商务合作
动脉网APP
可切换为仅中文
AbstractMusculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single-nucleus transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles.
摘要肌肉骨骼创伤(MTI)涉及骨折附近的软组织病变,导致纤维不愈合。MTI对骨折炎症反应和骨骼干/祖细胞(SSPCs)免疫调节的影响尚不清楚。在这里,我们使用单核转录组学分析来描述骨折后的免疫细胞动力学,并鉴定出具有连续促炎,促修复和抗炎特征的不同巨噬细胞亚群。
Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation.
同时,在骨软骨形成分化之前,SSPC通过促炎和抗炎纤维化阶段的分化转变。在临床前MTI小鼠模型中,免疫细胞和SSPC的损伤反应被破坏,导致促炎期延长和炎症消退延迟。
Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as a driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis..
巨噬细胞耗竭改善了MTI中的骨再生,表明巨噬细胞参与了纤维不连。最后,使用CSF1R抑制剂Pexidartinib对巨噬细胞的药理学抑制可改善愈合。这些发现揭示了巨噬细胞和骨骼干/祖细胞的协调免疫反应是骨愈合的驱动因素,也是治疗创伤相关纤维化的主要靶点。。
IntroductionMusculoskeletal conditions affect approximately 1.71 billion people and are the principal contributor to disability worldwide.1 Among them, musculoskeletal traumatic injuries (MTI), marked by extensive soft tissue damage associated with a bone fracture, are a leading cause of fracture nonunion.
引言肌肉骨骼疾病影响约17.1亿人,是全球残疾的主要原因。其中,以骨折相关的广泛软组织损伤为特征的肌肉骨骼创伤性损伤(MTI)是骨折不愈合的主要原因。
Clinical management of MTI is challenging as current treatments are mostly surgical with variable healing outcomes.2 The consequences of MTI on bone regeneration are poorly understood, limiting our ability to address these debilitating conditions of fracture nonunion.As observed in many tissues, bone repair following injury is initiated by an inflammatory response and a transient fibrotic response of skeletal stem/progenitor cells (SSPCs), followed by a reparative phase to reestablish tissue integrity and function.3,4,5,6 However, how immune cell dynamics influence the fate of SSPCs after bone injury is still poorly understood.
MTI的临床管理具有挑战性,因为目前的治疗大多是手术治疗,愈合结果可变[2]。MTI对骨再生的影响知之甚少,限制了我们解决这些骨折不愈合的衰弱状况的能力。正如在许多组织中观察到的那样,损伤后的骨修复是由骨骼干/祖细胞(SSPC)的炎症反应和瞬时纤维化反应引发的,然后是修复阶段以重建组织完整性和功能[3,4,5,6]。然而,免疫细胞动力学如何影响骨损伤后SSPC的命运仍然知之甚少。
SSPCs reside mostly in the periosteum, as well as bone marrow and skeletal muscles neighboring the fracture site.3,7,8,9,10,11 Upon fracture, SSPC differentiation occurs in a complex injury environment, where inflammatory cells migrate and play essential roles in the initiation and progression of the repair process.
SSPC主要存在于骨膜以及骨折部位附近的骨髓和骨骼肌中[3,7,8,9,10,11]。骨折后,SSPC分化发生在复杂的损伤环境中,炎症细胞迁移并在修复过程的开始和进展中发挥重要作用。
Among inflammatory cell types, macrophages are suspected to be crucial regulators of the early stages of bone healing.12,13,14 Inflammatory and resident macrophages remove necrotic cells and debris and secrete chemotactic mediators to recruit SSPCs at the fracture site.12,15,16,17,18,19 Conversely, prolonged inflammation and delay in the clearance of macrophages may delay healing.20,21,22,23,24,25 Specific pro-fibrotic macrophage subtypes have been incriminated in fibrotic diseases and impaired tissue regeneration.19,26,27,28 In MTI.
在炎症细胞类型中,巨噬细胞被认为是骨愈合早期的关键调节因子[12,13,14]。炎症和常驻巨噬细胞去除坏死细胞和碎片,分泌趋化介质,在骨折部位募集SSPC[12,15,16,17,18,19]。相反,长时间的炎症和巨噬细胞清除的延迟可能会延迟愈合[20,21,22,23,24,25]。特定的促纤维化巨噬细胞亚型已被纳入纤维化疾病和组织再生受损[19,26,27,28]。
Periosteum and callus/hematoma
骨膜和骨痂/血肿
Aligned snRNAseq datasets were filtered to retain only nuclei expressing between 200 and 5 000 genes and expressing less than 0.5% of mitochondrial genes and 2.5% of ribosomal genes. Contamination from myogenic cells was removed from the analysis. After filtering, the datasets of murine samples were composed of 1 203 nuclei for uninjured dataset, 634 nuclei for day 1 post-fracture dataset, 1 370 nuclei for day 3 post-fracture dataset, 1 971 nuclei for day 5 post-fracture dataset and 997 nuclei for day 7 post-fracture dataset.
