EN
登录

T细胞粘附分子作为癌症免疫治疗的潜在靶点:CD226和CD2

Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2

Nature 等信源发布 2024-10-01 12:51

可切换为仅中文


AbstractCancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment.

摘要癌症免疫疗法旨在启动或扩增免疫反应,消除癌细胞并产生免疫记忆以防止复发。免疫检查点抑制剂(ICIs)靶向免疫效应细胞上的共抑制受体,如CTLA-4和PD-(L)1,在癌症治疗方面取得了重大进展。

However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy.

然而,它们在实现广泛和持久的反应方面仍然面临挑战。抗癌免疫的有效性由肿瘤浸润性免疫细胞中共抑制和共刺激信号的相互作用决定,突出了共刺激受体作为免疫治疗关键靶点的潜力。

This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses.

这篇综述探讨了我们目前对CD2和CD226功能的理解,特别强调了它们作为癌症免疫治疗的新型激动剂靶标的潜力。主要存在于T细胞和NK细胞上的CD2和CD226在细胞粘附和识别中起重要作用。这些分子现在因其共刺激益处而被认可,特别是在克服T细胞衰竭和增强抗肿瘤反应的背景下。

The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy..

CD226的重要性,特别是在抗TIGIT治疗中,以及CD2-CD58轴在克服对ICI或嵌合抗原受体(CAR)T细胞疗法的抗性方面的重要性,为超越目前癌症免疫疗法的障碍提供了有价值的见解,强调了它们作为新型激动剂疗法靶标的前景。。

IntroductionImmunotherapy has transformed cancer treatment by significantly improving patient outcomes through treatments such as immune checkpoint inhibitors (ICIs) and adoptive T-cell therapy (ACT)1. While immunotherapy has shown promising results across various cancer types, durable responses are seen only in a minority of patients.

引言免疫疗法通过免疫检查点抑制剂(ICI)和过继性T细胞疗法(ACT)1等治疗显着改善患者预后,从而改变了癌症治疗。虽然免疫疗法在各种癌症类型中显示出有希望的结果,但只有少数患者才能看到持久的反应。

Several efforts, such as triggering costimulatory signals with agonistic antibodies, have continued to overcome its challenges and expand its effectiveness.Costimulation is crucial for full T-cell activation along with cytokine support, as stimulation solely through the T-cell receptor (TCR) complex can induce anergy2.

一些努力,例如用激动性抗体触发共刺激信号,继续克服其挑战并扩大其有效性。共刺激对于完全T细胞活化以及细胞因子支持至关重要,因为仅通过T细胞受体(TCR)复合物的刺激可以诱导无能2。

In particular, it is well known that tumors can impede proper T-cell priming to tumor antigens, a key factor in suppressing the antitumor response. Therapies targeting potent costimulatory signal-delivering receptors, such as 4-1BB, OX40, GITR, ICOS and CD40, have been developed to overcome this challenge.

特别是,众所周知,肿瘤可以阻碍T细胞对肿瘤抗原的正确启动,这是抑制抗肿瘤反应的关键因素。已经开发了针对有效的共刺激信号传递受体(例如4-1BB,OX40,GITR,ICOS和CD40)的疗法来克服这一挑战。

Although agonistic antibodies targeting these receptors have shown promising preclinical effects, their clinical use has been limited by their narrow therapeutic window. This limitation is primarily due to their transient expression upon stimulation, strong constitutive stimulation-induced T-cell dysfunction, and on-target/off-tumor toxicity3,4,5,6.

尽管靶向这些受体的激动性抗体已显示出有希望的临床前作用,但其临床应用受到其狭窄的治疗窗口的限制。这种限制主要是由于它们在刺激后的瞬时表达,强烈的组成型刺激诱导的T细胞功能障碍以及靶向/非肿瘤毒性3,4,5,6。

Ongoing efforts are being made to overcome the existing limitations of T-cell agonist therapy, including the development of antibodies with tumor-specific activity and the induction of oligomerization in tumor necrosis factor (TNF) receptor superfamily (TNFRSF) costimulatory receptors. Combination treatments with other therapeutics, including chemotherapy or radiotherapy, are also being explored.

