商务合作
动脉网APP
可切换为仅中文
AbstractNovel sources of population data, especially administrative and medical records, as well as the digital footprints generated through interactions with online services, present a considerable opportunity for advancing health research and policymaking. An illustrative example is shopping history records that can illuminate aspects of population health by scrutinizing extensive sets of everyday choices made in the real world.
摘要人口数据的新来源,特别是行政和医疗记录,以及通过与在线服务互动产生的数字足迹,为推进健康研究和决策提供了相当大的机会。一个说明性的例子是购物历史记录,它可以通过仔细检查现实世界中做出的大量日常选择来阐明人口健康的各个方面。
However, like any dataset, these sources possess specific limitations, including sampling biases, validity issues, and measurement errors. To enhance the applicability and potential of shopping data in health research, we advocate for the integration of individual-level shopping data with external datasets containing rich repositories of longitudinal population cohort studies.
然而,像任何数据集一样,这些来源具有特定的局限性,包括抽样偏差,有效性问题和测量误差。为了提高购物数据在健康研究中的适用性和潜力,我们主张将个人层面的购物数据与包含丰富的纵向人群队列研究存储库的外部数据集相结合。
This strategic approach holds the promise of devising innovative methodologies to address inherent data limitations and biases. By meticulously documenting biases, establishing validated associations, and discerning patterns within these amalgamated records, researchers can extrapolate their findings to encompass population-wide datasets derived from national supermarket chain.
。通过仔细记录偏见,建立经过验证的关联,并在这些合并记录中辨别模式,研究人员可以推断他们的发现,以涵盖来自全国超市连锁店的全人群数据集。
The validation and linkage of population health data with real-world choices pertaining to food, beverages, and over-the-counter medications, such as pain relief, present a significant opportunity to comprehend the impact of these choices and behavioural patterns associated with them on public health..
人口健康数据与食品、饮料和非处方药(如止痛药)相关的现实世界选择的验证和联系,为理解这些选择及其相关行为模式对公共健康的影响提供了重要机会。。
Every day, we leave behind ‘digital footprints’; a trail of data created through our on-line and in-person activities, collected through technology. These ‘digital footprints’ are a reflection of our choices, activities, preferences and habits. The advent of digital technology has transformed comprehension of health and related behaviours, driven by the meticulous collection of these digital footprints across various data repositories1,2,3,4,5.
每天,我们都会留下“数字足迹”;通过我们的在线和面对面的活动创建的数据线索,通过技术收集。这些“数字足迹”反映了我们的选择、活动、偏好和习惯。数字技术的出现改变了对健康和相关行为的理解,这是由于在各种数据存储库中仔细收集了这些数字足迹1,2,3,4,5。
This has led to a wealth of research that utilises digital footprints data, for example wearables to track population health indicators6,7,8 and assess the success of interventions9; consumer app data analysed to derive prevalence and course of health symptoms in different domains10,11 and consumer behavioural data, such as shopping and banking records, being examined to derive predictors of life outcomes including health and well-being12,13,14,15.Shopping data are collected when we engage in supermarket transactions and use loyalty cards (known as club cards in USA and other countries) to get future benefits, such as discounts.
这导致了大量利用数字足迹数据的研究,例如可穿戴设备来跟踪人口健康指标6,7,8并评估干预措施的成功9;分析消费者应用程序数据以得出不同领域的健康症状的患病率和病程10,11以及消费者行为数据,如购物和银行记录,以得出包括健康和幸福感在内的生活结果的预测因子12,13,14,15。当我们参与超市交易并使用忠诚卡(在美国和其他国家称为俱乐部卡)获得折扣等未来利益时,会收集购物数据。
In this process, supermarkets record our purchases to better understand their consumers to maximise profits. While collected for commercial purposes, shopping data can be uniquely beneficial to public health research because it can provide a comprehensive portrait of our consumption habits and preferences.Conventional approaches to scrutinizing the interplay between lifestyle choices, health behaviours and outcomes rely heavily on self-report questionnaires, wherein individuals are asked to recollect and/or recount their daily choices and behaviours (e.g., in the areas of diet, tobacco and alcohol consumption16,17).