过滤比对的snRNAseq数据集,以仅保留表达200至5000个基因且表达少于0.5%的线粒体基因和2.5%的核糖体基因的细胞核。从分析中去除了肌原细胞的污染。过滤后,小鼠样本的数据集由未受伤数据集的1 203个核,骨折后第1天数据集的634个核,骨折后第3天数据集的1 370个核,骨折后第5天数据集的1 971个核和第7天骨折后数据集的997个核组成。
The datasets were merged and scaled on mitochondrial and ribosomal content and cell cycle. Clustering was performed using the first 20 principal components and a resolution of 1.7. Immune cell clusters from the integration were isolated to perform subset analysis and were reclustered using the first 10 principal components and a resolution of 1.7.
数据集被合并并根据线粒体和核糖体含量以及细胞周期进行缩放。使用前20个主成分和1.7的分辨率进行聚类。分离来自整合的免疫细胞簇以进行子集分析,并使用前10个主成分和1.7的分辨率重新聚类。
SSPC, fibrogenic, chondrogenic and osteogenic clusters from the integration were isolated to perform subset analysis. The subset was reclustered using the first 20 principal components and a resolution of 0.5..
分离来自整合的SSPC,纤维化,软骨形成和成骨簇以进行子集分析。使用前20个主成分和0.5的分辨率对子集进行了重新聚类。。
For the day 5 post-MTI dataset, we filtered nuclei expressing between 200 and 5 000 genes and expressing less than 5% of mitochondrial genes and 2% of ribosomal genes. After filtering and removal of myogenic cells, we obtained 995 nuclei. We integrated this dataset with the day 5 post-fracture dataset, scaled on mitochondrial and ribosomal content and clustered using the first 30 principal components and a resolution of 1.0 For subset analysis, we used the 20 first components and a resolution of 1.5 for the immune subset and the 15 first components and a resolution of 0.5 for the IIFC subset..
对于MTI数据集后的第5天,我们过滤了表达200至5000个基因且表达少于5%的线粒体基因和2%的核糖体基因的细胞核。过滤并去除肌原细胞后,我们获得了995个核。我们将该数据集与骨折后第5天的数据集集成,根据线粒体和核糖体含量进行缩放,并使用前30个主成分和1.0的分辨率进行聚类。对于子集分析,我们使用了20个第一成分和1.5的分辨率免疫子集和15个第一成分,IIFC子集的分辨率为0.5。。
Skeletal muscle
骨骼肌
Datasets from8 were used for these analyses (GSE195940). These datasets correspond to sorted GFP+ cells isolated from the skeletal muscle surrounding the tibia of Prx1Cre; R26mTmG mice without injury and at days 3 and 5 post-fracture and MTI. Cells expressing between 1 000 and 8 000 genes and <20% mitochondrial genes were retained for analysis.
来自8的数据集用于这些分析(GSE195940)。这些数据集对应于从Prx1Cre胫骨周围骨骼肌分离的分选的GFP+细胞;。保留表达1000至8000个基因和20%以下线粒体基因的细胞进行分析。
Pericytes and tenocytes were removed from the analysis. The integrated dataset of days 0, 3 and 5 post-fracture was regressed using mitochondrial content, the number of genes detected within each cell, and performed using top 2 000 features and the 30 first components with a resolution set at 1.3. The integrated dataset of days 0, 3 and 5 post-fracture and MTI was regressed using mitochondrial and ribosomal content and then performed using top 2 000 features and the 25 first components with a resolution set at 1.1..
从分析中除去周细胞和肌腱细胞。骨折后第0,3和5天的综合数据集使用线粒体含量,每个细胞内检测到的基因数量进行回归,并使用前2000个特征和分辨率设置为1.3的30个第一组分进行。使用线粒体和核糖体含量对骨折后第0天,第3天和第5天的综合数据集和MTI进行回归,然后使用前2000个特征和分辨率设置为1.1的25个第一组分进行。。
Pseudotime analysisMonocle3 v1.0.0 was used for pseudotime analysis.67 Single-cell trajectories were determined using monocle3 default parameters. The starting point of the pseudotime trajectory was determined as the cells from the uninjured dataset with the highest expression of stem/progenitor marker genes (Ly6a, Cd34, Dpp4, Pi16).Lineage scoreLineage score was calculated by the mean of the expression of specific markers from the literature listed in Table S2.Single cell regulatory network inference using SCENICSingle cell regulatory network inference and clustering (SCENIC)38 was used to infer transcription factor (TF) networks active in the subsets of IIFCs.