目前正在努力克服T细胞激动剂治疗的现有局限性,包括开发具有肿瘤特异性活性的抗体和诱导肿瘤坏死因子(TNF)受体超家族(TNFRSF)共刺激受体的寡聚化。还正在探索与其他疗法(包括化疗或放疗)的联合治疗。

However, challenges such as their transient expression and strong signaling-induc.

然而,诸如它们的瞬时表达和强信号传导等挑战诱导了。

Extracellular regulation

细胞外调节

CD226 activation can be inhibited by its counterpart TIGIT, which outcompetes CD226 for binding to PVR or nectin-2 with a higher affinity than CD22658,59. Studies employing time-resolved FRET (TR-FRET) suggest that TIGIT interferes with CD226 homodimerization in an ECD-dependent manner10. A previous structural study reported the cis-homodimerization of TIGIT, facilitating the conjugation of TIGIT-expressing cells to PVR-expressing cells60 (Fig.

CD226激活可以被其对应物TIGIT抑制,TIGIT以比CD22658,59更高的亲和力竞争CD226与PVR或nectin-2的结合。使用时间分辨FRET(TR-FRET)的研究表明,TIGIT以ECD依赖性方式干扰CD226同源二聚化10。先前的结构研究报道了TIGIT的顺式同源二聚化,促进了TIGIT表达细胞与PVR表达细胞的结合60(图)。

2). However, a recent study by Worboys et al. demonstrated that TIGIT clustering at the IS remained intact even with an inert mutation in its homodimerization site (I42D)55. Nevertheless, it remains unclear whether CD226 also undergoes structural homodimerization. More importantly, further investigation is needed to determine whether the homodimerization of TIGIT or CD226 is induced by ligand binding or if it occurs constitutively.

2) 。然而,Worboys等人最近的一项研究表明,即使在其同源二聚化位点(I42D)55中存在惰性突变,IS处的TIGIT聚类仍保持完整。然而,尚不清楚CD226是否也经历了结构同源二聚化。更重要的是,需要进一步研究以确定TIGIT或CD226的同源二聚化是由配体结合诱导的还是组成型发生的。

Another mechanism of TIGIT-mediated CD226 inhibition suggested by the same study is that co-expression of TIGIT in Jurkat cells affects CD226 accumulation at the interface between Jurkat and PVR-expressing Raji cells by impeding CD226 binding to PVR10. However, a recent study presented contradictory findings regarding the localization of CD226 and TIGIT in TCR-rich nanoclusters.

同一研究表明,TIGIT介导的CD226抑制的另一种机制是,TIGIT在Jurkat细胞中的共表达通过阻止CD226与PVR10的结合而影响Jurkat和表达PVR的Raji细胞之间界面处的CD226积累。然而,最近的一项研究提出了关于CD226和TIGIT在富含TCR的纳米团簇中定位的矛盾发现。

Two-color direct stochastic optical reconstruction microscopy (dSTORM) analysis of activated primary human T cells with PLBs containing ICAM-1, OKT3 (anti-CD3) and either nectin-1 or PVR revealed that PVR ligation induces co-localization of CD226 and TIGIT in the cSMAC. Moreover, comparable TIGIT clustering was observed between TIGIT + CD226- and TIGIT + CD226 + T cells in the presence of PVR, indicating that CD226 binding to PVR does not interrupt TIGIT clustering at the IS when PVR is abundant (Fig.

用含有ICAM-1,OKT3(抗CD3)和nectin-1或PVR的PLB对活化的原代人T细胞进行双色直接随机光学重建显微镜(dSTORM)分析,发现PVR连接诱导CD226和TIGIT在cSMAC中的共定位。此外,在PVR存在下,在TIGIT+CD226和TIGIT+CD226+T细胞之间观察到可比的TIGIT聚类,表明当PVR丰富时,CD226与PVR的结合不会中断IS处的TIGIT聚类(图)。

2).Fig. 2: Regulation of C.

