594–1602 (2019).Article
Li,X.,Bechara,R.,Zhao,J.,McGeachy,M.J。&Gaffen,S.L。基于IL-17受体的信号传导及其对疾病的影响。自然免疫。201594-1602(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goswami, S. et al. Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nat. Immunol. 10, 496–503 (2009).Article
Goswami,S。等人。实验性哮喘中气道上皮基质金属蛋白酶7和视黄酸的不同功能。自然免疫。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lin, L. L., Lin, A. Y. & Knopf, J. L. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc. Natl Acad. Sci. USA 89, 6147–6151 (1992).Article
Lin,L.L.,Lin,A.Y。&Knopf,J.L。胞质磷脂酶A2与花生四烯酸的激素调节释放偶联。程序。国家科学院。科学。美国896147-6151(1992)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thulasingam, M. & Haeggstrom, J. Z. Integral membrane enzymes in eicosanoid metabolism: structures, mechanisms and inhibitor design. J. Mol. Biol. 432, 4999–5022 (2020).Article
Thulasingam,M。&Haeggstrom,J.Z。类花生酸代谢中的整合膜酶:结构,机制和抑制剂设计。J、 分子生物学。4324999-5022(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
von Moltke, J. et al. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. J. Exp. Med. 214, 27–37 (2017).Article
von Moltke,J。等人白三烯提供NFAT依赖性信号,与IL-33协同激活ILC2。J、 实验医学214,27-37(2017)。文章
Google Scholar
谷歌学者
Keshavarz, M. et al. Cysteinyl leukotrienes and acetylcholine are biliary tuft cell cotransmitters. Sci. Immunol. 7, eabf6734 (2022).Article
Keshavarz,M。等人。半胱氨酰白三烯和乙酰胆碱是胆管簇状细胞共转运蛋白。科学。免疫。7,eabf6734(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Haeggstrom, J. Z. & Funk, C. D. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem. Rev. 111, 5866–5898 (2011).Article
Haeggstrom,J.Z。&Funk,C.D。脂氧合酶和白三烯途径:生物化学,生物学和疾病中的作用。化学。修订版1115866–5898(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Haeggstrom, J. Z. Leukotriene biosynthetic enzymes as therapeutic targets. J. Clin. Invest. 128, 2680–2690 (2018).Article
Haeggstrom,J.Z。白三烯生物合成酶作为治疗靶标。J、 临床。投资。1282680-2690(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
DelGiorno, K. E. et al. Tuft cells inhibit pancreatic tumorigenesis in mice by producing prostaglandin D2. Gastroenterology 159, 1866–1881.e8 (2020).Article
。胃肠病学1591866-1881.e8(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wojno, E. D. et al. The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 8, 1313–1323 (2015).Article
Wojno,E.D.等人。前列腺素D2受体CRTH2调节发炎肺中第2组先天淋巴细胞的积累。粘膜免疫。81313-1323(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Xue, L. et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133, 1184–1194 (2014).Article
Xue,L。等人。前列腺素D2通过在TH2细胞上表达的化学引诱物受体同源分子激活第2组先天淋巴细胞。J、 过敏临床。免疫。1331184-1194(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chang, J. E., Doherty, T. A., Baum, R. & Broide, D. Prostaglandin D2 regulates human type 2 innate lymphoid cell chemotaxis. J. Allergy Clin. Immunol. 133, 899–901.e3 (2014).Article
Chang,J.E.,Doherty,T.A.,Baum,R。&Broide,D。前列腺素D2调节人类2型先天性淋巴细胞趋化性。J、 过敏临床。免疫。133899-901.e3(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wambre, E. et al. A phenotypically and functionally distinct human TH2 cell subpopulation is associated with allergic disorders. Sci. Transl. Med. 9, eaam9171 (2017).Article
Wambre,E。等人。表型和功能不同的人类TH2细胞亚群与过敏性疾病有关。科学。翻译。医学杂志9,eaam9171(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Oyesola, O. O. et al. PGD2 and CRTH2 counteract type 2 cytokine-elicited intestinal epithelial responses during helminth infection. J. Exp. Med. 218, e20202178 (2021).Article
。J、 实验医学218,E2020217(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Akiho, H., Blennerhassett, P., Deng, Y. & Collins, S. M. Role of IL-4, IL-13, and STAT6 in inflammation-induced hypercontractility of murine smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G226–G232 (2002).Article