伪时间分析monocle3 v1.0.0用于伪时间分析.67使用monocle3默认参数确定单细胞轨迹。假时间轨迹的起点被确定为来自未受伤数据集的细胞,其具有最高的干/祖细胞标记基因(Ly6a,Cd34,Dpp4,Pi16)表达。谱系得分谱系得分是通过表S2中列出的文献中特定标记物的表达平均值计算的。使用SCENICSingle cell regulatory network inference and clustering(SCENIC)38的单细胞调节网络推断用于推断活跃在IIFC子集中的转录因子(TF)网络。
Analysis was performed using recommended parameters using the packages SCENIC v1.3.1, AUCell v1.16.0, and RcisTarget v1.14 and the motif databases RcisTarget and GRNboost.Cell-cell interaction using CellChat and ConnectomeCell communication analysis was performed using the R package CellChat37 and Connectome68 with default parameters on the complete fracture combined dataset and on the subset of immune cells.Statistical analysisData are presented as mean ± s.d.
使用推荐的参数,使用软件包Scientive v1.3.1,AUCell v1.16.0和RcisTarget v1.14以及motif数据库RcisTarget和GRNboost进行分析。使用CellChat和ConnectomeCell的细胞-细胞相互作用使用R软件包CellChat37和Connectome68进行细胞通讯分析,并在完整的骨折组合数据集和免疫细胞子集上使用默认参数。统计分析数据以平均值±s.d表示。
and were obtained from at least two independent experiments. Statistical significance was determined with a two-sided Mann–Whitney test and reported from GraphPad Prism v9.0.2. Differences were considered to be significant when P < 0.05, and reported as *P < 0.05, **P < 0.01 and ***P < 0.001..
并且是从至少两个独立的实验中获得的。统计显着性通过双侧Mann-Whitney检验确定,并从GraphPad Prism v9.0.2报告。当P<0.05时,差异被认为是显着的,并报告为*P<0.05,**P<0.01和***P<0.001。。
Data availability
数据可用性
The single-nucleus RNAseq dataset generated for this study are deposited in GEO (GSE268276). Single-nucleus RNAseq datasets from Perrin et al. are deposited in GEO (GSE234451). This paper does not report original code.
为这项研究生成的单核RNAseq数据集保存在GEO(GSE268276)中。Perrin等人的单核RNAseq数据集保存在GEO(GSE234451)中。本文不报告原始代码。
ReferencesCieza, A. et al. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 2006–2017 (2020).Article
ReferencesCieza,A.等人,《基于2019年全球疾病负担研究的康复需求全球估计:2019年全球疾病负担研究的系统分析》。柳叶刀3962006–2017(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mock, C. & Cherian, M. N. The global burden of musculoskeletal injuries: challenges and solutions. Clin. Orthop. Relat. Res. 466, 2306–2316 (2008).Article
Mock,C.&Cherian,M.N。肌肉骨骼损伤的全球负担:挑战和解决方案。临床。骨科。相关。第4662306-2316号决议(2008年)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Julien, A. et al. Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury. J. Bone Miner. Res. 37, 1545–1561 (2022).Article
Julien,A。等人。骨膜和骨骼肌中的骨骼干/祖细胞对骨损伤具有共同的分子反应。J、 骨矿工。第371545-1561号决议(2022年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Perrin, S. et al. Single nuclei transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. eLife 13, RP92519 (2024).