在这个过程中,超市会记录我们的购买情况,以更好地了解消费者,从而实现利润最大化。虽然购物数据是为了商业目的而收集的,但它对公共卫生研究具有独特的益处,因为它可以全面描述我们的消费习惯和偏好。检查生活方式选择,健康行为和结果之间相互作用的传统方法在很大程度上依赖于自我报告问卷,其中要求个人回忆和/或叙述他们的日常选择和行为(例如,在饮食,烟草和酒精消费领域16,17)。
Such a methodological approach contains potential biases, as responses are frequently colo.
这种方法论方法包含潜在的偏见,因为回应通常是colo。
ReferencesOnnela, J.-P. Opportunities and challenges in the collection and analysis of digital phenotyping data. Neuropsychopharmacology 46, 45–54 (2021).Article
参考文献Sonnela,J.-P。数字表型数据收集和分析的机遇和挑战。神经精神药理学46,45-54(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hinds, J. & Joinson, A. N. What demographic attributes do our digital footprints reveal? A systematic review. PLoS One 13, e0207112 (2018).Article
Hinds,J.&Joinson,A.N。我们的数字足迹揭示了哪些人口统计特征?系统评价。PLoS One 13,e0207112(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Golder, S. A. & Macy, M. W. Digital Footprints: Opportunities and Challenges for Online Social Research. Annu. Rev. Sociol. 40, 129–152 (2014).Article
Golder,S.A。和Macy,M.W。数字足迹:在线社会研究的机遇和挑战。年。社会学牧师。40129-152(2014)。文章
Google Scholar
谷歌学者
Stenhaug, M., Johansen, H. D. & Johansen, D. Transforming Healthcare through Life-Long Personal Digital Footprints. in 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 36–41 (ieeexplore.ieee.org, 2016).Birkin, M., Wilkins, E.
Stenhaug,M.,Johansen,H.D。和Johansen,D。通过终身个人数字足迹改变医疗保健。2016年,IEEE首届互联健康国际会议:应用、系统和工程技术(CHASE)36-41(ieeexplore.IEEE.org,2016)。伯金,M.,威尔金斯,E。
& Morris, M. A. Creating a long-term future for big data in obesity research. Int. J. Obes. 43, 2587–2592 (2019).Article .
&Morris,M.A。为肥胖研究中的大数据创造了一个长期的未来。内景J.Obes。。文章。
Google Scholar
谷歌学者
Shapiro, I., Stein, J., MacRae, C. & O’Reilly, M. Pulse oximetry values from 33,080 participants in the Apple Heart & Movement Study. NPJ Digit Med 6, 134 (2023).Article
Shapiro,I.,Stein,J.,MacRae,C。&O'Reilly,M。来自苹果心脏与运动研究的33080名参与者的脉搏血氧饱和度值。NPJ数字医学6134(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ghomrawi, H. M. K. et al. Applying machine learning to consumer wearable data for the early detection of complications after pediatric appendectomy. NPJ Digit Med 6, 148 (2023).Article
Ghomrawi,H.M.K.等人。将机器学习应用于消费者可穿戴数据,以早期发现小儿阑尾切除术后的并发症。NPJ数字医学6148(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tseng, Y.-J., Olson, K. L., Bloch, D. & Mandl, K. D. Engaging a national-scale cohort of smart thermometer users in participatory surveillance. NPJ Digit Med 6, 175 (2023).Article
Tseng,Y.-J.,Olson,K.L.,Bloch,D。&Mandl,K.D。参与全国范围的智能温度计用户队列参与式监视。NPJ数字医学6175(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Holko, M. et al. Wearable fitness tracker use in federally qualified health center patients: strategies to improve the health of all of us using digital health devices. NPJ Digit Med 5, 53 (2022).Article
Holko,M.等人,《可穿戴健身跟踪器在联邦合格健康中心患者中的应用:使用数字健康设备改善我们所有人健康的策略》。NPJ数字医学5,53(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Nissen, M. et al. Prevalence and course of pregnancy symptoms using self-reported pregnancy app symptom tracker data. NPJ Digit Med 6, 189 (2023).Article
。NPJ数字医学6189(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pierson, E., Althoff, T., Thomas, D., Hillard, P. & Leskovec, J. Daily, weekly, seasonal and menstrual cycles in women’s mood, behaviour and vital signs. Nat. Hum. Behav. 5, 716–725 (2021).Article
Pierson,E.,Althoff,T.,Thomas,D.,Hillard,P。&Leskovec,J。女性情绪,行为和生命体征的每日,每周,季节和月经周期。自然,哼,行为。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Muggleton, N. et al. The association between gambling and financial, social and health outcomes in big financial data. Nat. Hum. Behav. 5, 319–326 (2021).Article
Muggleton,N.等人,《大金融数据中赌博与金融、社会和健康结果之间的关联》。自然,哼,行为。5319-326(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Skatova, A., Stewart, N., Flavahan, E. & Goulding, J. Those Whose Calorie Consumption Varies Most Eat Most. (2019).Green, M. A. et al. Comparing supermarket loyalty card data with traditional diet survey data for understanding how protein is purchased and consumed in older adults for the UK, 2014–16.