2) 。图2:C的调节。

This discrepancy might result from the over-representation of TIGIT in Jurkat cells due to TIGIT over-expression. Furthermore, unlike PLBs, Raji cells endogenously express other adhesion molecules, which could indirectly influence the interaction of PVR with CD226 or TIGIT. Considering that the varied expression levels of CD226 and TIGIT depend on T-cell status, it is important to account for the different molecular stoichiometries between these molecules to understand how TIGIT directly regulates CD226 extracellularly..

这种差异可能是由于TIGIT过表达导致TIGIT在Jurkat细胞中过度表达所致。。考虑到CD226和TIGIT的不同表达水平取决于T细胞状态,重要的是要考虑这些分子之间不同的分子化学计量,以了解TIGIT如何直接在细胞外调节CD226。。

Intracellular regulation

细胞内调节

TIGIT has an ITIM and an ITT-like motif in its cytoplasmic domain, which exert an inhibitory signal by recruiting SH2-containing inositol phosphate-1 (SHP-1) upon ligation with PVR in NK cells58,61,62. Unlike in NK cells, it is still controversial whether the ITIM and ITT-like motifs of TIGIT are required for conferring inhibitory functions and CD226 inhibition in T cells..

TIGIT在其细胞质结构域中具有ITIM和ITT样基序,其通过在NK细胞中与PVR连接后募集含有SH2的肌醇磷酸-1(SHP-1)来发挥抑制信号58,61,62。。。

One study with an antibody that specifically recognizes phosphorylated CD226 at Y322 (pY322) demonstrated that co-incubation of Jurkat cells expressing TIGIT WT with SEE-loaded Raji cells expressing PVR attenuated CD226 phosphorylation; this effect was not detected in Jurkat cells expressing a TIGIT mutant (Y225A/Y231A).

;在表达TIGIT突变体(Y225A/Y231A)的Jurkat细胞中未检测到这种作用。

Moreover, treatment with an anti-TIGIT mAb restored CD226 phosphorylation9. These findings suggest that the extracellular modulation of CD226 by TIGIT is integrated into the intracellular signaling of CD226, which is affected by TIGIT phosphorylation (Fig. 2)..

此外,用抗TIGIT mAb治疗可恢复CD226磷酸化9。这些发现表明,TIGIT对CD226的细胞外调节被整合到受TIGIT磷酸化影响的CD226的细胞内信号传导中(图2)。。

However, Banta et al. proposed that the ICD of TIGIT is dispensable for inhibiting CD226 phosphorylation; instead, PD-1 recruits SHP-2 to suppress CD22610 (Fig. 2). When Jurkat cells expressing CD226, TIGIT, and/or PD-1 were stimulated with SEE-pulsed Raji cells expressing PVR and PD-L1, the co-expression of TIGIT and PD-1 elicited greater dephosphorylation of CD226 than did TIGIT or PD-1 alone.

然而,Banta等人提出TIGIT的ICD对于抑制CD226磷酸化是不必要的;相反,PD-1募集SHP-2以抑制CD22610(图2)。当用表达PVR和PD-L1的SEE脉冲Raji细胞刺激表达CD226,TIGIT和/或PD-1的Jurkat细胞时,TIGIT和PD-1的共表达比单独的TIGIT或PD-1引起更大的CD226去磷酸化。

In addition, the expression of either an ICD deletion or a Y225F/Y231F mutant of TIGIT did not reverse the reduced phosphorylation of CD226 induced by the expression of TIGIT WT. Another study using a cell-free reconstitution system including ICDs of TCR signaling components, such as TCRζ, CD226, CD28, PD-1, and SHP2, but excluding TIGIT, also suggested the role of PD-1 in CD226 dephosphorylation.

