EN
登录

通过靶向和非靶向代谢组学分析探索甲基苯丙胺自我给药大鼠模型中药物依赖的进展

Exploring the progression of drug dependence in a methamphetamine self-administration rat model through targeted and non-targeted metabolomics analyses

Nature 等信源发布 2024-09-29 13:32

可切换为仅中文


AbstractPersistent neurochemical and biological disturbances resulting from repeated cycles of drug reward, withdrawal, and relapse contribute to drug dependence. Methamphetamine (MA) is a psychostimulant with substantial abuse potential and neurotoxic effects, primarily affecting monoamine neurotransmitter systems in the brain.

摘要由药物奖励,戒断和复发的重复周期引起的持续性神经化学和生物紊乱导致药物依赖。甲基苯丙胺(MA)是一种精神兴奋剂,具有很大的滥用潜力和神经毒性作用,主要影响大脑中的单胺类神经递质系统。

In this study, we aimed to explore the progression of drug dependence in rat models of MA self-administration, extinction, and reinstatement through targeted and non-targeted metabolomics analyses. Metabolic profiles were examined in rat plasma during the following phases: after 16 days of MA self-administration (Group M); after 16 days of self-administration followed by 14 days of extinction (Group MS); and after self-administration and extinction followed by a reinstatement injection of MA (Group MSM).

在这项研究中,我们旨在通过靶向和非靶向代谢组学分析探索MA自我给药,灭绝和恢复大鼠模型中药物依赖的进展。在以下阶段检查大鼠血浆中的代谢谱:MA自我给药16天后(M组);自我给药16天后,灭绝14天(MS组);自我管理和灭绝后,恢复注射MA(MSM组)。

Each group of MA self-administration, extinction, and reinstatement induces distinct changes in the metabolic pathways, particularly those related to the TCA cycle, arginine and proline metabolism, and arginine biosynthesis. Additionally, the downregulation of glycerophospholipids and sphingomyelins in Group MSM suggests their potential role in MA reinstatement.

MA的每组自我管理,灭绝和恢复都会引起代谢途径的明显变化,特别是与TCA循环,精氨酸和脯氨酸代谢以及精氨酸生物合成有关的代谢途径。此外,MSM组中甘油磷脂和鞘磷脂的下调表明它们在MA恢复中的潜在作用。

These alterations may signify the progressive deterioration of these metabolic pathways, possibly contributing to drug dependence following repeated cycles of drug reward, withdrawal, and relapse. These results provide valuable insights into the metabolic changes associated with MA use at various stages, potentially facilitating the discovery of early diagnostic biomarkers and therapeutic targets for MA use disorders..

这些改变可能意味着这些代谢途径的逐渐恶化,可能在药物奖励,戒断和复发的重复周期后导致药物依赖。这些结果为在不同阶段与MA使用相关的代谢变化提供了有价值的见解,可能有助于发现MA使用障碍的早期诊断生物标志物和治疗靶点。。

IntroductionAccording to the World Drug Report 2023, the number of drug users has progressively increased from an estimated 219 million in 2011 to 296 million in 2021, representing 5.8% of the global population aged 15–64 years. This signifies that one in every 17 individuals worldwide used drugs in 2021, 23% more than a decade earlier1.

引言根据《2023年世界毒品报告》,吸毒人数已从2011年的估计2.19亿逐渐增加到2021年的2.96亿,占全球15-64岁人口的5.8%。这意味着2021年全世界每17个人中就有一个人使用药物,比十年前多了23%1。

In particular, the number of individuals with drug use disorders was estimated at 39.5 million in 2021, reflecting a 45% increase from 10 years ago, with only 1 in 5 individuals receiving treatment1. The dysregulation of multiple neurotransmitter systems plays a key role in the development of drug use disorders.

特别是,2021年,患有药物使用障碍的人数估计为3950万,比10年前增加了45%,只有五分之一的人接受了治疗1。多种神经递质系统的失调在药物使用障碍的发展中起着关键作用。

The initial or recreational administration of psychostimulants, such as methamphetamine (MA), immediately releases monoamines and reduces their reuptake, provoking a marked increase in their levels in extracellular spaces and excessive stimulation of the sympathetic nervous system. However, in rodents and non-human primates, repeated administration of increasing MA doses has been found to decrease striatal concentrations of dopamine and its metabolites.

精神兴奋剂(如甲基苯丙胺(MA))的初始或娱乐性给药会立即释放单胺并减少其再摄取,从而引起细胞外空间水平的显着增加和交感神经系统的过度刺激。然而,在啮齿动物和非人灵长类动物中,已发现重复施用增加的MA剂量可降低多巴胺及其代谢物的纹状体浓度。

In human stimulant users, both the presynaptic and postsynaptic functions of the dopamine system in the striatum are downregulated2,3,4. These findings suggest that persistent neurochemical and biological disturbances, resulting from repeated positive and negative reinforcements associated with ongoing cycles of drug reward, withdrawal, and reinstatement, contribute to the development of drug use disorders.

在人类兴奋剂使用者中,纹状体多巴胺系统的突触前和突触后功能均被下调2,3,4。。

In previous animal studies, metabolic disruptions in amino acid metabolism, lipid metabolism, and the TCA cycle have been reported following exposure of morphine5 and heroin5,6. Hair or blood samples obtained from individuals with a history of MA addiction or abuse have been e.

在以前的动物研究中,已经报道了吗啡5和海洛因5,6暴露后氨基酸代谢,脂质代谢和TCA循环的代谢破坏。从有MA成瘾或滥用史的个体获得的头发或血液样本已被e。

Formic acid, 2-aminoanthracene, and 2,3,4,5,6-pentafluorobenzoic acid were purchased from Sigma Aldrich (St. Louis, MO). The AbsoluteIDQ p180 kit used for targeted analysis was purchased from Biocrates Life Sciences AG (Innsbruck, Austria). All solvents were of high-performance liquid chromatography (HPLC) grade.

甲酸,2-氨基蒽和2,3,4,5,6-五氟苯甲酸购自Sigma-Aldrich(密苏里州圣路易斯)。用于靶向分析的AbsoluteIDQ p180试剂盒购自Biocrates Life Sciences AG(奥地利因斯布鲁克)。所有溶剂均为高效液相色谱(HPLC)级。

All other chemicals were of reagent grade..

所有其他化学品均为试剂级。。

Animals

动物

Male Sprague-Dawley rats (Daehan Animal, Seoul, Republic of Korea), 7 weeks old (weighing 260–280 g) at the start of the study, were housed individually in cages in the laboratory animal facility under controlled temperature (22 ± 2 °C) and humidity (60 ± 2%) and with a 12 h light/dark cycle. Animals had ad libitum access to food and water.

在研究开始时,将7周龄(体重260-280克)的雄性Sprague-Dawley大鼠(Daehan Animal,Seoul,Republic of Korea)在受控温度(22±2°C)和湿度(60±2%)下分别饲养在实验动物设施的笼子中,并进行12小时光照/黑暗循环。动物可以随意获得食物和水。

All experimental procedures were approved by the Institutional Animal Care and Use Committee of the Korea Institute of Toxicology, Daejeon, Republic of Korea (No. KIT-1802-0074). All methods involving animals are reported in accordance with ARRIVE guidelines. Euthanasia was done at the end of the study using carbon dioxide in accordance with the scientific research guidelines and regulations of the Korea Institute of Toxicology..

。所有涉及动物的方法均根据ARRIVE指南报告。根据韩国毒理学研究所的科学研究指南和规定,在研究结束时使用二氧化碳进行安乐死。。

Animal behavior study

动物行为研究

The procedures used for food training, surgical implantation of the jugular catheter, self-administration of MA or saline (SAL), extinction training, and MA-priming-induced reinstatement were conducted as described previously24,25, with minor modifications. Rats were anesthetized with pentobarbital (50 mg/kg, intraperitoneal) and an intravenous catheter was inserted into the right jugular vein that exited the body on the dorsal surface of the scapulae.

如前所述[24,25],进行了用于食物训练,颈静脉导管手术植入,MA或盐水(SAL)自我给药,灭绝训练和MA引发诱导恢复的程序,并进行了一些小的修改。用戊巴比妥(50 mg/kg,腹膜内)麻醉大鼠,并将静脉导管插入右侧颈静脉,该静脉在肩胛骨背表面离开身体。

Each rat was administered Ketoprofen (0.5 mL/kg, subcutaneous) as a post-operative analgesic immediately following surgery and allowed to recover for 5 days prior to the beginning of behavioral testing13,26. Figure 1A illustrates the timeline of the animal behavior study, experimental sessions, and treatment groups.