斯卡托娃(Skatova,A.),斯图尔特(Stewart,N.),弗拉瓦汉(Flavahan),E。和古尔丁(Goulding),J。那些卡路里消耗变化最大的人吃得最多。(2019年)。Green,M.A.等人,《将超市忠诚度卡数据与传统饮食调查数据进行比较,以了解英国老年人如何购买和消费蛋白质,2014-16年》。
Nutr J 19, 83 (2020).Article .
《营养学杂志》19,83(2020)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Møller, F. T. et al. Assessing household lifestyle exposures from consumer purchases, the My Purchases cohort. Sci. Rep. 13, 21601 (2023).Article
Møller,F.T.等人,《评估消费者购买的家庭生活方式暴露》,我的购买队列。科学。代表1321601(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Volk, R. J. et al. Reliability of self-reported smoking history and its implications for lung cancer screening. Prev. Med Rep. 17, 101037 (2020).Article
Volk,R.J.等人。自我报告吸烟史的可靠性及其对肺癌筛查的影响。上一页。医学代表17101037(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Davis, C. G., Thake, J. & Vilhena, N. Social desirability biases in self-reported alcohol consumption and harms. Addict. Behav. 35, 302–311 (2010).Article
Davis,C.G.,Thake,J。&Vilhena,N。自我报告的酒精消费和危害中的社会期望偏差。瘾君子。行为。35302-311(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hebert, J. R., Clemow, L., Pbert, L., Ockene, I. S. & Ockene, J. K. Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int. J. Epidemiol. 24, 389–398 (1995).Article
Hebert,J.R.,Clemow,L.,Pbert,L.,Ockene,I.S。&Ockene,J.K。饮食自我报告中的社会期望偏差可能会损害饮食摄入措施的有效性。国际流行病学杂志。24389-398(1995)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Devaux, M. & Sassi, F. Social disparities in hazardous alcohol use: self-report bias may lead to incorrect estimates. Eur. J. Public Health 26, 129–134 (2016).Article
Devaux,M。&Sassi,F。危险酒精使用的社会差异:自我报告偏见可能导致不正确的估计。Eur.J.Public Health 26129–134(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Skatova, A. & Goulding, J. Psychology of personal data donation. PLoS One 14, e0224240 (2019).Article
Skatova,A。&Goulding,J。个人数据捐赠心理学。PLoS One 14,e0222440(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Urquhart, L., Sailaja, N. & McAuley, D. Realising the right to data portability for the domestic Internet of things. Pers. Ubiquit. Comput. 22, 317–332 (2018).Article
Urquhart,L.,Sailaja,N。和McAuley,D。实现国内物联网数据可移植性的权利。个人Ubiquit。计算机。22317-332(2018)。文章
Google Scholar
谷歌学者
Brewer, H. R., Hirst, Y., Sundar, S., Chadeau-Hyam, M. & Flanagan, J. M. Cancer Loyalty Card Study (CLOCS): protocol for an observational case-control study focusing on the patient interval in ovarian cancer diagnosis. BMJ Open 10, e037459 (2020).Article
Brewer,H.R.,Hirst,Y.,Sundar,S.,Chadeau-Hyam,M。&Flanagan,J.M。癌症忠诚度卡研究(CLOCS):一项观察性病例对照研究的方案,重点是卵巢癌诊断中的患者间隔。BMJ Open 10,e037459(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jenneson, V. et al. Exploring the Geographic Variation in Fruit and Vegetable Purchasing Behaviour Using Supermarket Transaction Data. Nutrients 14, (2021).Skatova, A. & Boyd, A. A protocol for linking participants’ retailer ‘loyalty card’records into the Avon Longitudinal Study of Parents and Children (ALSPAC).