。Am.J.Physiol。胃肠学家。肝脏生理学。282,G226–G232(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhao, A. et al. Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves. J. Immunol. 171, 948–954 (2003).Article
Zhao,A。等人。IL-4,IL-13和线虫诱导的小鼠小肠平滑肌收缩性改变对Stat6和肠神经的依赖性。J、 免疫。171948-954(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gustafsson, J. K. & Johansson, M. E. V. The role of goblet cells and mucus in intestinal homeostasis. Nat. Rev. Gastroenterol. Hepatol. 19, 785–803 (2022).Article
Gustafsson,J.K。&Johansson,M.E.V。杯状细胞和粘液在肠内稳态中的作用。胃肠病学国家修订版。肝病。19785-803(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Middelhoff, M. et al. Prox1-positive cells monitor and sustain the murine intestinal epithelial cholinergic niche. Nat. Commun. 11, 111 (2020).Article
Middelhoff,M。等人Prox1阳性细胞监测并维持小鼠肠上皮胆碱能生态位。国家公社。11111(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian intestine. Nat. Rev. Mol. Cell Biol. 22, 39–53 (2021).Article
Beumer,J。&Clevers,H。成年哺乳动物肠道中的细胞命运规范和分化。Nat。Rev。Mol。Cell Biol。22,39-53(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Maizels, R. M. & Gause, W. C. Targeting helminths: the expanding world of type 2 immune effector mechanisms. J. Exp. Med. 220, e20221381 (2023).Article
Maizels,R.M。&Gause,W.C。靶向蠕虫:2型免疫效应机制的不断扩大的世界。J、 实验医学220,e20221381(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Strine, M. S. & Wilen, C. B. Tuft cells are key mediators of interkingdom interactions at mucosal barrier surfaces. PLoS Pathog. 18, e1010318 (2022).Article
Strine,M.S。&Wilen,C.B。簇状细胞是粘膜屏障表面王国间相互作用的关键介质。。18,e1010318(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xi, R. et al. Up-regulation of gasdermin C in mouse small intestine is associated with lytic cell death in enterocytes in worm-induced type 2 immunity. Proc. Natl Acad. Sci. USA 118, e2026307118 (2021).Article
Xi,R。等人。在蠕虫诱导的2型免疫中,小鼠小肠中gasdermin C的上调与肠细胞中的溶解性细胞死亡有关。程序。国家科学院。科学。美国118,e2026307118(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, L. et al. Intraepithelial mast cells drive gasdermin C-mediated type 2 immunity. Immunity 57, 1056–1070.e5 (2024).Article
Yang,L。等人。上皮内肥大细胞驱动gasdermin C介导的2型免疫。免疫力571056–1070.e5(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Entwistle, L. J. et al. Epithelial-cell-derived phospholipase A2 group 1B is an endogenous anthelmintic. Cell Host Microbe 22, 484–493.e5 (2017).Article
Entwistle,L.J。等人。上皮细胞衍生的磷脂酶A2组1B是一种内源性驱虫药。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zheng, X. et al. Gingival solitary chemosensory cells are immune sentinels for periodontitis. Nat. Commun. 10, 4496 (2019).Article
Zheng,X。等。牙龈孤立性化学感受细胞是牙周炎的免疫哨兵。国家公社。104496(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, R. J. et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J. Clin. Invest. 124, 1393–1405 (2014).Article
Lee,R.J.等人。苦味和甜味受体调节人类上呼吸道先天免疫。J、 临床。投资。1241393-1405(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fung, C. et al. Tuft cells mediate commensal remodeling of the small intestinal antimicrobial landscape. Proc. Natl Acad. Sci. USA 120, e2216908120 (2023).Article
Fung,C。等人。簇状细胞介导小肠抗菌景观的共生重塑。程序。国家科学院。科学。美国120,e2216908120(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fricke, W. F. et al. Type 2 immunity-dependent reduction of segmented filamentous bacteria in mice infected with the helminthic parasite Nippostrongylus brasiliensis. Microbiome 3, 40 (2015).Article
Fricke,W.F.等人。感染蠕虫寄生虫巴西Nippostrongylus brasiliensis的小鼠中分段丝状细菌的2型免疫依赖性减少。微生物组3,40(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, Z. et al. Small proline-rich protein 2A is a gut bactericidal protein deployed during helminth infection. Science 374, eabe6723 (2021).Article