每只大鼠在手术后立即给予酮洛芬(0.5 mL/kg,皮下)作为术后镇痛药,并在行为测试开始前恢复5天13,26。图1A说明了动物行为研究,实验阶段和治疗组的时间表。

After passing the food pellet test, 34 rats underwent consecutive experimental sessions involving drug self-administration, extinction, and reinstatement in the same operating chamber. Rats were subjected to predetermined experimental sessions and classified accordingly. After a 5-day recovery period from chronic indwelling jugular catheter implantation surgery, 10 and 24 rats were exposed to self-administered SAL (Group S) and MA (0.05 mg/kg/infusion; Group M), respectively, under a fixed-ratio 1 (FR-1) 20-s time-out reinforcement schedule for 2 h/day for 16 days.

通过食物颗粒测试后,34只大鼠在同一手术室中进行了连续的实验,包括药物自我给药,灭绝和恢复。对大鼠进行预定的实验并进行相应分类。在慢性留置颈静脉导管植入手术恢复5天后,将10只和24只大鼠分别暴露于自我给药的SAL(S组)和MA(0.05 mg/kg/输注;M组),固定比例1(FR-1)20-S超时强化时间表,每天2小时,持续16天。

Immediately after the last self-administration session, four (Group S) and six (Group M) of the 10 and 24 rats, respectively, were sacrificed for plasma collection; the remaining 6 and 18 rats were used to continue extinction to diminish the previously learned drug-seeking behavior of MA self-administered rats for 14 days (Group SS and Group MS, respectively), following the same protocol as SAL self-administration.

在最后一次自我管理会议后,分别处死10只和24只大鼠中的4只(S组)和6只(M组)进行血浆采集;其余6只和18只大鼠用于继续灭绝,以减少MA自我给药大鼠先前学习的药物寻求行为14天(分别为SS组和MS组),遵循与SAL自我给药相同的方案。

Immediately after the last extinct.

就在最后一次灭绝之后。

Fig. 1Summary of animal behavior experiments. (A) Timeline, experimental sessions, and animal groups for behavioral assessment. Gray circle represents the day of blood collection. (B) Numbers of infusions and lever presses during the self-administration period (1–16 days) of Groups S and M. (C) Numbers of infusions and lever presses during self-administration (1–16 days) and extinction period (17–30 days) of Groups SS and MS.

图1动物行为实验总结。(A) 时间表,实验课程和动物组进行行为评估。灰色圆圈代表采血的日子。(B) S组和M组自我管理期间(1-16天)的输液和杠杆按压次数。(C)SS组和MS组自我管理期间(1-16天)和灭绝期间(17-30天)的输液和杠杆按压次数。

(D) Numbers of infusions and lever presses during self-administration (1–16 days), extinction (17–30 days), and reinstatement period (31 day) of Groups MSS and MSM. Statistical analyses were performed using the two-way ANOVA test, followed by Bonferroni’s multiple comparison post hoc test. The data are presented as mean ± standard error of the mean (SEM).

(D) MSS和MSM组在自我管理(1-16天),灭绝(17-30天)和恢复期(31天)期间的输液和杠杆按压次数。使用双向ANOVA检验进行统计分析,然后进行Bonferroni的多重比较事后检验。数据表示为平均值的平均值±标准误差(SEM)。

*p < 0.05, **p < 0.01, ***p < 0.001 for daily comparison between groups; ##p < 0.01, ###p < 0.001 for total comparison between groups. NS, not significant; SAL, saline; MA, methamphetamine; Ac, active lever; InA, inactive lever.Full size imagePlasma sampling.

*组间每日比较p<0.05,**p<0.01,***p<0.001##组间总比较p<0.01,p<0.001。NS,不显着;SAL,盐水;MA,甲基苯丙胺;Ac,主动杆;InA,无效操纵杆。全尺寸图像等离子体采样。

Rats were anesthetized with pentobarbital (50 mg/kg, intraperitoneal) and sacrificed to obtain blood samples. Blood was collected through the abdominal vena cava (approximately 5 mL), and aliquots were transferred to EDTA tubes (BD Vacutainer® K2E (EDTA) 18.0 mg, BD Biosciences, Franklin Lakes, NJ, USA).

用戊巴比妥(50 mg/kg,腹膜内)麻醉大鼠并处死以获得血样。通过腹腔腔静脉收集血液(约5 mL),并将等分试样转移至EDTA管(BD Vacutainer®K2E(EDTA)18.0 mg,BD Biosciences,Franklin Lakes,NJ,USA)。

After a brief mixing period, the tubes were allowed to stand at room temperature for 30 min. Following centrifugation at 1624×g for 10 min at 4 °C, the supernatant (plasma) was transferred to a 1.5 mL microfuge tube and stored at − 80 °C before analysis13..

短暂混合后,使试管在室温下静置30分钟。在4°C下以1624×g离心10分钟后,将上清液(血浆)转移到1.5 mL微量离心管中,并在分析前保存在-80°C 13。。

Targeted and non-targeted metabolomics analysis

靶向和非靶向代谢组学分析

All sample preparation and instrumental analyses for targeted and non-targeted metabolomic analyses were conducted following the procedures outlined in our previous study13, with the exception of the analysis of tricarboxylic acid (TCA) metabolites, which were investigated using our validated in-house method.

For targeted metabolomic analysis of 40 acylcarnitines, 42 amino acids and biogenic amines, 90 glycerophospholipids, 15 sphingolipids, and 1 monosaccharide, samples were prepared using the AbsoluteIDQ p180 kit (Biocrates Life Sciences AG) according to the manufacturer’s instructions and analyzed using flow injection analysis (FIA)-tandem mass spectrometry (MS/MS) and HPLC-MS/MS (AB Sciex 4000 QTrap mass spectrometer, Sciex, Framingham, MA, USA).

为了对40种酰基肉碱,42种氨基酸和生物胺,90种甘油磷脂,15种鞘脂和1种单糖进行靶向代谢组学分析,使用AbsoluteIDQ p180试剂盒(Biocrates Life Sciences AG)根据制造商的说明制备样品,并使用流动注射分析(FIA)-串联质谱(MS/MS)和HPLC-MS/MS(AB Sciex 4000 QTrap质谱仪,Sciex,Framingham,MA,USA)进行分析。

The kit was validated using MetValTM (Biocrates Life Sciences AG) software, and the analytical results were processed using AnalystTM (Sciex) and MetValTM software..

使用MetValTM(Biocrates Life Sciences AG)软件对试剂盒进行了验证,并使用AnalystTM(Sciex)和MetValTM软件对分析结果进行了处理。。

For analyzing 10 TCA metabolites, rat plasma samples were protein-precipitated using ice-cold acetone and then centrifuged at 19,274×g for 10 min at 4 °C. The supernatants were filtered using a 0.45 μm polyvinylidenefluoride microporous membrane and filtered sample was analyzed by HPLC–MS/MS. LC-MS/MS analysis was conducted using a reverse-phase column coupled with a 1260 Infinity LC system and 6460 Triple Quadrupole MS/MS (Agilent Technologies, Santa Clara, CA, USA).

为了分析10种TCA代谢物,使用冰冷的丙酮对大鼠血浆样品进行蛋白质沉淀,然后在4°C下以19274×g离心10分钟。使用0.45μm聚偏二氟乙烯微孔膜过滤上清液,并通过HPLC-MS/MS分析过滤后的样品。使用反相柱结合1260 Infinity LC系统和6460三重四极杆MS/MS(美国加利福尼亚州圣克拉拉的安捷伦科技公司)进行LC-MS/MS分析。

Data were processed using MassHunter software (B. 08. 00; Agilent Technologies)..

使用MassHunter软件(B.08)处理数据。00;安捷伦科技公司)。。

For non-targeted metabolomic analysis, samples were prepared by protein precipitation using acetonitrile and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight electrospray ionization (ESI) mass spectrometry (UPLC-QTOF-ESI-MS) was conducted in both positive and negative ionization modes.

对于非靶向代谢组学分析,使用乙腈和超高效液相色谱结合四极杆飞行时间电喷雾电离(ESI)质谱(UPLC-QTOF-ESI-MS)通过蛋白质沉淀制备样品。正离子和负离子模式。

Analyses were performed using an Agilent 6530 Accurate-Mass Q-TOF LC/MS System with an Agilent 1290 Infinity LC (Agilent Technologies, Palo Alto, CA, USA). Pooled quality control samples, prepared by mixing aliquots from each sample, were analyzed every six sample analyses. Triplicate samples were analyzed for both targeted and non-targeted metabolomics..

使用具有Agilent 1290 Infinity LC(Agilent Technologies,Palo Alto,CA,USA)的Agilent 6530精确质量Q-TOF LC/MS系统进行分析。通过混合每个样品的等分试样制备的合并质量控制样品每六次样品分析进行一次分析。对一式三份的样品进行了靶向和非靶向代谢组学分析。。

Data processing and statistical analysis

数据处理和统计分析

Considering the UPLC-QTOF-ESI-MS data, data processing and statistical analyses were performed using MassHunter Profinder (version 10.0) and Mass Profiler Professional (MPP, version B.15.1) software (Agilent Technologies) as described in our previous study13, with minor modifications. The parameters for feature extraction in Profinders were as follows: peak height > 300 counts; ion species, [M + H]+ and [M + Na]+, for positive ions, and [M-H]− for negative ions; isotope peak spacing tolerance, 0.0025 m/z and 7.0 ppm; and charge state, a maximum of 1.