此外,TIGIT的ICD缺失或Y225F/Y231F突变体的表达并不能逆转由TIGIT WT表达诱导的CD226磷酸化的降低。另一项使用无细胞重建系统的研究,包括TCR信号成分的ICD,如TCRζ,CD226,CD28,PD-1和SHP2,但不包括TIGIT,也表明PD-1在CD226去磷酸化中的作用。

Given that PD-1 is known to localize at the cSMAC of the IS45,63, CD226 could also be regulated by PD-1-recruited SHP-2, which inhibits CD28 activation. However, the proposed mechanism that limits the role of the TIGIT ICD contradicts the findings of previous studies demonstrating the intracellular inhibitory function of TIGIT.

鉴于已知PD-1定位于IS45,63的cSMAC,CD226也可以由PD-1募集的SHP-2调节,其抑制CD28活化。然而,所提出的限制TIGIT ICD作用的机制与先前证明TIGIT细胞内抑制功能的研究结果相矛盾。

Moreover, a study by Banta et al. revealed a slight increase in CD226 phosphorylation upon anti-TIGIT mAb treatment alone, which could not be attributed solely to the dissociation of CD226 from PVR without considering intracellular events. Indeed, a recent study employing various TIGIT mutants that affect glycosylation, dimerization, ligand binding, and downstream signaling further elucidated the role of the TIGIT ECD and ICD in regulating T-cell activation55.

此外,Banta等人的一项研究显示,单独使用抗TIGIT mAb治疗后,CD226磷酸化略有增加,这不能仅归因于CD226与PVR的解离,而不考虑细胞内事件。事实上,最近一项使用影响糖基化,二聚化,配体结合和下游信号传导的各种TIGIT突变体的研究进一步阐明了TIGIT ECD和ICD在调节T细胞活化中的作用55。

TIGIT mutants incapable of binding PVR fail to initiate inhibitory signals, indicating the pivotal role of extracellular events in mediating TIGIT phosphorylation-induced inhibition of T-cell responses. Wh.

不能结合PVR的TIGIT突变体不能启动抑制信号,表明细胞外事件在介导TIGIT磷酸化诱导的T细胞反应抑制中的关键作用。白色。

Under physiological cell-to-cell regulation conditions, various events occur simultaneously, unlike direct regulation between molecules. Thus, discrepancies can arise from this complexity. Nevertheless, understanding how TIGIT directly regulates CD226 is crucial for designing effective anti-TIGIT therapy strategies.

在生理细胞间调节条件下,与分子之间的直接调节不同,各种事件同时发生。因此,这种复杂性可能会产生差异。然而,了解TIGIT如何直接调节CD226对于设计有效的抗TIGIT治疗策略至关重要。

In particular, if TIGIT and PD-1 jointly regulate CD226 activity, this is a compelling rationale for a combined blocking strategy targeting both the PD-(L)1 and TIGIT pathways. Conversely, if TIGIT independently regulates CD226, simultaneous blockade with PD-1 may be unnecessary. Therefore, elucidating the interplay between these molecules is essential for the future clinical implementation of anti-TIGIT therapy..

特别是,如果TIGIT和PD-1共同调节CD226活性,这是针对PD-(L)1和TIGIT途径的组合阻断策略的令人信服的理由。相反,如果TIGIT独立调节CD226,则可能不需要同时阻断PD-1。因此,阐明这些分子之间的相互作用对于未来抗TIGIT治疗的临床实施至关重要。。

Further considerations

进一步考虑

Several unanswered questions remain regarding the regulation of CD226. First, there is variable co-expression of CD226, TIGIT, and PD-1 within T cells. Studies have shown an inverse correlation between CD226 and TIGIT or PD-1 in tumor-infiltrating CD8 + T cells (CD8+TILs). Thus, TIGIT and PD-1 are not always co-expressed regardless of CD226 expression in T cells from both healthy donors and patients with cancer9,55,64.

关于CD226的监管仍有几个悬而未决的问题。首先,T细胞内CD226,TIGIT和PD-1存在可变的共表达。研究表明,肿瘤浸润性CD8+T细胞(CD8+TIL)中CD226与TIGIT或PD-1呈负相关。因此,无论健康供体和癌症患者的T细胞中CD226的表达如何,TIGIT和PD-1并不总是共表达9,55,64。

This raises the question about the regulation of CD226 in CD226 + TIGIT + PD-1- T-cell populations if TIGIT only partially inhibits CD226 activation through competitive binding to PVR. In addition, it is important to determine whether NK cells, which rarely express PD-165, employ a distinct regulatory mechanism for CD226 compared with T cells..