Hu,Z。等人。富含脯氨酸的小蛋白2A是蠕虫感染期间部署的肠道杀菌蛋白。科学374,eabe6723(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, S. et al. Paneth cell-derived lysozyme defines the composition of mucolytic microbiota and the inflammatory tone of the intestine. Immunity 53, 398–416.e8 (2020).Article
Yu,S。等人。Paneth细胞衍生的溶菌酶定义了粘液溶解微生物群的组成和肠道的炎症张力。免疫53398-416.e8(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).Article
Ivanov,I.I.等人,《分段丝状细菌诱导肠道Th17细胞》,《细胞》139485-498(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sonnenberg, G. F., Fouser, L. A. & Artis, D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12, 383–390 (2011).Article
Sonnenberg,G.F.,Fouser,L.A。和Artis,D。Border patrol:通过IL-22调节屏障表面的免疫,炎症和组织稳态。自然免疫。12383-390(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Perez Escriva, P., Fuhrer, T. & Sauer, U. Distinct N and C cross-feeding networks in a synthetic mouse gut consortium. mSystems 7, e0148421 (2022).Article
Perez-Escriva,P.,Fuhrer,T。&Sauer,U。合成小鼠肠道联盟中不同的N和C交叉喂养网络。mSystems 7,e0148421(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Orchard, R. C. et al. Discovery of a proteinaceous cellular receptor for a norovirus. Science 353, 933–936 (2016).Article
Orchard,R.C.等人发现诺如病毒的蛋白质细胞受体。科学353933-936(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wilen, C. B. et al. Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360, 204–208 (2018).Article
Wilen,C.B.等人。簇状细胞的嗜性决定了诺如病毒发病机理的免疫促进。科学360204-208(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Strine, M. S. et al. Tuft-cell-intrinsic and -extrinsic mediators of norovirus tropism regulate viral immunity. Cell Rep. 41, 111593 (2022).Article
Strine,M.S.等人。诺如病毒嗜性的簇状细胞内在和外在介质调节病毒免疫。Cell Rep.41111593(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ingle, H. et al. IFN-λ derived from nonsusceptible enterocytes acts on tuft cells to limit persistent norovirus. Sci. Adv. 9, eadi2562 (2023).Article
Ingle,H。等人。源自不敏感肠细胞的IFN-λ作用于簇状细胞以限制持续性诺如病毒。科学。Adv.9,eadi2562(2023年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Strine, M. S. et al. Intestinal tuft cell immune privilege enables norovirus persistence. Sci. Immunol. 9, eadi7038 (2024).Article
Strine,M.S.等人。肠道簇状细胞免疫特权使诺如病毒持续存在。科学。免疫。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bomidi, C., Robertson, M., Coarfa, C., Estes, M. K. & Blutt, S. E. Single-cell sequencing of rotavirus-infected intestinal epithelium reveals cell-type specific epithelial repair and tuft cell infection. Proc Natl Acad Sci USA 118, e2112814118 (2021).Article
Bomidi,C.,Robertson,M.,Coarfa,C.,Estes,M.K。&Blutt,S.E。轮状病毒感染的肠上皮的单细胞测序揭示了细胞类型特异性上皮修复和簇状细胞感染。美国国家科学院院刊118,e2112814118(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Desai, P. et al. Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell 184, 1214–1231.e6 (2021).Article
肠道蠕虫共感染通过簇状细胞-IL-4受体信号轴增强宿主对嗜神经性黄病毒的易感性。细胞1841214-1231.e6(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Graziano, V. R. et al. CD300lf is the primary physiologic receptor of murine norovirus but not human norovirus. PLoS Pathog. 16, e1008242 (2020).Article
Graziano,V.R。等人,CD300lf是鼠诺如病毒的主要生理受体,但不是人诺如病毒。。16,e1008242(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gerrick, E. R. et al. Metabolic diversity in commensal protists regulates intestinal immunity and trans-kingdom competition. Cell 187, 62–78.e20 (2024).Article
Gerrick,E.R.等人。共生原生生物的代谢多样性调节肠道免疫和跨王国竞争。细胞187,62-78.e20(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wei, Y. et al. Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Appl. Environ. Microbiol. 86, e00303-20 (2020).Article
Wei,Y。等人。共生细菌以饮食营养依赖的方式影响原生动物整合到小鼠肠道微生物群中。应用。环境。微生物。86,e00303-20(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Popovic, A. et al. Commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. ISME J 18, wrae023 (2024).Article