考虑到UPLC-QTOF-ESI-MS数据,使用MassHunter Profinder(版本10.0)和Mass Profiler Professional(MPP,版本B.15.1)软件(Agilent Technologies)进行数据处理和统计分析,如我们之前的研究13所述,稍作修改。Profinders中特征提取的参数如下:峰高>300计数;离子种类,[M + H]+和[M + Na]+,对于正离子,[M-H]-对于负离子;同位素峰间距公差,0.0025 m/z和7.0 ppm;和充电状态,最大值为1。

Ion features were aligned and extracted based on particular masses (mass window of 10 ppm + 2.00 mDa) and retention times (retention time window of 0.5 min). The peak abundances of internal standards in the quality control and experimental samples were inspected to reduce false-negative and false-positive features.

根据特定质量(质量窗口为10 ppm+ 2.00 mDa)和保留时间(保留时间窗口为0.5分钟)对离子特征进行比对和提取。检查质量控制和实验样品中内标的峰丰度,以减少假阴性和假阳性特征。

The CEF files were exported to MPP for metabolic investigation using an in-house database24 and MassHunter METLIN Metabolite PCDL (Demo version, summer, 2014)..

使用内部数据库24和MassHunter METLIN代谢物PCDL(演示版,2014年夏季),将CEF文件导出到MPP进行代谢调查。。

For statistical evaluation of data from both targeted and non-targeted metabolomic analyses, metabolic differences between groups were evaluated by principal component analysis (PCA) and partial least squares-discrimination analysis (PLS-DA) using the MetaboAnalyst software (version 6.0; https://www.metaboanalyst.ca/).

;https://www.metaboanalyst.ca/)。

The software automatically performed a model-fitting analysis of the three principal components. The data were scaled by auto scaling. A t-test with unequal variance, followed by multiple testing correction (Benjamini–Hochberg false discovery rate [FDR], adjusted p-value), was used to determine significant differences in ion features or metabolites.

该软件自动对三个主成分进行模型拟合分析。数据通过自动缩放进行缩放。使用方差不等的t检验,然后进行多重检验校正(Benjamini-Hochberg错误发现率[FDR],调整后的p值),以确定离子特征或代谢物的显着差异。

For targeted and non-targeted analysis data, the following criteria were applied: fold change > 1.2 with p-values < 0.05 among the groups. For non-targeted analysis, the data reproducibility of the significantly altered ion features were examined in the quality control samples and those with relative standard deviation (RSD) less than 20% were finally selected.

对于有针对性和无针对性的分析数据,采用以下标准:组间p值<0.05的倍数变化>1.2。对于非靶向分析,在质量控制样品中检查了显着改变的离子特征的数据再现性,并最终选择了相对标准偏差(RSD)小于20%的样品。

Pathway analysis was also performed using the MetaboAnalyst 6.0 software..

还使用MetaboAnalyst 6.0软件进行了途径分析。。

ResultsMA self-administration, extinction, and reinstatementFigure 1B-D present the number of infusions and lever presses during the self-administration period of Groups S and M; the self-administration and extinction periods of Groups SS and MS; and the self-administration, extinction, and reinstatement periods of Groups MSS and MSM.

结果MA自我管理,灭绝和恢复图1B-D显示了S组和M组自我管理期间输注和杠杆按压的次数;SS和MS组的自我管理和灭绝期;MSS和MSM群体的自我管理,灭绝和恢复期。

During the first 16 days of the self-administration session, Groups M (F1,112 = 83.27, p < 0.0001) and MS (F1,144 = 180.5, p < 0.0001) had a significantly higher number of drug infusions than the control groups, Groups S and SS, respectively, and showed < 20% variation during the last 3 days (Days 14–16) of the experiment.

在自我管理会议的前16天,M组(F1112=83.27,p<0.0001)和MS组(F1144=180.5,p<0.0001)的药物输注量显着高于对照组,S组和SS组,并且在实验的最后3天(第14-16天)显示出20%的变化。

Moreover, Groups M (F1,112 = 41.45, p < 0.0001) and MS (F1,143 = 209.3, p < 0.0001) exhibited higher responses to the number of active levers than rats in Groups S and SS, respectively, with no significant differences observed in the number of inactive levers. Next, extinction training began the day after self-administration session.

此外,M组(F1112=41.45,p<0.0001)和MS组(F1143=209.3,p<0.0001)对活动杠杆数量的反应分别高于S组和SS组,无活动杠杆数量无显着差异。接下来,自我管理课程的第二天开始了灭绝训练。

When MA access was removed, Group MS, MSS, and MSM initially maintained active lever pressing compared to Group SS on day 17 (p < 0.05), however this behavior gradually extinguished over time. In contrast, Group SS maintained relatively low level of lever pressing behavior. Considering the extinction session, there was no significant difference in the number of drug infusions during Days 18–30 following self-administration between rats in Groups MS and MSM and those in groups SS and MSS (p > 0.05).

当MA通路被移除时,与第17天的SS组相比,MS,MSS和MSM组最初保持主动杠杆按压(p<0.05),但是这种行为随着时间的推移逐渐消失。相反,SS组保持相对较低水平的杠杆按压行为。考虑到灭绝期,MS组和MSM组大鼠与SS组和MSS组大鼠自我给药后第18-30天的药物输注次数无显着差异(p>0.05)。

Additionally, there were no significant differences in the number of active and inactive levers between groups (p > 0.05). For drug-induced reinstatement, MA and SAL (control) were administered on the day after the last extinction session. Group MSM had a significantly higher number of drug infusi.

此外,组间活动和非活动杠杆的数量没有显着差异(p>0.05)。对于药物诱导的恢复,在最后一次灭绝后的第二天给予MA和SAL(对照)。MSM组的药物输注数量明显较高。

Data availability

数据可用性

All data generated and/or analyzed during the current study available from the corresponding author upon reasonable request.

ReferencesUnited Nations Office on Drugs and Crime (UNODC). World Drug Report 2023 (United Nations, 2023).Nordahl, T. E., Salo, R. & Leamon, M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review. J. Neuropsychiatry Clin. Neurosci. 15, 317–325. https://doi.org/10.1176/jnp.15.3.317 (2003).Article .

参考资料联合国毒品和犯罪问题办事处(禁毒办)。《2023年世界毒品报告》(联合国,2023年)。Nordahl,T.E.,Salo,R。&Leamon,M。慢性甲基苯丙胺使用对神经递质和认知的神经心理学影响:综述。J、 神经精神病学临床。神经科学。15317-325。https://doi.org/10.1176/jnp.15.3.317(2003年)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology. 35, 217–238. https://doi.org/10.1038/npp.2009.110 (2010).Article

Koob,G.F。和Volkow,N.D。成瘾的神经回路。神经精神药理学。35217-238。https://doi.org/10.1038/npp.2009.110(2010年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ashok, A. H., Mizuno, Y., Volkow, N. D. & Howes, O. D. Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: A systematic review and meta-analysis. JAMA Psychiatry. 74, 511–519. https://doi.org/10.1001/jamapsychiatry.2017.0135 (2017).Article .

Ashok,A.H.,Mizuno,Y.,Volkow,N.D。&Howes,O.D。可卡因,安非他明或甲基苯丙胺使用者兴奋剂使用与多巴胺能改变的关联:系统评价和荟萃分析。JAMA精神病学。74511-519。https://doi.org/10.1001/jamapsychiatry.2017.0135(2017年)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, W. et al. Identification of morphine and heroin-treatment in mice using metabonomics. Metabolites 11https://doi.org/10.3390/metabo11090607 (2021). Zheng, T. et al. Metabolic phenotype of rats exposed to heroin and potential markers of heroin abuse. Drug Alcohol Depend. 127, 177–186.

Lu,W.等人。使用代谢组学鉴定小鼠吗啡和海洛因治疗。代谢物11https://doi.org/10.3390/metabo11090607(2021年)。郑,T。等。暴露于海洛因的大鼠的代谢表型和海洛因滥用的潜在标志物。药物依赖酒精。127177-186。

https://doi.org/10.1016/j.drugalcdep.2012.06.031 (2013).Article .

https://doi.org/10.1016/j.drugalcdep.2012.06.031 (2013).Article .