。营养素14,(2021)。Skatova,A。&Boyd,A。将参与者的零售商“忠诚卡”记录与雅芳父母和孩子纵向研究(ALSPAC)联系起来的协议。
Wellcome Open Res. 8, 99 (2023).Article .
惠康公开赛第8、99号决议(2023年)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Lintonen, T., Uusitalo, L., Erkkola, M. & Rahkonen, O. Grocery purchase data in the study of alcohol use–A validity study. Alcohol Dependence (2020).Clark, S. D. et al. Dietary Patterns Derived from UK Supermarket Transaction Data with Nutrient and Socioeconomic Profiles. Nutrients 13, (2021).Timberlake, D.
Lintonen,T.,Uusitalo,L.,Erkkola,M。&Rahkonen,O。酒精使用研究中的杂货购买数据-有效性研究。酒精依赖(2020)。Clark,S.D.等人。饮食模式来源于英国超市交易数据以及营养和社会经济概况。营养素13,(2021)。Timberlake,D。
S., Joensuu, J., Kurko, T., Rimpelä, A. H. & Nevalainen, J. Examining retail purchases of cigarettes and nicotine replacement therapy in Finland. Tob. Induc. Dis. 17, 39 (2019).Article .
S、 ,Joensuu,J.,Kurko,T.,Rimpelä,A.H。&Nevalainen,J。检查芬兰零售的香烟和尼古丁替代疗法。托布。诱导。Dis。17,39(2019)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Paulhus, D. L. Self-Deception and Impression Management in Test Responses. in Personality Assessment via Questionnaires: Current Issues in Theory and Measurement (eds. Angleitner, A. & Wiggins, J. S.) 143–165 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1986).Rehm, J. The risks associated with alcohol use and alcoholism.
Paulhus,D.L。测试反应中的自我欺骗和印象管理。通过问卷调查进行人格评估:理论和测量中的当前问题(eds.Angleitner,A。&Wiggins,J.S。)143-165(Springer Berlin Heidelberg,Berlin,Heidelberg,1986)。Rehm,J。与酒精使用和酒精中毒相关的风险。
Alcohol Res. Health 34, 135–143 (2011).PubMed .
酒精研究健康34135-143(2011)。。
Google Scholar
谷歌学者
Sasco, A. J., Secretan, M. B. & Straif, K. Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung Cancer 45, S3–S9 (2004). Suppl 2.Article
Sasco,A.J.,Secretan,M.B。&Straif,K。吸烟与癌症:近期流行病学证据的简要回顾。肺癌45,S3-S9(2004)。补充条款2
PubMed
PubMed
Google Scholar
谷歌学者
Steck, S. E. & Murphy, E. A. Dietary patterns and cancer risk. Nat. Rev. Cancer 20, 125–138 (2020).Article
Steck,S.E。和Murphy,E.A。饮食模式和癌症风险。《国家癌症评论》20125-138(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jha, P. Avoidable global cancer deaths and total deaths from smoking. Nat. Rev. Cancer 9, 655–664 (2009).Article
Jha,P。可避免的全球癌症死亡和吸烟死亡总数。《国家癌症评论》9655-664(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liese, A. D. et al. The Dietary Patterns Methods Project: synthesis of findings across cohorts and relevance to dietary guidance. J. Nutr. 145, 393–402 (2015).Article
Liese,A.D.等人,《饮食模式方法项目:跨队列研究结果的综合以及与饮食指导的相关性》。J、 营养。145393-402(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wood, A. M. et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391, 1513–1523 (2018).Article
Wood,A.M.等人,《饮酒的风险阈值:83项前瞻性研究中599912名当前饮酒者的个体参与者数据的综合分析》。柳叶刀3911513-1523(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dolan, E., Goulding, J., Tata, L. & Lang, A. Using Shopping Data to Improve the Diagnosis of Ovarian Cancer: Survey Study. JMIR Cancer 9 (2022).Rains, T. & Longley, P. The provenance of loyalty card data for urban and retail analytics. J. Retail. Consum. Serv. 63, 102650 (2021).Article .
Dolan,E.,Goulding,J.,Tata,L。&Lang,A。使用购物数据改善卵巢癌的诊断:调查研究。JMIR癌症9(2022)。Rains,T。&Longley,P。城市和零售分析忠诚度卡数据的来源。J、 。消费。服务。63102650(2021)。文章。
Google Scholar
谷歌学者
Jenneson, V. et al. Supermarket Transaction Records In Dietary Evaluation: the STRIDE study: validation against self-reported dietary intake. Public Health Nutr. 1–14 (2023).Møller, F. T., Mølbak, K. & Ethelberg, S. Analysis of consumer food purchase data used for outbreak investigations, a review.