Perrin,S。等人。单核转录组学揭示了骨膜骨骼/干祖细胞在骨再生中的分化轨迹。eLife 13,RP92519(2024)。
Google Scholar
谷歌学者
Lemos, D. R. & Duffield, J. S. Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies. Sci. Transl. Med. 10, eaan5174 (2018).Article
Lemos,D.R。&Duffield,J.S。组织驻留间充质基质细胞:对组织特异性抗纤维化疗法的影响。科学。翻译。医学杂志10,eaan5174(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Di Carlo, S. E. & Peduto, L. The perivascular origin of pathological fibroblasts. J. Clin. Invest. 128, 54–63 (2018).Article
。J、 临床。投资。128,54-63(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Duchamp de Lageneste, O. et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by periostin. Nat. Commun. 9, 773 (2018).Article
Duchamp de Lageneste,O。等人。骨膜含有由骨膜素控制的具有高骨再生潜能的骨骼干细胞。。9773(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Julien, A. et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat. Commun. 12, 2860 (2021).Article
Julien,A.等人。骨骼肌间充质祖细胞对骨修复的直接贡献。。122860(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matsushita, Y. et al. A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat. Commun. 11, 332 (2020).Article
Matsushita,Y。等人。Wnt介导的骨髓基质细胞身份转化协调骨骼再生。。11332(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jeffery, E. C., Mann, T. L. A., Pool, J. A., Zhao, Z. & Morrison, S. J. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell. 29, 1547–1561 (2022).Article
Jeffery,E.C.,Mann,T.L.A.,Pool,J.A.,Zhao,Z.&Morrison,S.J。骨髓和骨膜骨骼干/祖细胞对骨骼的维持和修复做出了独特的贡献。细胞干细胞。291547-1561(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Matthews, B. G. et al. Heterogeneity of murine periosteum progenitors involved in fracture healing. Elife 10, e58534 (2021).Article
Matthews,B.G.等人。参与骨折愈合的鼠骨膜祖细胞的异质性。Elife 10,e58534(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vi, L. et al. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J. Bone Min. Res. 30, 1090–1102 (2015).Article
Vi,L。等人。巨噬细胞在体内促进成骨细胞分化:对骨折修复和骨稳态的影响。J、 Bone Min.Res.301090–1102(2015)。文章
CAS
中科院
Google Scholar
谷歌学者
Batoon, L. et al. CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials 196, 51–66 (2019).Article
Batoon,L。等人。CD169+巨噬细胞对于成骨细胞的维持至关重要,并在骨修复过程中促进膜内和软骨内骨化。生物材料196,51-66(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xing, Z. et al. Multiple roles for CCR2 during fracture healing. Dis. Models Mech. 3, 451–458 (2010).Article
Xing,Z。等。CCR2在骨折愈合过程中的多种作用。Dis。型号机械。3451-458(2010)。文章
CAS
中科院
Google Scholar
谷歌学者
Abou-Khalil, R. et al. Delayed bone regeneration is linked to chronic inflammation in murine muscular dystrophy. J. Bone Min. Res. 29, 304–315 (2014).Article
Abou Khalil,R。等人。延迟的骨再生与小鼠肌营养不良症的慢性炎症有关。J、 Bone Min.Res.29304–315(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Alexander, K. A. et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Min. Res. 26, 1517–1532 (2011).Article
Alexander,K.A。等人。在小鼠胫骨损伤模型中,骨巨噬细胞促进体内膜内骨愈合。J、 Bone Min.Res.261517–1532(2011)。文章
CAS
中科院
Google Scholar
谷歌学者
Gao, B. et al. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J. Clin. Investig. 129, 2578–2594 (2019).Article
Gao,B。等人。巨噬细胞谱系TRAP+细胞募集骨膜来源的细胞用于骨膜成骨和再生。J、 临床。调查。1292578-2594(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vi, L. et al. Macrophage cells secrete factors including LRP1 that orchestrate the rejuvenation of bone repair in mice. Nat. Commun. 9, 5191 (2018).Article
Vi,L。等人。巨噬细胞分泌包括LRP1在内的因子,这些因子协调小鼠骨修复的恢复。。95191(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, A. C., Raggatt, L. J., Alexander, K. A. & Pettit, A. R. Unraveling macrophage contributions to bone repair. Bonekey Rep. 2, 373 (2013).Article
Wu,A.C.,Raggatt,L.J.,Alexander,K.A。和Pettit,A.R。揭示巨噬细胞对骨修复的贡献。Bonekey Rep.2373(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Claes, L., Recknagel, S. & Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8, 133–143 (2012).Article
。风湿病杂志。8133-143(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Parihar, A., Eubank, T. D. & Doseff, A. I. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate Immun. 2, 204–215 (2010).Article
Parihar,A.,Eubank,T.D。&Doseff,A.I。单核细胞和巨噬细胞通过存活和细胞死亡的动态网络调节免疫。J、 先天免疫。2204-215(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kovtun, A. et al. The crucial role of neutrophil granulocytes in bone fracture healing. eCM 32, 152–162 (2016).Article