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Seo, M. J. et al. Mass spectrometry-based metabolomics in hair from current and former patients with methamphetamine use disorder. Arch. Pharm. Res. 44, 890–901. https://doi.org/10.1007/s12272-021-01353-3 (2021).Article

Seo,M.J.等人。基于质谱的甲基苯丙胺使用障碍患者头发代谢组学研究。拱门。《药学》第44890-901号决议。https://doi.org/10.1007/s12272-021-01353-3(2021年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, T. et al. Untargeted metabolomics analysis by gas chromatography/time-of-flight mass spectrometry of human serum from methamphetamine abusers. Addict. Biol. 26, e13062. https://doi.org/10.1111/adb.13062 (2021).Article

Wang,T.等人。通过气相色谱/飞行时间质谱法对甲基苯丙胺滥用者的人血清进行非靶向代谢组学分析。瘾君子。生物学26,e13062。https://doi.org/10.1111/adb.13062(2021年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Caspani, G., Sebők, V., Sultana, N., Swann, J. R. & Bailey, A. Metabolic phenotyping of opioid and psychostimulant addiction: a novel approach for biomarker discovery and biochemical understanding of the disorder. Br. J. Pharmacol. 179, 1578–1606. https://doi.org/10.1111/bph.15475 (2022).Article .

Caspani,G.,Sebők,V.,Sultana,N.,Swann,J.R。&Bailey,A。阿片类药物和精神兴奋剂成瘾的代谢表型:一种发现生物标志物和对该疾病进行生化理解的新方法。Br.J.药理学。1791578-1606年。https://doi.org/10.1111/bph.15475(2022年)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Siefried, K. J., Acheson, L. S., Lintzeris, N. & Ezard, N. Pharmacological treatment of methamphetamine/amphetamine dependence: A systematic review. CNS Drugs. 34, 337–365. https://doi.org/10.1007/s40263-020-00711-x (2020).Article

Siefried,K.J.,Acheson,L.S.,Lintzeris,N。&Ezard,N。甲基苯丙胺/苯丙胺依赖的药物治疗:系统评价。中枢神经系统药物。34337-365。https://doi.org/10.1007/s40263-020-00711-x(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dole, V. P. Narcotic addiction, physical dependence and relapse. N Engl. J. Med. 286, 988–992. https://doi.org/10.1056/nejm197205042861808 (1972).Article

Dole,V.P。麻醉品成瘾,身体依赖和复发。英格兰。J、 医学286988-992。https://doi.org/10.1056/nejm197205042861808(1972年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, M. et al. Current understanding of methamphetamine-associated metabolic changes revealed by the metabolomics approach. Metabolites. 9https://doi.org/10.3390/metabo9100195 (2019).Kim, S. et al. Integrated non-targeted and targeted metabolomics uncovers dynamic metabolic effects during short-term abstinence in methamphetamine self-administering rats.

Kim,M.等人。代谢组学方法揭示的甲基苯丙胺相关代谢变化的当前理解。代谢物。9https://doi.org/10.3390/metabo9100195(2019年)。Kim,S.等人的综合非靶向和靶向代谢组学揭示了甲基苯丙胺自我给药大鼠短期禁欲期间的动态代谢效应。

J. Proteome Res. 18, 3913–3925. https://doi.org/10.1021/acs.jproteome.9b00363 (2019).Article .

J. Proteome Res. 18, 3913–3925. https://doi.org/10.1021/acs.jproteome.9b00363 (2019).Article .

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kim, S. et al. Revealing metabolic perturbation following heavy methamphetamine abuse by human hair metabolomics and network analysis. Int. J. Mol. Sci. 21https://doi.org/10.3390/ijms21176041 (2020).Corrigall, W. A. Nicotine self-administration in animals as a dependence model. Nicotine Tob.

Kim,S.等人通过头发代谢组学和网络分析揭示了重度甲基苯丙胺滥用后的代谢紊乱。Int.J.Mol.Sci。21https://doi.org/10.3390/ijms21176041(2020年)。Corrigall,W.A。尼古丁在动物中的自我管理作为依赖模型。尼古丁Tob。

Res. 1, 11–20. https://doi.org/10.1080/14622299050011121 (1999).Article .

第1、11-20号决议。https://doi.org/10.1080/14622299050011121(1999).第[UNK]条。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Spanagel, R. Animal models of addiction. Dialogues Clin. Neurosci. 19, 247–258. https://doi.org/10.31887/DCNS.2017.19.3/rspanagel (2017).Article

Spanagel,R。成瘾的动物模型。对话临床。。19247-258年。https://doi.org/10.31887/DCNS.2017.19.3/rspanagel(2017年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yanagita, T. Self-administration studies on psychological dependence. Trends Pharmacol. Sci. 1, 161–164 (1979).Article

Yanagita,T。心理依赖的自我管理研究。趋势药理学。科学。1161-164(1979)。文章

Google Scholar

谷歌学者

Kilbey, M. M. & Ellinwood, E. H. Jr. Self-administration of morphine in the cat. Int. J. Addict. 15, 447–460. https://doi.org/10.3109/10826088009040030 (1980).Article

Kilbey,M。M。和Ellinwood,E。H。Jr。在猫中自我施用吗啡。内景J.瘾君子。15447-460。https://doi.org/10.3109/10826088009040030(1980年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Spano, M. S., Fadda, P., Fratta, W. & Fattore, L. Cannabinoid-opioid interactions in drug discrimination and self-administration: Effect of maternal, postnatal, adolescent and adult exposure to the drugs. Curr. Drug Targets. 11, 450–461. https://doi.org/10.2174/138945010790980295 (2010).Article .

Spano,M.S.,Fadda,P.,Fratta,W。&Fattore,L。大麻素-阿片类药物在药物歧视和自我管理中的相互作用:母亲,产后,青少年和成人暴露于药物的影响。货币。药物靶标。11450-461。https://doi.org/10.2174/138945010790980295(2010年)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, L., Wu, N., Zhao, T. Y. & Li, J. The potential biomarkers of drug addiction: proteomic and metabolomics challenges. Biomarkers. 21, 678–685. https://doi.org/10.1080/1354750x.2016.1201530 (2016).Article

Wang,L.,Wu,N.,Zhao,T.Y。&Li,J。药物成瘾的潜在生物标志物:蛋白质组学和代谢组学挑战。生物标志物。21678-685。https://doi.org/10.1080/1354750x.2016.1201530(2016年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

MacIntyre, D. A. et al. Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups. Leukemia. 24, 788–797. https://doi.org/10.1038/leu.2009.295 (2010).Article

MacIntyre,D.A.等人通过1H-NMR进行的血清代谢组分析揭示了慢性淋巴细胞白血病分子亚组之间的差异。白血病。24788-797。https://doi.org/10.1038/leu.2009.295(2010年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Breier, M. et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS One. 9, e89728. https://doi.org/10.1371/journal.pone.0089728 (2014).Article

Breier,M。等人。靶向代谢组学鉴定人血清和血浆样品中可靠且稳定的代谢物。PLoS One。9,e89728。https://doi.org/10.1371/journal.pone.0089728。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alasmari, F. et al. Serum metabolomic analysis of male patients with cannabis or amphetamine use disorder. Metabolites. 12https://doi.org/10.3390/metabo12020179 (2022).Choi, B. et al. Metabolic characterization in urine and hair from a rat model of methamphetamine self-administration using LC-QTOF-MS-based metabolomics.

Alasmari,F。等人。大麻或苯丙胺使用障碍男性患者的血清代谢组学分析。代谢物。12https://doi.org/10.3390/metabo12020179(2022年)。Choi,B.等人。使用基于LC-QTOF MS的代谢组学,来自甲基苯丙胺自我给药大鼠模型的尿液和头发中的代谢表征。

Metabolomics. 13, 119. https://doi.org/10.1007/s11306-017-1257-0 (2017).Article .

代谢组学。13,119.https://doi.org/10.1007/s11306-017-1257-0(2017).第条。

CAS

中科院

Google Scholar

谷歌学者

Towers, E. B. et al. Transcriptional Profile of Exercise-Induced Protection against Relapse to Cocaine seeking in a rat model. Biol. Psychiatry Glob Open. Sci. 3, 734–745. https://doi.org/10.1016/j.bpsgos.2023.01.007 (2023).Article

Towers,E.B.等人。在大鼠模型中运动诱导的防止可卡因复发的转录谱。生物精神病学全球公开赛。科学。3734-745。https://doi.org/10.1016/j.bpsgos.2023.01.007(2023年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Davis, J. A. Mouse and rat anesthesia and analgesia. Curr. Protoc. Neurosci. (Appendix 4, Appendix 4B) https://doi.org/10.1002/0471142301.nsa04bs42 (2008). Eipper-Mains, J. E. et al. Effects of cocaine and withdrawal on the mouse nucleus accumbens transcriptome. Genes Brain Behav. 12, 21–33.