。ISME J 18,wrae023(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Westphalen, C. B. et al. Long-lived intestinal tuft cells serve as colon cancer-initiating cells. J. Clin. Invest. 124, 1283–1295 (2014).Article
Westphalen,C.B。等人。长寿命的肠簇细胞作为结肠癌起始细胞。J、 临床。投资。1241283-1295(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nakanishi, Y. et al. Dclk1 distinguishes between tumor and normal stem cells in the intestine. Nat. Genet. 45, 98–103 (2013).Article
Nakanishi,Y。等人,Dclk1区分了肠道中的肿瘤干细胞和正常干细胞。纳特·吉内特。45,98-103(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, Y. H. et al. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes. Dev. 32, 915–928 (2018).Article
Huang,Y.H.等人POU2F3是小细胞肺癌簇状细胞样变体的主要调节剂。基因。Dev.32915–928(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goto, N. et al. Lineage tracing and targeting of IL17RB+ tuft cell-like human colorectal cancer stem cells. Proc. Natl Acad. Sci. USA 116, 12996–13005 (2019).Article
Goto,N.等人。IL17RB+簇状细胞样人结直肠癌干细胞的谱系追踪和靶向。程序。国家科学院。科学。美国11612996-13005(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jou, E. et al. An innate IL-25–ILC2–MDSC axis creates a cancer-permissive microenvironment for Apc mutation-driven intestinal tumorigenesis. Sci. Immunol. 7, eabn0175 (2022).Article
Jou,E。等人。先天性IL-25–ILC2–MDSC轴为Apc突变驱动的肠道肿瘤发生创造了允许癌症的微环境。科学。免疫。7,eabn0175(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
O’Keefe, R. N. et al. A tuft cell–ILC2 signaling circuit provides therapeutic targets to inhibit gastric metaplasia and tumor development. Nat. Commun. 14, 6872 (2023).Article
O'Keefe,R.N。等人。簇状细胞-ILC2信号通路提供了抑制胃化生和肿瘤发展的治疗靶点。国家公社。146872(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hayakawa, Y. et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell 31, 21–34 (2017).Article
Hayakawa,Y。等人。神经生长因子通过异常胆碱能信号传导促进胃肿瘤发生。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Smith, K. A. et al. Concerted IL-25R and IL-4Rα signaling drive innate type 2 effector immunity for optimal helminth expulsion. Elife 7, e38269 (2018).Article
Smith,K.A.等人,协同的IL-25R和IL-4Rα信号传导驱动先天性2型效应免疫以实现最佳的蠕虫排出。Elife 7,e38269(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Campbell, L. et al. ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. J. Exp. Med. 216, 2714–2723 (2019).Article
Campbell,L。等人,ILC2s通过在远端粘膜部位引发粘液产生来介导全身先天性保护。J、 实验医学2162714-2723(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Munoz-Antoli, C. et al. Interleukin-25 induces resistance against intestinal trematodes. Sci. Rep. 6, 34142 (2016).Article
Munoz-Antoli,C。等人。白细胞介素-25诱导对肠吸虫的抗性。科学。代表634142(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alvarez-Izquierdo, M., Guillermo Esteban, J., Munoz-Antoli, C. & Toledo, R. Ileal proteomic changes associated with IL-25-mediated resistance against intestinal trematode infections. Parasit. Vectors 13, 336 (2020).Article
Alvarez-Izquierdo,M.,Guillermo-Esteban,J.,Munoz-Antoli,C。&Toledo,R。回肠蛋白质组学变化与IL-25介导的抗肠道吸虫感染相关。。向量13336(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buonomo, E. L. et al. Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection. Cell Rep. 16, 432–443 (2016).Article
Buonomo,E.L。等人。微生物群调节的IL-25增加嗜酸性粒细胞数量,以在艰难梭菌感染期间提供保护。Cell Rep.16432–443(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
O’Leary, C. E. et al. Bile acid-sensitive tuft cells regulate biliary neutrophil influx. Sci. Immunol. 7, eabj1080 (2022).Article
胆汁酸敏感的簇状细胞调节胆汁中性粒细胞的流入。科学。免疫。7,eabj1080(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nevo, S. et al. Tuft cells and fibroblasts promote thymus regeneration through ILC2-mediated type 2 immune response. Sci. Immunol. 9, eabq6930 (2024).Article
Nevo,S。等人。簇状细胞和成纤维细胞通过ILC2介导的2型免疫应答促进胸腺再生。科学。免疫。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lucas, B. et al. Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells. Nat. Commun. 11, 2198 (2020).Article