如果TIGIT仅通过与PVR的竞争性结合部分抑制CD226活化,这就提出了CD226在CD226++TIGIT++PD-1-T细胞群中调节CD226的问题。此外,重要的是要确定与T细胞相比,很少表达PD-165的NK细胞是否对CD226具有独特的调节机制。。

More importantly, it remains unclear whether PD-1 binding to PD-L1 alone can trigger CD226 inhibition or is a sequential event following TIGIT-PVR binding-mediated CD226 regulation. This is particularly important for combination therapy targeting the PD-(L)1 and TIGIT pathways, as the co-expression of PD-L1 and PVR by tumors might be necessary for this sequential event.

更重要的是,尚不清楚PD-1单独与PD-L1结合是否可以触发CD226抑制,或者是TIGIT-PVR结合介导的CD226调节后的连续事件。。

However, a previous study reported no correlation between PVR and PD-L1 expression in five different cohorts of patients with lung adenocarcinoma38. Finally, the roles of other TIGIT family members, especially those related to CD226 regulation, remain elusive. While it remains controversial whether CD96 has costimulatory or inhibitory activity, CD112R is known as a co-inhibitory receptor that binds to nectin-233.

然而,之前的一项研究报道,在五个不同的肺腺癌患者队列中,PVR和PD-L1表达之间没有相关性38。。虽然CD96是否具有共刺激或抑制活性仍存在争议,但CD112R被称为与nectin-233结合的共抑制受体。

Therefore, understanding whether CD112R also requires PD-1 to inhibit CD226 and how it interacts with TIGIT is necessary to elucidate the broader regulatory network involving CD226..

因此,了解CD112R是否也需要PD-1抑制CD226以及它如何与TIGIT相互作用对于阐明涉及CD226的更广泛的调控网络是必要的。。

CD226 in tumor immunityCD8 + T-cell regulationThe role of CD226 in modulating CD8 + T-cell-mediated antitumor responses has been assessed in various mouse tumor models. CD226-deficient mice presented increased tumor development and mortality after transplantation of Meth A, 3-methylcholanthrene (MCA)-induced fibrosarcoma, 7,12-dimethylbenz[a]anthracene (DMBA)-induced papilloma tumor cells or CT2610,66.

CD226在肿瘤免疫中的CD8+T细胞调节已经在各种小鼠肿瘤模型中评估了CD226在调节CD8+T细胞介导的抗肿瘤反应中的作用。CD226缺陷小鼠在移植甲氧基,3-甲基胆蒽(MCA)诱导的纤维肉瘤,7,12-二甲基苯并蒽(DMBA)诱导的乳头状瘤肿瘤细胞或CT2610,66后表现出增加的肿瘤发展和死亡率。

In addition, the growth of implanted MC38-OVA tumor cells was not controlled in CD226-deficient mice57. In an adoptive transfer model of Pmel-1-CD8 + T cells into melanoma-bearing mice, mice given CD226-deficient Pmel-1-CD8 + T cells presented a decreased survival rate compared with that of mice given WT Pmel-1-CD8 + T cells67.

此外,在CD226缺陷小鼠中,植入的MC38-OVA肿瘤细胞的生长不受控制57。。

CD226 deficiency affects the antitumor efficacy of anti-PD-1 or anti-TIGIT antibodies in B16K1- or CT26-bearing mice10,68. This effect was also observed in mouse tumor model studies in which anti-CD226 antagonist antibodies were used to block the interaction between CD226 and PVR. While CD226 blockade alone did not alter tumor growth or mortality in various mouse tumor models, including CT26, RENCA or lung metastasis models69,70,71, co-treatment of anti-CD226 mAb with anti-TIGIT and anti-PD-L1 mAbs or anti-PD-1 and anti-GITR mAbs inhibited antitumor responses mediated by the combined treatment with those mAbs.