Davis,J.A。小鼠和大鼠麻醉和镇痛。货币。普罗托克。。(附录4,附录4B)https://doi.org/10.1002/0471142301.nsa04bs42(2008年)。Eipper-Mains,J.E.等人。可卡因和戒断对小鼠伏隔核转录组的影响。基因大脑行为。12,21-33。

https://doi.org/10.1111/j.1601-183X.2012.00873.x (2013).Article .

https://doi.org/10.1111/j.1601-183X.2012.00873.x (2013).Article .

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Krasnova, I. N. et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol. Dis. 58, 132–143. https://doi.org/10.1016/j.nbd.2013.05.009 (2013).Article

Krasnova,I.N.等人,CREB磷酸化调节大鼠甲基苯丙胺成瘾自我给药模型中的纹状体转录反应。神经生物学。Dis。58132-143。https://doi.org/10.1016/j.nbd.2013.05.009(2013年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goodwin, C. R. et al. Phenotypic mapping of metabolic profiles using self-organizing maps of high-dimensional mass spectrometry data. Anal. Chem. 86, 6563–6571. https://doi.org/10.1021/ac5010794 (2014).Article

Goodwin,C.R.等人。使用高维质谱数据的自组织图对代谢谱进行表型作图。肛门。。866563-6571。https://doi.org/10.1021/ac5010794。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ning, T., Leng, C., Chen, L., Ma, B. & Gong, X. Metabolomics analysis of serum in a rat heroin self-administration model undergoing reinforcement based on (1)H-nuclear magnetic resonance spectra. BMC Neurosci. 19, 4. https://doi.org/10.1186/s12868-018-0404-5 (2018).Article

Ning,T.,Leng,C.,Chen,L.,Ma,B。&Gong,X。基于(1)H-核磁共振谱进行强化的大鼠海洛因自我给药模型中血清的代谢组学分析。BMC神经科学。19,4。https://doi.org/10.1186/s12868-018-0404-5(2018年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bossert, J. M., Marchant, N. J., Calu, D. J. & Shaham, Y. The reinstatement model of drug relapse: Recent neurobiological findings, emerging research topics, and translational research. Psychopharmacol. (Berl). 229, 453–476. https://doi.org/10.1007/s00213-013-3120-y (2013).Article

Bossert,J.M.,Marchant,N.J.,Calu,D.J。&Shaham,Y。药物复发的恢复模型:最近的神经生物学发现,新兴研究主题和转化研究。精神药理学。(贝尔)。229453-476。https://doi.org/10.1007/s00213-013-3120-y(2013年)。文章

CAS

中科院

Google Scholar

谷歌学者

Gass, J. T., Osborne, M. P., Watson, N. L., Brown, J. L. & Olive, M. F. mGluR5 antagonism attenuates methamphetamine reinforcement and prevents reinstatement of methamphetamine-seeking behavior in rats. Neuropsychopharmacology. 34, 820–833. https://doi.org/10.1038/npp.2008.140 (2009).Article .

Gass,J.T.,Osborne,M.P.,Watson,N.L.,Brown,J.L。和Olive,M.F。mGluR5拮抗作用减弱了甲基苯丙胺的强化作用,并阻止了大鼠甲基苯丙胺寻求行为的恢复。神经精神药理学。34820-833。https://doi.org/10.1038/npp.2008.140(2009年)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bossert, J. M. & Stern, A. L. Role of ventral subiculum in context-induced reinstatement of heroin seeking in rats. Addict. Biol. 19, 338–342. https://doi.org/10.1111/adb.12015 (2014).Article

Bossert,J.M.&Stern,A.L。腹侧下托在上下文诱导的大鼠海洛因寻求恢复中的作用。瘾君子。生物学19338-342。https://doi.org/10.1111/adb.12015。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cruz, F. C., Leão, R. M., Marin, M. T. & Planeta, C. S. Stress-induced reinstatement of amphetamine-conditioned place preference and changes in tyrosine hydroxylase in the nucleus accumbens in adolescent rats. Pharmacol. Biochem. Behav. 96, 160–165. https://doi.org/10.1016/j.pbb.2010.05.001 (2010).Article .

Cruz,F.C.,Leão,R.M.,Marin,M.T。&Planeta,C.S。应激诱导青春期大鼠安非他明条件性位置偏爱的恢复和伏隔核酪氨酸羟化酶的变化。药理学。生物化学。行为。96160-165。https://doi.org/10.1016/j.pbb.2010.05.001(2010年)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mannangatti, P., Ramamoorthy, S. & Jayanthi, L. D. Interference of norepinephrine transporter trafficking motif attenuates amphetamine-induced locomotor hyperactivity and conditioned place preference. Neuropharmacology. 128, 132–141. https://doi.org/10.1016/j.neuropharm.2017.10.005 (2018).Article .

Mannangatti,P.,Ramamoorthy,S。&Jayanthi,L.D。去甲肾上腺素转运蛋白运输基序的干扰减弱了苯丙胺诱导的运动过度活跃和条件性位置偏爱。神经药理学。128132-141。https://doi.org/10.1016/j.neuropharm.2017.10.005(2018年)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Leonard, M. Z. et al. The molecular-container calabadion-2 prevents methamphetamine-induced reinstatement in rats: A potential approach to relapse prevention? Int. J. Neuropsychopharmacol. 23, 401–405. https://doi.org/10.1093/ijnp/pyz070 (2020).Article

Leonard,M.Z.等人。分子容器calabadion-2可防止甲基苯丙胺诱导的大鼠恢复:预防复发的潜在方法?Int.J.神经精神药理学。23401–405。https://doi.org/10.1093/ijnp/pyz070(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lynch, W. J., Nicholson, K. L., Dance, M. E., Morgan, R. W. & Foley, P. L. Animal models of substance abuse and addiction: Implications for science, animal welfare, and society. Comp. Med. 60, 177–188 (2010).CAS

。公司。医学杂志60177-188(2010)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ewing, S. T. et al. Low-dose polypharmacology targeting dopamine D1 and D3 receptors reduces cue-induced relapse to heroin seeking in rats. Addict. Biol. 26, e12988. https://doi.org/10.1111/adb.12988 (2021).Article

针对多巴胺D1和D3受体的低剂量多药理学减少了线索诱导的大鼠海洛因寻求复发。瘾君子。生物学26,e12988。https://doi.org/10.1111/adb.12988(2021年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, X. et al. Preventing incubation of drug craving to treat drug relapse: From bench to bedside. Mol. Psychiatry. 28, 1415–1429. https://doi.org/10.1038/s41380-023-01942-2 (2023).Article

Liu,X。等人。预防药物渴求的孵化以治疗药物复发:从凳子到床边。。281415-1429年。https://doi.org/10.1038/s41380-023-01942-2(2023年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Walker, D. M. et al. Cocaine self-administration alters transcriptome-wide responses in the brain’s reward circuitry. Biol. Psychiatry. 84, 867–880. https://doi.org/10.1016/j.biopsych.2018.04.009 (2018).Article

可卡因的自我管理改变了大脑奖赏回路中转录组范围的反应。生物精神病学。84867-880。https://doi.org/10.1016/j.biopsych.2018.04.009(2018年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramirez, S. H. et al. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J. Cereb. Blood Flow. Metab. 29, 1933–1945. https://doi.org/10.1038/jcbfm.2009.112 (2009).Article

。J、 塞雷布。血流。代谢。1933年至1945年。https://doi.org/10.1038/jcbfm.2009.112(2009年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Krasnova, I. N. & Cadet, J. L. Methamphetamine toxicity and messengers of death. Brain Res. Rev. 60, 379–407. https://doi.org/10.1016/j.brainresrev.2009.03.002 (2009).Article

Krasnova,I.N。和Cadet,J.L。甲基苯丙胺毒性和死亡信使。Brain Res.修订版60379-407。https://doi.org/10.1016/j.brainresrev.2009.03.002(2009年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Virmani, A., Gaetani, F., Imam, S., Binienda, Z. & Ali, S. The protective role of L-carnitine against neurotoxicity evoked by drug of abuse, methamphetamine, could be related to mitochondrial dysfunction. Ann. N Y Acad. Sci. 965, 225–232. https://doi.org/10.1111/j.1749-6632.2002.tb04164.x (2002).Article .