Lucas,B。等人。髓质胸腺上皮细胞的多样性控制着iNKT细胞的活性和可用性。国家公社。112198(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tizzano, M. et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc. Natl Acad. Sci. USA 107, 3210–3215 (2010).Article
Tizzano,M。等人。鼻化学感受细胞使用苦味信号来检测刺激物和细菌信号。程序。国家科学院。科学。美国1073210–3215(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ualiyeva, S. et al. Airway brush cells generate cysteinyl leukotrienes through the ATP sensor P2Y2. Sci. Immunol. 5, eaax7224 (2020).Article
Ualiyeva,S。等人。气道刷状细胞通过ATP传感器P2Y2产生半胱氨酰白三烯。科学。免疫。5,eaax7224(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krasteva, G., Canning, B. J., Papadakis, T. & Kummer, W. Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci. 91, 992–996 (2012).Article
Krasteva,G.,Canning,B.J.,Papadakis,T。&Kummer,W。气管中的胆碱能刷状细胞介导对群体感应分子的呼吸反应。生命科学。91992-996(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bankova, L. G. et al. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation. Sci. Immunol. 3, eaat9453 (2018).Article
Bankova,L.G。等人。半胱氨酰白三烯3受体调节产生IL-25的气道刷状细胞的扩增,导致2型炎症。科学。免疫。3,eaat9453(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fu, Z., Ogura, T., Luo, W. & Lin, W. ATP and odor mixture activate TRPM5-expressing microvillous cells and potentially induce acetylcholine release to enhance supporting cell endocytosis in mouse main olfactory epithelium. Front. Cell Neurosci. 12, 71 (2018).Article
Fu,Z.,Ogura,T.,Luo,W。&Lin,W。ATP和气味混合物激活表达TRPM5的微绒毛细胞,并可能诱导乙酰胆碱释放以增强小鼠主要嗅觉上皮中的支持细胞内吞作用。正面。细胞神经科学。12,71(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Perniss, A. et al. Chemosensory cell-derived acetylcholine drives tracheal mucociliary clearance in response to virulence-associated formyl peptides. Immunity 52, 683–699.e11 (2020).Article
Perniss,A。等人。化学感应细胞衍生的乙酰胆碱驱动气管粘膜纤毛清除,以响应毒力相关的甲酰基肽。免疫力52683–699.e11(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hollenhorst, M. I. et al. Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling. FASEB J. 34, 316–332 (2020).Article
Hollenhorst,M.I。等人。气管刷细胞释放乙酰胆碱以响应苦味剂的旁分泌和自分泌信号传导。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hollenhorst, M. I. et al. Taste receptor activation in tracheal brush cells by denatonium modulates ENaC channels via Ca2+, cAMP and ACh. Cells 11, 2411 (2022).Article
Hollenhorst,M.I.等人。地那铵对气管刷状细胞味觉受体的激活通过Ca2+,cAMP和ACh调节ENaC通道。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rane, C. K. et al. Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am. J. Physiol. Lung Cell Mol. Physiol 316, L1141–L1149 (2019).Article
Rane,C.K.等人。严重流感损伤后远端肺中孤立性化学感受细胞的发育。Am.J.Physiol。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).Article
Melms,J.C.等人,《致命性COVID-19的分子单细胞肺图谱》。自然595114-119(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Deckmann, K. et al. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc. Natl Acad. Sci. USA 111, 8287–8292 (2014).Article
Deckmann,K。等人。Bitter触发多模式尿道化学感受细胞释放乙酰胆碱和膀胱反射。程序。国家科学院。科学。美国1118287–8292(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schmidt, P. et al. Tas1R3 dependent and independent recognition of sugars in the urethra and the role of tuft cells in this process. Adv. Biol. 8, e2400117 (2024).Article
Schmidt,P。等人。尿道中糖的Tas1R3依赖性和独立识别以及簇状细胞在此过程中的作用。高级生物学。8,e2400117(2024)。文章
Google Scholar
谷歌学者
Tallini, Y. N. et al. BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol. Genomics 27, 391–397 (2006).Article
Tallini,Y.N.等人,BAC转基因小鼠在中枢和外周胆碱能神经元中表达增强的绿色荧光蛋白。生理学。基因组学27391-397(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gautron, L. et al. Neuronal and nonneuronal cholinergic structures in the mouse gastrointestinal tract and spleen. J. Comp. Neurol. 521, 3741–3767 (2013).Article