CD226缺陷影响抗PD-1或抗TIGIT抗体在携带B16K1或CT26的小鼠中的抗肿瘤功效10,68。在小鼠肿瘤模型研究中也观察到这种效应,其中使用抗CD226拮抗剂抗体阻断CD226和PVR之间的相互作用。虽然单独使用CD226阻断剂不会改变各种小鼠肿瘤模型(包括CT26,RENCA或肺转移模型)中的肿瘤生长或死亡率69,70,71,但抗CD226 mAb与抗TIGIT和抗PD-L1 mAb或抗PD-1和抗GITR mAb的联合治疗抑制了由这些mAb联合治疗介导的抗肿瘤反应。

Immune monitoring studies with TILs revealed that CD226 blockade reversed the increased infiltration and cytokine production of CD8 + T cells induced by the combination treatment69,71. The discrepant effects of genetic deletion of CD226 and blockade of CD226 with an antibody on tumor control should be further assessed.

TIL的免疫监测研究表明,CD226阻断逆转了联合治疗诱导的CD8+T细胞浸润和细胞因子产生的增加69,71。应进一步评估CD226基因缺失和抗体阻断CD226对肿瘤控制的不同影响。

Previous studies reported no alterations in T-cell development or homeostasis in CD226-deficient mice under steady-state cond.

先前的研究报道,在稳态条件下,CD226缺陷小鼠的T细胞发育或体内平衡没有改变。

The impact of CD226 downregulation on CD8 + T-cell responses

CD226下调对CD8+T细胞反应的影响

Similar to T-cell adhesion molecules, CD226 is also constitutively expressed on both naïve and memory T cells at varying expression levels9,68. There are three different CD226 expression levels (CD226hi, CD226int, and CD226lo) in the memory subset, and naïve T cells harbor CD226int and CD226lo populations under steady-state conditions.

与T细胞粘附分子类似,CD226也在幼稚和记忆T细胞上以不同的表达水平组成性表达9,68。记忆子集中有三种不同的CD226表达水平(CD226hi,CD226int和CD226lo),并且幼稚T细胞在稳态条件下具有CD226int和CD226lo群体。

CD226loCD8 + T cells within tumors are more abundant than those in normal tissues or peripheral blood in patients with non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), multiple myeloma (MM), colorectal cancer (CRC) and CRC liver metastases9,68,73. Compared with CD226hiCD8 + TILs, CD226loCD8 + TILs show reduced cytokine production and proliferative capacity9,68,73.

在非小细胞肺癌(NSCLC),肾细胞癌(RCC),多发性骨髓瘤(MM),结直肠癌(CRC)和CRC肝转移患者中,肿瘤内CD226loCD8+T细胞比正常组织或外周血中的CD226loCD8+T细胞更丰富9,68,73。与CD226hiCD8+TILs相比,CD226loCD8+TILs显示细胞因子产生和增殖能力降低9,68,73。

Similar functional defects in CD8+TILs with CD226 downregulation have also been observed in various mouse tumor models9,67,68,74. Furthermore, downregulation of CD226 is often accompanied by upregulation of coinhibitory immune checkpoint receptors such as TIGIT, PD-1, Tim-3, and LAG-3 in CD8+TILs from patients with RCC, CRC, NSCLC, squamous cell carcinoma (SCC), and melanoma, which can be considered phenotypic characteristics of exhausted T cells9,55,64.

在各种小鼠肿瘤模型中也观察到CD226下调的CD8+TIL中类似的功能缺陷9,67,68,74。此外,CD226的下调通常伴随着来自RCC,CRC,NSCLC,鳞状细胞癌(SCC)和黑色素瘤患者的CD8+TIL中的共抑制性免疫检查点受体如TIGIT,PD-1,Tim-3和LAG-3的上调,这可以被认为是耗尽的T细胞的表型特征9,55,64。

However, some reports have shown no inverse correlation between CD226 and coinhibitory receptor expression in CD8 + TILs67,68,73. This disparity may be due to the heterogeneity of the population represented by CD226 downregulation or the varied status of T-cell differentiation depending on the tumor burden or variations in tumor types.