Virmani,A.,Gaetani,F.,Imam,S.,Binienda,Z。&Ali,S。左旋肉碱对滥用药物甲基苯丙胺引起的神经毒性的保护作用可能与线粒体功能障碍有关。。科学。965225–232。https://doi.org/10.1111/j.1749-6632.2002.tb04164.x(2002年)。文章。

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pekala, J. et al. L-carnitine–metabolic functions and meaning in humans life. Curr. Drug Metab. 12, 667–678. https://doi.org/10.2174/138920011796504536 (2011).Article

Pekala,J.等人,《左旋肉碱——人类生活中的代谢功能和意义》。货币。药物代谢。12667-678。https://doi.org/10.2174/138920011796504536(2011年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hoefer, M. E., Voskanian, S. J., Koob, G. F. & Pulvirenti, L. Effects of terguride, ropinirole, and acetyl-L-carnitine on methamphetamine withdrawal in the rat. Pharmacol. Biochem. Behav. 83, 403–409. https://doi.org/10.1016/j.pbb.2006.02.023 (2006).Article

Hoefer,M.E.,Voskanian,S.J.,Koob,G.F。和Pulvirenti,L。terguride,ropinirole和乙酰-L-肉碱对大鼠甲基苯丙胺戒断的影响。药理学。生物化学。行为。83403-409。https://doi.org/10.1016/j.pbb.2006.02.023(2006年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Coccurello, R., Caprioli, A., Ghirardi, O. & Virmani, A. Valproate and acetyl-L-carnitine prevent methamphetamine-induced behavioral sensitization in mice. Ann. N Y Acad. Sci. 1122, 260–275. https://doi.org/10.1196/annals.1403.019 (2007).Article

Coccurello,R.,Caprioli,A.,Ghirardi,O。&Virmani,A。丙戊酸钠和乙酰-L-肉碱可预防甲基苯丙胺诱导的小鼠行为敏化。。科学。1122260-275。https://doi.org/10.1196/annals.1403.019(2007年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fernandes, S., Salta, S. & Summavielle, T. Methamphetamine promotes α-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine. Toxicol. Lett. 234, 131–138. https://doi.org/10.1016/j.toxlet.2015.02.011 (2015).Article

Fernandes,S.,Salta,S。&Summavielle,T。甲基苯丙胺促进内皮细胞中的α-微管蛋白脱乙酰化:乙酰-l-肉碱的保护作用。毒理学。利特。234131-138。https://doi.org/10.1016/j.toxlet.2015.02.011(2015年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fernandes, S., Salta, S., Bravo, J., Silva, A. P. & Summavielle, T. Acetyl-L-carnitine prevents methamphetamine-induced structural damage on endothelial cells via ILK-related MMP-9 activity. Mol. Neurobiol. 53, 408–422. https://doi.org/10.1007/s12035-014-8973-5 (2016).Article

。分子神经生物学。53408-422。https://doi.org/10.1007/s12035-014-8973-5(2016年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zheng, T. et al. The metabolic impact of methamphetamine on the systemic metabolism of rats and potential markers of methamphetamine abuse. Mol. Biosyst. 10, 1968–1977. https://doi.org/10.1039/c4mb00158c (2014).Article

郑,T。等。甲基苯丙胺对大鼠全身代谢的影响以及甲基苯丙胺滥用的潜在标志物。摩尔生物系统。1968年至1977年。https://doi.org/10.1039/c4mb00158c。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Williams, K., Romano, C., Dichter, M. A. & Molinoff, P. B. Modulation of the NMDA receptor by polyamines. Life Sci. 48, 469–498. https://doi.org/10.1016/0024-3205(91)90463-l (1991).Article

Williams,K.,Romano,C.,Dichter,M.A。和Molinoff,P.B。多胺对NMDA受体的调节。生命科学。48469-498。https://doi.org/10.1016/0024-3205(91)90463-l(1991)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shimosato, K., Watanabe, S., Marley, R. J. & Saito, T. Increased polyamine levels and changes in the sensitivity to convulsions during chronic treatment with cocaine in mice. Brain Res. 684, 243–247. https://doi.org/10.1016/0006-8993(95)00468-6 (1995).Article

Shimosato,K.,Watanabe,S.,Marley,R.J。&Saito,T。在小鼠可卡因慢性治疗期间,多胺水平升高,对惊厥的敏感性发生变化。大脑研究684243-247。https://doi.org/10.1016/0006-8993(95)00468-6(1995)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Prendergast, M. A. & Mulholland, P. J. Glucocorticoid and polyamine interactions in the plasticity of glutamatergic synapses that contribute to ethanol-associated dependence and neuronal injury. Addict. Biol. 17, 209–223. https://doi.org/10.1111/j.1369-1600.2011.00375.x (2012).Article .

Prendergast,M.A。&Mulholland,P.J。谷氨酸能突触可塑性中的糖皮质激素和多胺相互作用,导致乙醇相关依赖和神经元损伤。瘾君子。生物学17209-223。https://doi.org/10.1111/j.1369-1600.2011.00375.x(2012年)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

García-Marchena, N. et al. Plasma amino acid concentrations in patients with alcohol and/or cocaine use disorders and their association with psychiatric comorbidity and sex. Biomedicines 10https://doi.org/10.3390/biomedicines10051137 (2022). Sakurada, T., Onodera, K., Tadano, T. & Kisara, K.

García-Marchena,N.等人。酒精和/或可卡因使用障碍患者的血浆氨基酸浓度及其与精神病合并症和性别的关系。生物医学10https://doi.org/10.3390/biomedicines10051137(2022年)。樱田,T.,小野寺,K.,多田野,T.&Kisara,K。

Effects of polyamines on the central nervous system. Jpn J. Pharmacol. 25, 653–661. https://doi.org/10.1254/jjp.25.653 (1975).Article .

多胺对中枢神经系统的影响。。25653-661。https://doi.org/10.1254/jjp.25.653(1975年)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Makletsova, M. et al. The role of polyamines in the mechanisms of cognitive impairment. Neurochem.J. 16, 283–294 (2022).Article

Makletsova,M。等人。多胺在认知障碍机制中的作用。神经化学。J、 16283-294(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Kalinichenko, L. S., Gulbins, E., Kornhuber, J. & Müller, C. P. The role of sphingolipids in psychoactive drug use and addiction. J. Neural Transm. (Vienna). 125, 651–672. https://doi.org/10.1007/s00702-018-1840-1 (2018).Article

Kalinichenko,L.S.,Gulbins,E.,Kornhuber,J。&Müller,C.P。鞘脂在精神药物使用和成瘾中的作用。J、 神经传输。。125651-672。https://doi.org/10.1007/s00702-018-1840-1(2018年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lin, Y. et al. Cocaine modifies brain lipidome in mice. Mol. Cell. Neurosci. 85, 29–44. https://doi.org/10.1016/j.mcn.2017.08.004 (2017).Article

Lin,Y。等人。可卡因改变小鼠的脑脂质组。摩尔电池。。85,29-44。https://doi.org/10.1016/j.mcn.2017.08.004(2017年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jiang, L. et al. Remodeling of brain lipidome in methamphetamine-sensitized mice. Toxicol. Lett. 279, 67–76. https://doi.org/10.1016/j.toxlet.2017.07.214 (2017).Article

Jiang,L.等人。甲基苯丙胺致敏小鼠脑脂质体的重塑。毒理学。利特。279,67-76。https://doi.org/10.1016/j.toxlet.2017.07.214(2017年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ross, B. M. et al. Decreased activity of brain phospholipid metabolic enzymes in human users of cocaine and methamphetamine. Drug Alcohol Depend. 67, 73–79. https://doi.org/10.1016/s0376-8716(02)00022-4 (2002).Article

Ross,B.M.等人降低了可卡因和甲基苯丙胺使用者脑磷脂代谢酶的活性。药物依赖酒精。67,73-79。https://doi.org/10.1016/s0376-8716(02)00022-4(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ross, B. M. & Turenne, S. D. Chronic cocaine administration reduces phospholipase A(2) activity in rat brain striatum. Prostaglandins Leukot. Essent. Fat. Acids. 66, 479–483. https://doi.org/10.1054/plef.2002.0385 (2002).Article

Ross,B.M。&Turenne,S.D。慢性可卡因给药可降低大鼠脑纹状体中磷脂酶A(2)的活性。前列腺素白斑。本质。。酸。66479-483。https://doi.org/10.1054/plef.2002.0385(2002年)。文章

CAS

中科院

Google Scholar

谷歌学者

Feier, G. et al. Behavioral changes and brain energy metabolism dysfunction in rats treated with methamphetamine or dextroamphetamine. Neurosci. Lett. 530, 75–79. https://doi.org/10.1016/j.neulet.2012.09.039 (2012).Article

Feier,G.等人。甲基苯丙胺或右旋安非他明治疗大鼠的行为改变和脑能量代谢功能障碍。。利特。530,75-79。https://doi.org/10.1016/j.neulet.2012.09.039(2012年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Estler, C. J. & Ammon, H. P. Modification by two beta-adrenergic blocking drugs of the effects of methamphetamine on behaviour and brain metabolism of mice. J. Neurochem. 18, 777–779. https://doi.org/10.1111/j.1471-4159.1971.tb12007.x (1971).Article

Estler,C.J。&Ammon,H.P。通过两种β-肾上腺素能阻断药物修饰甲基苯丙胺对小鼠行为和脑代谢的影响。J、 神经化学。18777-779。https://doi.org/10.1111/j.1471-4159.1971.tb12007.x(1971年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Stephans, S. E., Whittingham, T. S., Douglas, A. J., Lust, W. D. & Yamamoto, B. K. Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum. J. Neurochem. 71, 613–621. https://doi.org/10.1046/j.1471-4159.1998.71020613.x (1998).Article