Gautron,L.等人。小鼠胃肠道和脾脏中的神经元和非神经元胆碱能结构。J、 公司。神经病学。5213741-3767(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Krasteva, G. et al. Cholinergic chemosensory cells in the trachea regulate breathing. Proc. Natl Acad. Sci. USA 108, 9478–9483 (2011).Article
Krasteva,G。等人。气管中的胆碱能化学感受细胞调节呼吸。程序。国家科学院。科学。美国1089478–9483(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).Article
Barker,N.等人。通过标记基因Lgr5鉴定小肠和结肠中的干细胞。自然4491003-1007(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schuijers, J., van der Flier, L. G., van Es, J. & Clevers, H. Robust Cre-mediated recombination in small intestinal stem cells utilizing the Olfm4 locus. Stem Cell Rep. 3, 234–241 (2014).Article
Schuijers,J.,van der Flier,L.G.,van Es,J。&Clevers,H。利用Olfm4基因座在小肠干细胞中进行稳健的Cre介导的重组。干细胞代表3234-241(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
van der Flier, L. G. et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136, 903–912 (2009).Article
van der Flier,L.G.等人。转录因子achaete scute-like 2控制肠干细胞的命运。细胞136903-912(2009)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. Nat. Rev. Gastroenterol. Hepatol. 16, 19–34 (2019).Article
Gehart,H。&Clevers,H。来自隐窝的故事:对肠道干细胞的新见解。胃肠病学国家修订版。肝病。16,19-34(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tian, H. et al. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Rep. 11, 33–42 (2015).Article
Tian,H。等人。Notch和Wnt信号传导的相反活性调节肠干细胞和肠道稳态。Cell Rep.11,33–42(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Flanagan, D. J. et al. Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5+ stem cells. Stem Cell Rep. 4, 759–767 (2015).Article
Flanagan,D.J。等人,Frizzled7在肠上皮Lgr5+干细胞中起Wnt受体的作用。干细胞代表4759-767(2015)。文章
CAS
中科院
Google Scholar
谷歌学者
Yang, Y. P. et al. A chimeric Egfr protein reporter mouse reveals Egfr localization and trafficking in vivo. Cell Rep. 19, 1257–1267 (2017).Article
Yang,Y。P。等人。嵌合Egfr蛋白报告小鼠揭示了Egfr在体内的定位和运输。Cell Rep.191257–1267(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sangiorgi, E. & Capecchi, M. R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 40, 915–920 (2008).Article
Sangiorgi,E。&Capecchi,M.R。Bmi1在肠道干细胞中体内表达。纳特·吉内特。40915-920(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Montgomery, R. K. et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem clls. Proc. Natl Acad. Sci. USA 108, 179–184 (2011).Article
Montgomery,R.K.等人。小鼠端粒酶逆转录酶(mTert)表达标志着缓慢循环的肠干CLL。程序。国家科学院。科学。美国108179-184(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Takeda, N. et al. Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420–1424 (2011).Article
Takeda,N.等人。不同生态位中肠道干细胞群之间的相互转化。科学3341420-1424(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Powell, A. E. et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146–158 (2012).Article
Powell,A.E.等人。泛ErbB负调节因子Lrig1是一种肠道干细胞标志物,具有抑癌作用。细胞149146-158(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ishibashi, F. et al. Contribution of ATOH1+ cells to the homeostasis, repair, and tumorigenesis of the colonic epithelium. Stem Cell Rep. 10, 27–42 (2018).Article
Ishibashi,F。等人。ATOH1+细胞对结肠上皮的稳态,修复和肿瘤发生的贡献。干细胞代表10,27-42(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
Kim, T. H. et al. Single-cell transcript profiles reveal multilineage priming in early progenitors derived from Lgr5+ intestinal stem cells. Cell Rep. 16, 2053–2060 (2016).Article
Kim,T.H.等人。单细胞转录谱揭示了源自Lgr5+肠干细胞的早期祖细胞中的多谱系启动。Cell Rep.162053–2060(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van Es, J. H. et al. Notch/λ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959–963 (2005).Article
van Es,J.H。等人。Notch/λ-分泌酶抑制将肠隐窝和腺瘤中的增殖细胞转化为杯状细胞。《自然》435959-963(2005)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sancho, R., Cremona, C. A. & Behrens, A. Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep. 16, 571–581 (2015).Article