Kovtun,A。等人。中性粒细胞在骨折愈合中的关键作用。eCM 32152-162(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Reinke, S. et al. Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans. Sci. Transl. Med. 5, 177ra36 (2013).Article
Reinke,S。等人。终末分化的CD8+T细胞对人类的骨再生产生负面影响。科学。翻译。医学杂志5177RA36(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Godwin, J. W., Pinto, A. R. & Rosenthal, N. A. Macrophages are required for adult salamander limb regeneration. Proc. Natl. Acad. Sci. USA 110, 9415–9420 (2013).Article
Godwin,J.W.,Pinto,A.R。和Rosenthal,N.A。巨噬细胞是成年蝾螈肢体再生所必需的。程序。纳特尔。阿卡德。科学。美国1109415–9420(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shook, B., Xiao, E., Kumamoto, Y., Iwasaki, A. & Horsley, V. CD301b+ macrophages are essential for effective skin wound healing. J. Investig. Dermatol. 136, 1885–1891 (2016).Article
。J、 调查。皮肤病。1361885-1891(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).Article
Aran,D。等人。基于参考的肺单细胞测序分析揭示了过渡性促纤维化巨噬细胞。。20163-172(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hurtgen, B. J. et al. Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing. J. Musculoskelet. Neuronal Interact. 16, 122–134 (2016).CAS
Hurtgen,B.J。等人。严重的肌肉创伤会引发局部肌肉骨骼炎症的加剧和延长,并损害邻近的胫骨骨折愈合。J、 肌肉骨骼。神经元相互作用。16122-134(2016)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Joshi, N. et al. A spatially restricted fibrotic niche in pulmonary fibrosis is sustained by M-CSF/M-CSFR signalling in monocyte-derived alveolar macrophages. Eur. Respir. J. 55, 1900646 (2020).Article
Joshi,N。等人。单核细胞衍生的肺泡巨噬细胞中的M-CSF/M-CSFR信号传导维持了肺纤维化中空间受限的纤维化生态位。欧元呼吸。J、 551900646(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gschwandtner, M., Derler, R. & Midwood, K. S. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front. Immunol. 10, 2759 (2019).Article
Gschwandtner,M.,Derler,R。&Midwood,K.S。不仅仅是吸引人:CCL2如何影响骨髓细胞行为而不仅仅是趋化性。正面。免疫。102759(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Arango Duque, G. & Descoteaux, A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 5, 491 (2014).Article
。正面。免疫。5491(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mosser, D. M., Hamidzadeh, K. & Goncalves, R. Macrophages and the maintenance of homeostasis. Cell Mol. Immunol. 18, 579–587 (2021).Article
Mosser,D.M.,Hamidzadeh,K。&Goncalves,R。巨噬细胞和维持体内平衡。细胞分子免疫。18579-587(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ueshima, E. et al. Macrophage-secreted TGF-β1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am. J. Physiol. Ren. Physiol. 317, F52–F64 (2019).Article
巨噬细胞分泌的TGF-β1有助于消融损伤后的成纤维细胞活化和输尿管狭窄。Am.J.Physiol。任。生理学。317,F52–F64(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Arnold, L. et al. CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production. Nat. Commun. 6, 8972 (2015).Article
Arnold,L。等人。CX3CR1缺乏症通过增强巨噬细胞载脂蛋白E的产生来促进肌肉修复和再生。。68972(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, L. et al. Chemokine CXCL16 regulates neutrophil and macrophage infiltration into injured muscle, promoting muscle regeneration. Am. J. Pathol. 175, 2518–2527 (2009).Article
趋化因子CXCL16调节中性粒细胞和巨噬细胞浸润到受损肌肉中,促进肌肉再生。美国J.Pathol。1752518-2527(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Watanabe, S., Alexander, M., Misharin, A. V. & Budinger, G. R. S. The role of macrophages in the resolution of inflammation. J. Clin. Investig. 129, 2619–2628 (2019).Article
Watanabe,S.,Alexander,M.,Misharin,A.V。&Budinger,G.R.S。巨噬细胞在炎症消退中的作用。J、 临床。调查。1292619-2628(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Spadaro, O. et al. IGF1 Shapes macrophage activation in response to immunometabolic challenge. Cell Rep. 19, 225–234 (2017).Article
Spadaro,O。等人。IGF1响应免疫代谢挑战而形成巨噬细胞活化。Cell Rep.19225–234(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).Article
Jin,S.等人。使用CellChat推断和分析细胞间通信。。121088(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).Article
Aibar,S.等人,《风景:单细胞调控网络推断和聚类》。Nat。方法141083-1086(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, S. et al. Meis1 controls the differentiation of eye progenitor cells and the formation of posterior poles during planarian regeneration. IJMS 24, 3505 (2023).Article