Stephans,S.E.,Whittingham,T.S.,Douglas,A.J.,Lust,W.D。和Yamamoto,B.K。能量代谢的底物减弱甲基苯丙胺诱导的纹状体神经毒性。J、 神经化学。71613-621。https://doi.org/10.1046/j.1471-4159.1998.71020613.x(1998年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shima, N. et al. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology. 287, 29–37. https://doi.org/10.1016/j.tox.2011.05.012 (2011).Article

Shima,N.等人。甲基苯丙胺诱导的急性中毒对大鼠尿液和血浆代谢谱的影响。毒理学。287,29-37。https://doi.org/10.1016/j.tox.2011.05.012(2011年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bu, Q. et al. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats. Neurotoxicology. 36, 17–23. https://doi.org/10.1016/j.neuro.2013.02.007 (2013).Article

Bu,Q。等人。基于核磁共振的甲基苯丙胺致敏大鼠海马,伏隔核和前额叶皮层的代谢组学。神经毒性。36,17-23。https://doi.org/10.1016/j.neuro.2013.02.007(2013年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lin, M. et al. Metabolomics profiling of methamphetamine addicted human serum and three rat brain areas. RSC Adv. 9, 41107–41119. https://doi.org/10.1039/c9ra08096a (2019).Article

Lin,M.等人。甲基苯丙胺成瘾的人血清和三个大鼠大脑区域的代谢组学分析。RSC Adv.941107–41119。https://doi.org/10.1039/c9ra08096a(2019年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marcos, A. et al. The effects of combined intravenous cocaine and ethanol self-administration on the behavioral and amino acid profile of young adult rats. PLoS One. 15, e0227044. https://doi.org/10.1371/journal.pone.0227044 (2020).Article

Marcos,A.等人。静脉注射可卡因和乙醇联合给药对成年幼鼠行为和氨基酸谱的影响。PLoS One。15,e0227044。https://doi.org/10.1371/journal.pone.0227044(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mews, P. et al. Convergent abnormalities in striatal gene networks in human cocaine use disorder and mouse cocaine administration models. Sci. Adv. 9, eadd8946. https://doi.org/10.1126/sciadv.add8946 (2023).Article

Mews,P。等人。人类可卡因使用障碍和小鼠可卡因给药模型中纹状体基因网络的会聚异常。科学。广告9,eadd8946。https://doi.org/10.1126/sciadv.add8946(2023年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Campbell, U. C. & Carroll, M. E. Acquisition of drug self-administration: environmental and pharmacological interventions. Exp. Clin. Psychopharmacol. 8, 312–325. https://doi.org/10.1037/1064-1297.8.3.312 (2000).Article

坎贝尔,U.C。和卡罗尔,M.E。药物自我管理的获取:环境和药物干预。实验临床。精神药理学。8312-325。https://doi.org/10.1037/1064-1297.8.3.312(2000年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Montague, P. R., Gancayco, C. D., Winn, M. J., Marchase, R. B. & Friedlander, M. J. Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science. 263, 973–977. https://doi.org/10.1126/science.7508638 (1994).Article

Montague,P.R.,Gancayco,C.D.,Winn,M.J.,Marchase,R.B。&Friedlander,M.J。NO产生在NMDA受体介导的大脑皮层神经递质释放中的作用。科学。263973-977年。https://doi.org/10.1126/science.7508638(1994年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sandor, N. T., Brassai, A., Puskas, A. & Lendvai, B. Role of nitric oxide in modulating neurotransmitter release from rat striatum. Brain Res. Bull. 36, 483–486. https://doi.org/10.1016/0361-9230(94)00229-t (1995).Article

Sandor,N.T.,Brassai,A.,Puskas,A。&Lendvai,B。一氧化氮在调节大鼠纹状体神经递质释放中的作用。Brain Res.公牛。36483-486。https://doi.org/10.1016/0361-9230(94)00229-t(1995)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Motahari, A. A., Sahraei, H. & Meftahi, G. H. Role of nitric oxide on dopamine release and morphine-dependency. Basic. Clin. Neurosci. 7, 283–290. https://doi.org/10.15412/j.Bcn.03070401 (2016).Article

Motahari,A.A.,Sahraei,H。&Meftahi,G.H。一氧化氮对多巴胺释放和吗啡依赖的作用。基本。临床。。7283-290。https://doi.org/10.15412/j.Bcn.03070401(2016年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Centonze, D., Gubellini, P., Pisani, A., Bernardi, G. & Calabresi, P. Dopamine, acetylcholine and nitric oxide systems interact to induce corticostriatal synaptic plasticity. Rev. Neurosci. 14, 207–216. https://doi.org/10.1515/revneuro.2003.14.3.207 (2003).Article

。神经科学牧师。14207-216。https://doi.org/10.1515/revneuro.2003.14.3.207(2003年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hardingham, N., Dachtler, J. & Fox, K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front. Cell. Neurosci. 7, 190. https://doi.org/10.3389/fncel.2013.00190 (2013).Article

Hardingham,N.,Dachtler,J。&Fox,K。一氧化氮在突触前可塑性和体内平衡中的作用。正面。细胞。。7190页。https://doi.org/10.3389/fncel.2013.00190(2013年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Masood, A., Banerjee, B., Vijayan, V. K. & Ray, A. Modulation of stress-induced neurobehavioral changes by nitric oxide in rats. Eur. J. Pharmacol. 458, 135–139. https://doi.org/10.1016/s0014-2999(02)02688-2 (2003).Article

Masood,A.,Banerjee,B.,Vijayan,V.K。&Ray,A。一氧化氮对大鼠应激诱导的神经行为改变的调节。。458135-139。https://doi.org/10.1016/s0014-2999(02)02688-2(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Malinski, T. Nitric oxide and nitroxidative stress in Alzheimer’s disease. J. Alzheimers Dis. 11, 207–218. https://doi.org/10.3233/jad-2007-11208 (2007).Article

Malinski,T。阿尔茨海默病中的一氧化氮和氮氧化应激。J、 阿尔茨海默病。11207-218。https://doi.org/10.3233/jad-2007-11208(2007年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Collins, S. L. & Kantak, K. M. Neuronal nitric oxide synthase inhibition decreases cocaine self-administration behavior in rats. Psychopharmacol. (Berl). 159, 361–369. https://doi.org/10.1007/s00213-001-0935-8 (2002).Article

Collins,S.L。&Kantak,K.M。神经元一氧化氮合酶抑制可降低大鼠可卡因的自我给药行为。精神药理学。(贝尔)。159361-369。https://doi.org/10.1007/s00213-001-0935-8(2002年)。文章

CAS

中科院

Google Scholar

谷歌学者

Orsini, C., Izzo, E., Koob, G. F. & Pulvirenti, L. Blockade of nitric oxide synthesis reduces responding for cocaine self-administration during extinction and reinstatement. Brain Res. 925, 133–140. https://doi.org/10.1016/s0006-8993(01)03267-x (2002).Article

Orsini,C.,Izzo,E.,Koob,G.F。和Pulvirenti,L。阻断一氧化氮合成减少了可卡因在灭绝和恢复期间的自我管理反应。大脑研究925133-140。https://doi.org/10.1016/s0006-8993(01)03267-x(2002)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sahraei, H. et al. Effects of nitric oxide on morphine self-administration in rat. Pharmacol. Biochem. Behav. 77, 111–116. https://doi.org/10.1016/j.pbb.2003.10.008 (2004).Article

Sahraei,H。等人。一氧化氮对大鼠吗啡自我给药的影响。药理学。生物化学。行为。。https://doi.org/10.1016/j.pbb.2003.10.008(2004年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smith, A. C. W. et al. Accumbens nNOS interneurons regulate cocaine relapse. J. Neurosci. 37, 742–756. https://doi.org/10.1523/jneurosci.2673-16.2016 (2017).Article

Smith,A.C.W.等人,伏隔核nNOS中间神经元调节可卡因复发。J、 神经科学。37742-756。https://doi.org/10.1523/jneurosci.2673-16.2016(2017年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cloak, C. C., Alicata, D., Chang, L., Andrews-Shigaki, B. & Ernst, T. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users. Drug Alcohol Depend. 119, 207–215. https://doi.org/10.1016/j.drugalcdep.2011.06.017 (2011).Article .