Sancho,R.,Cremona,C.A。&Behrens,A。哺乳动物肠道中的干细胞和祖细胞命运:体内平衡和疾病中的Notch和侧向抑制。EMBO Rep.16571–581(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yang, Q., Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294, 2155–2158 (2001).Article
Yang,Q.,Bermingham,N.A.,Finegold,M.J。和Zoghbi,H.Y。Math1对小鼠肠道分泌细胞谱系承诺的要求。科学2942155-2158(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
VanDussen, K. L. & Samuelson, L. C. Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev. Biol. 346, 215–223 (2010).Article
VanDussen,K.L。&Samuelson,L.C。小鼠无张力同源物1将肠祖细胞导向分泌细胞而不是吸收细胞的命运。开发生物。346215-223(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Clevers, H. The intestinal crypt, a prototype stem cell compartment. Cell 154, 274–284 (2013).Article
。细胞154274-284(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Krndija, D. et al. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365, 705–710 (2019).Article
Krndija,D。等人。活跃的细胞迁移对于肠道稳态上皮更新至关重要。科学365705-710(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Burclaff, J. & Mills, J. C. Plasticity of differentiated cells in wound repair and tumorigenesis, part II: skin and intestine. Dis. Model. Mech. 11, dmm035071 (2018).Article
Burclaff,J。&Mills,J.C。分化细胞在伤口修复和肿瘤发生中的可塑性,第二部分:皮肤和肠道。。型号。机械。11,dmm035071(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors thank all members of the Schneider laboratory, J. von Moltke and M. R. Howitt for helpful discussions. C.S. is supported by grants from the Swiss National Science Foundation (Eccellenza grant 194216) and the Peter Hans Hofschneider Professorship for Molecular Medicine.Author informationAuthor notesThese authors contributed equally: Xiaogang Feng, Pascal Flüchter.Authors and AffiliationsDepartment of Physiology, University of Zurich, Zurich, SwitzerlandXiaogang Feng .
下载参考文献致谢作者感谢施耐德实验室的所有成员J.von Moltke和M.R。Howitt进行了有益的讨论。C、 美国得到了瑞士国家科学基金会(Eccellenza grant 194216)和彼得·汉斯·霍夫施奈德分子医学教授的资助。作者信息作者注意到这些作者做出了同样的贡献:冯晓刚,Pascal Flüchter。作者和附属机构苏黎世大学生理学系,苏黎世,瑞士小港峰。
(冯小刚), Pascal Flüchter, Jeshua C. De Tenorio & Christoph SchneiderAuthorsXiaogang Feng
冯晓刚、何小玲、何志华、德泰诺里奥、施耐德
(冯小刚)View author publicationsYou can also search for this author in
(冯小刚)查看作者出版物您也可以在
PubMed Google ScholarPascal FlüchterView author publicationsYou can also search for this author in
PubMed Google ScholarPascal FlüchterView作者出版物您也可以在
PubMed Google ScholarJeshua C. De TenorioView author publicationsYou can also search for this author in
PubMed Google ScholarJeshua C.De TenorioView作者出版物您也可以在
PubMed Google ScholarChristoph SchneiderView author publicationsYou can also search for this author in
PubMed Google ScholarChristoph SchneiderView作者出版物您也可以在
PubMed Google ScholarContributionsAll authors researched data for the article and made substantial contributions to discussion of the content. X.F., P.F. and C.S. contributed equally to writing and reviewing/editing the manuscript before submission.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献所有作者都研究了文章的数据,并为内容的讨论做出了重大贡献。十、 F.,P.F.和C.S.在提交稿件之前对稿件的撰写和审阅/编辑做出了同样的贡献。对应作者对应。
Christoph Schneider.Ethics declarations
克里斯托夫·施耐德。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Reviews Gastroenterology & Hepatology thanks Kathleen DelGiorno and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然评论》胃肠病学和肝病学感谢KathleenDelgiorno和另一位匿名审稿人对这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.GlossaryBone morphogenetic protein
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。舌骨形态发生蛋白
(BMP). Belonging to the superfamily of TGFβ, BMPs regulate epithelial stemness and differentiation patterning in the small intestine by forming an activity gradient along the crypt–villus axis.