Wang,S。等人,Meis1在涡虫再生过程中控制眼祖细胞的分化和后极的形成。IJMS 243505(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Le Grand, F. et al. Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration. J. Cell Biol. 198, 815–832 (2012).Article
Le Grand,F。等人。Six1在骨骼肌再生过程中调节干细胞修复潜力和自我更新。J、 细胞生物学。198815-832(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guo, X. et al. ETV1 inhibition depressed M2 polarization of tumor-associated macrophage and cell process in gastrointestinal stromal tumor via down-regulating PDE3A. J. Clin. Biochem. Nutr. 72, 139–146 (2023).Article
Guo,X。等人。ETV1抑制通过下调PDE3A抑制胃肠道间质瘤中肿瘤相关巨噬细胞的M2极化和细胞过程。J、 临床。生物化学。营养。72139-146(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martin, H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat. Res. 690, 57–63 (2010).Article
Martin,H。PPAR-γ在炎症中的作用。食物成分治疗干预的前景。突变。第690、57-63号决议(2010年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Investig. 100, 2552–2561 (1997).Article
。J、 临床。调查。1002552-2561(1997)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fujiwara, T. et al. CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infiltration in the sarcoma microenvironment. Mol. Cancer Therapeutics 20, 1388–1399 (2021).Article
Fujiwara,T。等人,CSF1/CSF1R信号抑制剂pexidartinib(PLX3397)重编程肿瘤相关巨噬细胞并刺激肉瘤微环境中的T细胞浸润。Mol.Cancer Therapeutics 201388–1399(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Frade, B. B., Dias, R. B., Gemini Piperni, S. & Bonfim, D. C. The role of macrophages in fracture healing: a narrative review of the recent updates and therapeutic perspectives. Stem Cell Investig. 10, 4–4 (2023).Article
Frade,B.B.,Dias,R.B.,Gemini-Piperni,S。和Bonfim,D.C。巨噬细胞在骨折愈合中的作用:对最近更新和治疗观点的叙述性回顾。干细胞研究。10,4-4(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, K. H. et al. Transcriptional space-time mapping identifies concerted immune and stromal cell patterns and gene programs in wound healing and cancer. Cell Stem Cell 30, 885–903.e10 (2023).Article
Hu,K.H.等人。转录时空作图确定了伤口愈合和癌症中协同的免疫和基质细胞模式以及基因程序。细胞干细胞30885–903.e10(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Joyce, M. E., Jingushi, S. & Bolander, M. E. Transforming growth factor-beta in the regulation of fracture repair. Orthop. Clin. North Am. 21, 199–209 (1990).Article
Joyce,M.E.,Jingushi,S。和Bolander,M.E。转化生长因子β在骨折修复调节中的作用。骨科。临床。North Am.21199–209(1990)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, J. et al. Bone marrow-derived IGF-1 orchestrates maintenance and regeneration of the adult skeleton. Proc. Natl. Acad. Sci. USA 120, e2203779120 (2023).Article
Wang,J。等人。骨髓来源的IGF-1协调成人骨骼的维持和再生。程序。纳特尔。阿卡德。科学。美国120,e2203779120(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Helbling, P. M. et al. Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation. Cell Rep. 29, 3313–3330.e4 (2019).Article
Helbling,P.M.等人。出生后发育,衰老和炎症期间骨髓基质微环境的整体转录组学分析。Cell Rep.293313–3330.e4(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, Y., Fang, J., Liu, B., Shao, C. & Shi, Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 29, 1515–1530 (2022).Article
Wang,Y.,Fang,J.,Liu,B.,Shao,C。&Shi,Y。间充质干细胞和免疫反应的相互调节。细胞干细胞291515-1530(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sinha, S. et al. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell 185, 4717–4736.e25 (2022).Article
Sinha,S。等人。成纤维细胞炎症引发决定了驯鹿的再生与纤维化皮肤修复。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Caetano, A. J. et al. Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte recruitment through CXCL8 and CXCL10. eLife 12, e81525 (2023).Article
Caetano,A.J.等人的空间分辨转录组学揭示了通过CXCL8和CXCL10参与淋巴细胞募集的促炎成纤维细胞。eLife 12,e81525(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yaghi, O. K. et al. A discrete ‘early-responder’ stromal-cell subtype orchestrates immunocyte recruitment to injured tissue. Nat. Immunol. 24, 2053–2067 (2023).Article
Yaghi,O.K。等人。一种离散的“早期反应者”基质细胞亚型协调免疫细胞向受损组织的募集。。242053-2067(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nawaz, A. et al. Depletion of CD206+ M2-like macrophages induces fibro-adipogenic progenitors activation and muscle regeneration. Nat. Commun. 13, 7058 (2022).Article
Nawaz,A。等人。CD206+ M2样巨噬细胞的消耗诱导纤维脂肪祖细胞活化和肌肉再生。。137058(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Clark, D. et al. Age-related changes to macrophages are detrimental to fracture healing in mice. Aging Cell 19, e13112 (2020).Article