。药物依赖酒精。119207-215。https://doi.org/10.1016/j.drugalcdep.2011.06.017(2011年)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Salo, R. et al. Extended findings of brain metabolite normalization in MA-dependent subjects across sustained abstinence: a proton MRS study. Drug Alcohol Depend. 113, 133–138. https://doi.org/10.1016/j.drugalcdep.2010.07.015 (2011).Article

Salo,R.等人。持续禁欲期间MA依赖受试者脑代谢物正常化的扩展发现:质子MRS研究。药物依赖酒精。113133-138。https://doi.org/10.1016/j.drugalcdep.2010.07.015(2011年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ruda-Kucerova, J. et al. Sex differences in the reinstatement of methamphetamine seeking after forced abstinence in Sprague-Dawley rats. Front. Psychiatry. 6, 91. https://doi.org/10.3389/fpsyt.2015.00091 (2015).Article

Ruda Kucerova,J.等人。Sprague-Dawley大鼠强制戒断后甲基苯丙胺恢复的性别差异。正面。精神病学。6,91。https://doi.org/10.3389/fpsyt.2015.00091(2015年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Job, M. O., Chojnacki, M. R., Daiwile, A. P. & Cadet, J. L. Chemogenetic inhibition of dopamine D1-expressing neurons in the dorsal striatum does not alter methamphetamine Intake in either male or female long Evans rats. Neurosci. Lett. 729, 134987. https://doi.org/10.1016/j.neulet.2020.134987 (2020).Article .

Job,M.O.,Chojnacki,M.R.,Daiwile,A.P。&Cadet,J.L。化学遗传抑制背侧纹状体中表达多巴胺D1的神经元不会改变雄性或雌性long-Evans大鼠的甲基苯丙胺摄入量。。利特。729134987年。https://doi.org/10.1016/j.neulet.2020.134987(2020年)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zlebnik, N. E. et al. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend. 224, 108719. https://doi.org/10.1016/j.drugalcdep.2021.108719 (2021).Article

Zlebnik,N.E.等人。食欲素/hypocretin受体拮抗作用对甲基苯丙胺寻求行为的年龄特异性治疗作用。药物依赖酒精。224108719年。https://doi.org/10.1016/j.drugalcdep.2021.108719(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gonçalves, J. et al. Extended-access methamphetamine self-administration elicits neuroinflammatory response along with blood-brain barrier breakdown. Brain Behav. Immun. 62, 306–317. https://doi.org/10.1016/j.bbi.2017.02.017 (2017).Article

Gonçalves,J。等人。长期服用甲基苯丙胺会引起神经炎症反应以及血脑屏障的破坏。大脑行为。免疫。62306-317。https://doi.org/10.1016/j.bbi.2017.02.017(2017年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Everett, N. A., Baracz, S. J. & Cornish, J. L. The effect of chronic oxytocin treatment during abstinence from methamphetamine self-administration on incubation of craving, reinstatement, and anxiety. Neuropsychopharmacology. 45, 597–605. https://doi.org/10.1038/s41386-019-0566-6 (2020).Article .

Everett,N.A.,Baracz,S.J。和Cornish,J.L。慢性催产素治疗在戒除甲基苯丙胺自我管理期间对渴望,恢复和焦虑的孵化的影响。神经精神药理学。45597-605。https://doi.org/10.1038/s41386-019-0566-6(2020年)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Westbrook, S. R., Dwyer, M. R., Cortes, L. R. & Gulley, J. M. Extended access self-administration of methamphetamine is associated with age- and sex-dependent differences in drug taking behavior and recognition memory in rats. Behav. Brain Res. 390, 112659. https://doi.org/10.1016/j.bbr.2020.112659 (2020).Article .

Westbrook,S.R.,Dwyer,M.R.,Cortes,L.R。和Gulley,J.M。甲基苯丙胺的扩展访问自我管理与大鼠吸毒行为和识别记忆的年龄和性别依赖性差异有关。行为。大脑研究390112659。https://doi.org/10.1016/j.bbr.2020.112659(2020年)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharma, A., Harutyunyan, A., Schneider, B. L. & Moszczynska, A. Parkin regulates drug-taking behavior in rat model of methamphetamine use disorder. Transl. Psychiatry. 11, 293. https://doi.org/10.1038/s41398-021-01387-7 (2021).Article

Sharma,A.,Harutyunyan,A.,Schneider,B.L。&Moszczynska,A。Parkin调节甲基苯丙胺使用障碍大鼠模型中的吸毒行为。翻译。精神病学。11293页。https://doi.org/10.1038/s41398-021-01387-7(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vollmer, K. M. et al. A novel assay allowing drug Self-Administration, extinction, and reinstatement testing in Head-restrained mice. Front. Behav. Neurosci. 15, 744715. https://doi.org/10.3389/fnbeh.2021.744715 (2021).Article

Vollmer,K.M.等人。一种新的测定方法,允许在头部受限的小鼠中进行药物自我给药,消退和恢复测试。正面。行为。。15744715。https://doi.org/10.3389/fnbeh.2021.744715(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and was funded by the Ministry of Education (NRF-2016R1A6A1A03011325 and RS-2023-00242428).Author informationAuthor notesSang-Hoon Song and Suji Kim contributed equally to this work.Authors and AffiliationsCollege of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu, 42601, Republic of KoreaSang-Hoon Song, Suji Kim, Won-Jun Jang, Chul-Ho Jeong & Sooyeun LeeBiorchestra Co., Ltd, Techno4-ro 17, Daejeon, 34013, Republic of KoreaIn Soo RyuAuthorsSang-Hoon SongView author publicationsYou can also search for this author in.

下载参考文献致谢本研究由韩国国家研究基金会(NRF)的基础科学研究计划支持,并由教育部资助(NRF-2016R1A6A1A03011325和RS-2023-00242428)。作者信息作者notesSang Hoon Song和Suji Kim对这项工作做出了同样的贡献。作者和附属机构庆明大学药学院,1095 Dalgubeoldaero,Dalseo gu,Daegu,42601,大韩民国Sang Hoon Song,Suji Kim,Won Jun Jang,Chul Ho Jeong&Sooyun LeeBiorchestra Co.,Ltd,Techno4 ro 17,Daejeon,34013,大韩民国Soo Ryuauthorsang Hoon SongView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarSuji KimView author publicationsYou can also search for this author in

PubMed Google ScholarSuji KimView作者出版物您也可以在

PubMed Google ScholarWon-Jun JangView author publicationsYou can also search for this author in

PubMed Google ScholarWon Jun JangView作者出版物您也可以在

PubMed Google ScholarIn Soo RyuView author publicationsYou can also search for this author in

PubMed Google ScholarIn Soo RyuView作者出版物您也可以在

PubMed Google ScholarChul-Ho JeongView author publicationsYou can also search for this author in

PubMed Google ScholarChul Ho JeongView作者出版物您也可以在

PubMed Google ScholarSooyeun LeeView author publicationsYou can also search for this author in

PubMed Google ScholarSooyeun LeeView作者出版物您也可以在

PubMed Google ScholarContributionsSang-Hoon Song: Methodology, Formal analysis, Writing - original draft, Visualization. Suji Kim: Methodology, Formal analysis, Writing original draft. Won-Jun Jang: Formal analysis, Visualization. In Soo Ryu: Investigation, Formal analysis. Chul-Ho Jeong: Conceptualization, Supervision, Writing - review & editing.

PubMed谷歌学术贡献Sang Hoon Song:方法论,形式分析,写作-原稿,可视化。金素姬:方法论,形式分析,撰写原稿。张元军:形式分析,可视化。。Chul Ho Jeong:概念化,监督,写作-评论和编辑。

Sooyeun Lee: Conceptualization, Supervision, Writing - review & editing.Corresponding authorsCorrespondence to.

李秀云:概念化,监督,写作-评论和编辑。通讯作者通讯。

Chul-Ho Jeong or Sooyeun Lee.Ethics declarations

Chul Ho Jeong或Sooyeun Lee。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Ethics statement

道德声明

All animal procedures performed during this study were reviewed and approved by the Institutional Animal Care and Use Committee of the Korea Institute of Toxicology.

本研究期间进行的所有动物程序均由韩国毒理学研究所机构动物护理和使用委员会审查和批准。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleSong, SH., Kim, S., Jang, WJ. et al. Exploring the progression of drug dependence in a methamphetamine self-administration rat model through targeted and non-targeted metabolomics analyses.

转载和许可本文引用本文Song,SH.,Kim,S.,Jang,WJ。等人。通过靶向和非靶向代谢组学分析探索甲基苯丙胺自我给药大鼠模型中药物依赖的进展。

Sci Rep 14, 22543 (2024). https://doi.org/10.1038/s41598-024-73247-5Download citationReceived: 14 June 2024Accepted: 16 September 2024Published: 29 September 2024DOI: https://doi.org/10.1038/s41598-024-73247-5Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1422543(2024)。https://doi.org/10.1038/s41598-024-73247-5Download引文接收日期:2024年6月14日接受日期:2024年9月16日发布日期:2024年9月29日OI:https://doi.org/10.1038/s41598-024-73247-5Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsDrug dependenceMethamphetamineSelf-administrationReinstatementMetabolomicsMass spectrometry

药物依赖性甲基苯丙胺自我给药恢复代谢组学质谱

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。