(BMP)。BMP属于TGFβ超家族,通过沿隐窝-绒毛轴形成活性梯度来调节小肠上皮干细胞和分化模式。
Cysteinyl leukotrienes
半胱氨酰白三烯
Leukotrienes C4, D4 and E4 are potent lipid mediators generated by oxidation of arachidonic acid released from membrane phospholipids and conjugated to glutathione, involving enzymes such as phospholipases, ALOX5 and LTC4S.
白三烯C4,D4和E4是由膜磷脂释放的花生四烯酸氧化产生的有效脂质介质,并与谷胱甘肽结合,涉及磷脂酶,ALOX5和LTC4等酶。
Epidermal growth factor
表皮生长因子
(EGF). A common proliferation-inducing factor that exerts its actions through the EGF receptor tyrosine kinase, EGFR, important for intestinal stem cells.
(表皮生长因子)。一种常见的增殖诱导因子,通过EGF受体酪氨酸激酶EGFR发挥作用,EGFR对肠道干细胞很重要。
Helminths
蠕虫
Parasitic worms and widely prevalent macroparasites some of which live and reproduce in the host gastrointestinal tract; associated with stimulation of type 2 immune responses.
寄生虫和广泛流行的大型寄生虫,其中一些在宿主胃肠道中生活和繁殖;与刺激2型免疫反应有关。
IL-4 receptor-α
IL-4受体-α
Cytokine receptor subunit required for the responses to IL-4 and IL-13.
对IL-4和IL-13的反应所需的细胞因子受体亚基。
ILC2s
ILC2s公司
Group 2 innate lymphoid cells are innate sources of cytokines IL-5, IL-9 and IL-13 that are critical for early type 2 immune responses.
第2组先天淋巴细胞是细胞因子IL-5,IL-9和IL-13的先天来源,这些细胞因子对早期2型免疫应答至关重要。
Protists
原生生物
Unicellular eukaryotic organisms; free-living or parasitic, such as flagellated parabasalid protists of the genus Tritrichomonas.
单细胞真核生物;自由生活的或寄生的,如Tritrichomonas属的有鞭毛的parabasalid原生生物。
Tuft cell core gene expression profiles
簇状细胞核心基因表达谱
Transcriptional signature characteristic of tuft cells across all mucosal surfaces, including the transcripts for Pou2f3, Gfi1b, Il25 and Alox5.
簇状细胞在所有粘膜表面的转录特征,包括Pou2f3,Gfi1b,Il25和Alox5的转录本。
Tuft cell–ILC2 circuit
簇状电池–ILC2电路
Cellular interaction module in the small intestine, enabled by tuft cell-derived IL-25 and ILC2-derived IL-13, and characterized by its feed-forward nature.
小肠中的细胞相互作用模块,由簇状细胞衍生的IL-25和ILC2衍生的IL-13实现,其特征在于其前馈性质。
Tuft-1 and tuft-2
簇-1和簇-2
Two transcriptional programmes observed in multiple tissues when clustering tuft cell single-cell RNA sequencing data; enriched for neuronal and immune transcripts.
聚类簇状细胞单细胞RNA测序数据时,在多个组织中观察到两个转录程序;。
Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleFeng, X., Flüchter, P., De Tenorio, J.C.
权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Feng,X.,Flüchter,P.,De Tenorio,J.C。
et al. Tuft cells in the intestine, immunity and beyond..
等。肠道中的簇状细胞,免疫力等。。
Nat Rev Gastroenterol Hepatol (2024). https://doi.org/10.1038/s41575-024-00978-1Download citationAccepted: 02 August 2024Published: 26 September 2024DOI: https://doi.org/10.1038/s41575-024-00978-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Rev Gastroenterol Hepatol(2024年)。https://doi.org/10.1038/s41575-024-00978-1Download引文接受日期:2024年8月2日发布日期:2024年9月26日OI:https://doi.org/10.1038/s41575-024-00978-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
ImmunologyInflammationMicrobiomeSmall intestine
免疫炎症微生物菌毛肠