Clark,D。等人。与年龄相关的巨噬细胞变化对小鼠骨折愈合有害。衰老细胞19,e13112(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Du, C. et al. High fluoride ingestion impairs bone fracture healing by attenuating m2 macrophage differentiation. Front. Bioeng. Biotechnol. 10, 791433 (2022).Article
Du,C。等人。高氟摄入通过减弱m2巨噬细胞分化来损害骨折愈合。正面。生物能源。生物技术。10791433(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tap, W. D. et al. Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial. Lancet 394, 478–487 (2019).Article
Tap,W.D.等人。Pexidartinib与安慰剂治疗晚期腱鞘膜巨细胞瘤(ENLIVEN):一项随机3期临床试验。柳叶刀394478-487(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, M. et al. Microglia-mediated neuroimmune response regulates cardiac remodeling after myocardial infarction. J. Am. Heart Assoc. 12, e029053 (2023).Article
Wang,M。等人。小胶质细胞介导的神经免疫反应调节心肌梗塞后的心脏重塑。J、 美国心脏协会第12号,e029053(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jung, S. et al. Analysis of fractalkine receptor cx3cr1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).Article
Jung,S.等人。通过靶向缺失和绿色荧光蛋白报告基因插入分析fractalkine受体cx3cr1的功能。摩尔电池。生物学杂志204106-4114(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. & Förster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).Article
Clausen,B.E.,Burkhardt,C.,Reith,W.,Renkawitz,R。&Förster,I。使用LysMcre小鼠在巨噬细胞和粒细胞中进行条件性基因靶向。转基因研究8265-277(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).Article
。自然神经科学。13133-140(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).Article
Buch,T。等人。Cre诱导型白喉毒素受体在毒素给药后介导细胞谱系消融。《自然方法》2419-426(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Perrin, S., Julien, A., Duchamp de Lageneste, O., Abou-Khalil, R. & Colnot, C. Mouse periosteal cell culture, in vitro differentiation, and in vivo transplantation in tibial fractures. Bio Protocol. 11, e4107 (2021).Article
Perrin,S.,Julien,A.,Duchamp de Lageneste,O.,Abou Khalil,R。&Colnot,C。小鼠骨膜细胞培养,体外分化和胫骨骨折的体内移植。生物协议。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).Article
Bankhead,P。等。QuPath:用于数字病理图像分析的开源软件。科学。代表716878(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).Article
Stuart,T。等人。单细胞数据的综合集成。细胞1771888-1902.e21(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).Article
Butler,A.,Hoffman,P.,Smibert,P.,Papalexi,E。&Satija,R。整合不同条件,技术和物种的单细胞转录组数据。美国国家生物技术公司。36411-420(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).Article
Cao,J。等人。哺乳动物器官发生的单细胞转录景观。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Raredon, M. S. B. et al. Computation and visualization of cell–cell signaling topologies in single-cell systems data using Connectome. Sci. Rep. 12, 4187 (2022).Article
Raredon,M.S.B.等人。使用Connectome计算和可视化单细胞系统数据中的细胞间信号拓扑。科学。代表124187(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank A. Guigan, O. Ruckebusch and A. Henry from the Flow Cytometry platforms of IMRB, L. Slimani and K. Henri from Life Imaging Facility of Paris Cité University (Plateforme Imagerie du Vivant “Micro-CT platform”), the staff from the IMRB genomic and bioinformatic platforms for advice and technical assistance.
下载参考文献致谢我们感谢来自巴黎城市大学生命成像设施(Plateforme Imagerie du Vivant“Micro-CT平台”)的IMRB流式细胞仪平台的A.Guigan,O.Ruckebusch和A.Henry,IMRB基因组和生物信息学平台的工作人员提供建议和技术援助。
We thank C. Goachet, V. Bretegnier, G. Chemin, E. Rohart and S. Lakhlifi for technical assistance or advice.FundingThis work was supported by National Institute of Arthritis and Musculoskeletal and Skin Diseases R01 AR072707 (C.C. and Ted Miclau) and R01 AR081671 (C.C. and Ralph Marcucio), Agence Nationale de la Recherche ANR-18-CE14-0033 and ANR-21-CE18-007-01 (C.C.)Author informationAuthor notesThese authors contributed equally: Yasmine Hachemi, Simon PerrinAuthors and AffiliationsUniv Paris Est Creteil, INSERM, IMRB, Creteil, FranceYasmine Hachemi, Simon Perrin, Maria Ethel, Julia Vettese, Blandine Geisler & Céline ColnotDepartment of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SwedenAnais Julien & Christian GöritzCenter for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong KongChristian GöritzAuthorsYasmine HachemiView author publicationsYou can also search for this author in.