Jenneson,V。等人,《饮食评估中的超市交易记录:STRIDE研究:针对自我报告的饮食摄入量的验证》。公共卫生营养品。1-14(2023年)。Møller,F.T.,Mølbak,K。&Ethelberg,S。用于疫情调查的消费者食品购买数据分析,综述。
Euro Surveill. 23, (2018).Dolan, E. H., Shiells, K., Goulding, J. & Skatova, A. Public attitudes towards sharing loyalty card data for academic health research: a qualitative study. BMC Med. Ethics 23, 58 (2022).Article .
欧元监管。23,(2018)。Dolan,E.H.,Shiells,K.,Goulding,J。&Skatova,A。公众对学术健康研究共享忠诚卡数据的态度:定性研究。。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Skatova, A., Shiells, K. & Boyd, A. Attitudes towards transactional data donation and linkage in a longitudinal population study: evidence from the Avon Longitudinal Study of Parents and Children. Wellcome Open Res 4, 192 (2019).Article
Skatova,A.,Shiells,K。&Boyd,A。在纵向人口研究中对交易数据捐赠和联系的态度:来自雅芳父母和孩子纵向研究的证据。Wellcome Open Res 4192(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Boyd, A. et al. Data Resource Profile: The ALSPAC birth cohort as a platform to study the relationship of environment and health and social factors. Int. J. Epidemiol. 48, 1038–1039k (2019).Article
数据资源概况:ALSPAC出生队列作为研究环境与健康和社会因素关系的平台。国际流行病学杂志。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Sullivan, A., Brown, M., Hamer, M. & Ploubidis, G. B. Cohort Profile Update: The 1970 British Cohort Study (BCS70). Int. J. Epidemiol. 52, e179–e186 (2023).Article
Sullivan,A.,Brown,M.,Hamer,M。&Ploubidis,G.B。队列概况更新:1970年英国队列研究(BCS70)。国际流行病学杂志。52,e179–e186(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Vuorinen, A.-L. et al. Characterization and correction of bias due to nonparticipation and the degree of loyalty in large-scale Finnish loyalty card data on grocery purchases: Cohort study. J. Med. Internet Res. 22, e18059 (2020).Article
Vuorinen,A.-L.等人。在杂货购买的大规模芬兰忠诚卡数据中,由于不参与和忠诚程度而导致的偏见的表征和纠正:队列研究。J、 医学互联网研究22,e18059(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsSkatova is supported by a UKRI Future Leaders Fellowship (MR/T043520/1).Author informationAuthors and AffiliationsDigital Footprints Lab & Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UKAnya SkatovaAuthorsAnya SkatovaView author publicationsYou can also search for this author in.
下载参考文献致谢斯卡托娃(Download ReferencesAcknowlementsskatova)得到了英国皇家理工学院未来领导者奖学金(MR/T043520/1)的支持。作者信息作者和附属机构布里斯托尔大学数字足迹实验室和医学研究委员会综合流行病学部门,人口健康科学,布里斯托尔医学院,布里斯托尔大学,布里斯托尔,英国布里斯托尔,布里斯托尔斯卡托瓦Authorsanya SkatovaView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarCorresponding authorCorrespondence to
PubMed谷歌学者通讯社
Anya Skatova.Ethics declarations
安雅斯卡托娃。道德宣言
Competing interests
相互竞争的利益
The author declares no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleSkatova, A. Overcoming biases of individual level shopping history data in health research.
转载和许可本文引用本文Skatova,A。克服健康研究中个人层面购物历史数据的偏见。
npj Digit. Med. 7, 264 (2024). https://doi.org/10.1038/s41746-024-01231-4Download citationReceived: 15 December 2023Accepted: 19 August 2024Published: 30 September 2024DOI: https://doi.org/10.1038/s41746-024-01231-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj数字。医学杂志7264(2024)。https://doi.org/10.1038/s41746-024-01231-4Download引文收到日期:2023年12月15日接受日期:2024年8月19日发布日期:2024年9月30日OI:https://doi.org/10.1038/s41746-024-01231-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供