。资助这项工作得到了美国国家关节炎、肌肉骨骼和皮肤病研究所R01 AR072707(C.C.和Ted Miclau)和R01 AR081671(C.C.和拉尔夫·马库西奥)、国家研究所ANR-18-CE14-0033和ANR-21-CE18-007-01(C.C.)的支持。作者信息作者注意到,这些作者做出了同样的贡献:Yasmine Hachemi,Simon Perrinathors和附属机构IV Paris Est Creteil,INSERM,IMRB,Creteil,FranceYasmine Hachemi,Simon Perrin,Maria Ethel,Julia Vettel Tese,Blandine Geisler&Céline Colnot斯德哥尔摩卡罗林斯卡研究所细胞与分子生物学系,瑞典朱利安和克里斯蒂安·格里茨神经肌肉骨骼修复医学中心,香港沙田香港科技园克里斯汀·格里茨作者Yasmine HachemiView作者出版物你也可以在中搜索这位作者。
PubMed Google ScholarSimon PerrinView author publicationsYou can also search for this author in
PubMed Google ScholarSimon Perriview作者出版物您也可以在
PubMed Google ScholarMaria EthelView author publicationsYou can also search for this author in
PubMed Google ScholarMaria EthelView作者出版物您也可以在
PubMed Google ScholarAnais JulienView author publicationsYou can also search for this author in
PubMed Google ScholarAnais JulienView作者出版物您也可以在
PubMed Google ScholarJulia VetteseView author publicationsYou can also search for this author in
PubMed谷歌学者Julia VetteseView作者出版物您也可以在
PubMed Google ScholarBlandine GeislerView author publicationsYou can also search for this author in
PubMed Google ScholarBlandine GeislerView作者出版物您也可以在
PubMed Google ScholarChristian GöritzView author publicationsYou can also search for this author in
PubMed Google ScholarChristian GöritzView作者出版物您也可以在
PubMed Google ScholarCéline ColnotView author publicationsYou can also search for this author in
PubMed谷歌学术评论ColnotView作者出版物您也可以在
PubMed Google ScholarContributionsConceptualization: Y.H., S.P., A.J., C.C. Methodology: Y.H., S.P., C.C. Formal Analysis: Y.H., S.P. Investigation: Y.H., S.P., A.J., M.E., J.V., B.G., Resources: C.G. Writing – Original Draft: Y.H., S.P., C.C. Writing – Review & Editing: A.J., M.E.
PubMed谷歌学术贡献概念化:Y.H.,S.P.,A.J.,C.C.方法论:Y.H.,S.P.,C.C.正式分析:Y.H.,S.P.调查:Y.H.,S.P.,A.J.,M.E.,J.V.,B.G.,资源:C.G.写作-原稿:Y.H.,S.P.,C.C.写作-评论和编辑:A.J.,M.E。
Visualization: Y.H., S.P. Supervision: C.C. Funding Acquisition: C.C.Corresponding authorCorrespondence to.
可视化:Y.H.,S.P.监督:C.C.资金获取:C.C.相应作者回复。
Céline Colnot.Ethics declarations
塞琳·科尔诺。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Supplementary informationSupplemental materialRights and permissions
补充信息补充材料权利和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleHachemi, Y., Perrin, S., Ethel, M. et al. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma.
转载和许可本文引用本文Hachemi,Y.,Perrin,S.,Ethel,M。等人。骨修复过程中免疫细胞的多模式分析确定巨噬细胞是肌肉骨骼创伤的治疗靶点。
Bone Res 12, 56 (2024). https://doi.org/10.1038/s41413-024-00347-3Download citationReceived: 14 December 2023Revised: 04 April 2024Accepted: 23 May 2024Published: 29 September 2024DOI: https://doi.org/10.1038/s41413-024-00347-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
骨研究12,56(2024)。https://doi.org/10.1038/s41413-024-00347-3Download引文接收日期:2023年12月14日修订日期:2024年4月4日接受日期:2024年5月23日发布日期:2024年9月29日OI:https://doi.org/10.1038/s41413-024-00347-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供