然而,一些报道显示CD226与CD8+TILs67,68,73中共抑制受体表达之间没有负相关。这种差异可能是由于CD226下调所代表的群体的异质性或T细胞分化的不同状态,这取决于肿瘤负荷或肿瘤类型的变化。

Indeed, transcriptome analysis by single-cell RNA sequencing (scRNA-seq) in CD226loCD8 + TILs did not reveal a consistent definition of a specific subset, such as exhausted T cells67. Compared with CD226hiCD8 + TILs, which present enriched gene expression profiles of T-cell activati.

事实上,通过CD226loCD8+ TILs中的单细胞RNA测序(scRNA-seq)进行的转录组分析并未揭示特定子集的一致定义,例如耗尽的T细胞67。与CD226hiCD8+TILs相比,CD226hiCD8+TILs具有丰富的T细胞活化基因表达谱。

Treg cell regulationTregs contribute to immune homeostasis by controlling autoimmune reactions and promoting self-tolerance in tissues76. Several studies have suggested that CD226 plays a suppressive role in Treg function in mouse models of inflammation and autoimmune disease77,78. For example, conditional knockout of CD226 specifically in Tregs decreased insulitis and delayed the onset of diabetes in female NOD mice79.

Treg细胞调节因子通过控制自身免疫反应和促进组织中的自我耐受来促进免疫稳态76。一些研究表明,CD226在炎症和自身免疫性疾病小鼠模型中对Treg功能起抑制作用77,78。例如,特异性在Tregs中条件性敲除CD226可减少胰岛炎并延缓女性NOD小鼠糖尿病的发作79。

CD226 deficiency maintains Treg function during acute graft-versus-host disease (GvHD)80. However, a recent study employing Treg-specific CD226 knockout mice revealed that the deletion of CD226 exacerbated the severity of GvHD and inflammatory bowel disease in animal models. The impairment of inhibitory activity in CD226 knockout Tregs has been attributed to the heightened plasticity of Tregs, which causes them to adopt a Th1-like phenotype and consequently lose their ability to suppress inflammation81,82.

CD226缺陷在急性移植物抗宿主病(GvHD)80期间维持Treg功能。然而,最近一项使用Treg特异性CD226基因敲除小鼠的研究表明,CD226的缺失加剧了动物模型中GvHD和炎症性肠病的严重程度。CD226敲除Tregs的抑制活性受损归因于Tregs的可塑性增强,这导致它们采用Th1样表型,从而失去抑制炎症的能力81,82。

The uncertainty surrounding CD226-mediated Treg regulation may arise from variations in the expression of CD226 and TIGIT under different circumstances, as well as their functional interactions. TIGIT is highly expressed on Tregs and contributes to their immune-suppressive function83,84. TIGIT has been shown to restrict the PI3K-AKT pathway, thereby impeding the acquisition of a Th1 cell-like phenotype83.

围绕CD226介导的Treg调节的不确定性可能来自不同情况下CD226和TIGIT表达的变化以及它们的功能相互作用。。TIGIT已被证明可以限制PI3K-AKT途径,从而阻碍Th1细胞样表型的获得83。

In inflammatory environments, CD226 competes with TIGIT for binding to the PVR ligand80. Conversely, within the tumor microenvironment, Tregs exhibit reduced expression of CD22685. Particularly in melanoma, human Tregs display elevated TIGIT expression and decreased CD226 expression. This leads to increased TIGIT signaling, which suppresses the PI3K-AKT pathway and enhances the suppressive functions of Tregs.

在炎症环境中,CD226与TIGIT竞争结合PVR配体80。相反,在肿瘤微环境中,Tregs表现出CD22685的表达降低。特别是在黑色素瘤中,人Tregs显示出升高的TIGIT表达和降低的CD226表达。这导致增加的TIGIT信号传导,其抑制PI3K-AKT途径并增强Tregs的抑制功能。

Human Tregs display a considerable degree .

人类Tregs显示出相当大的程度。

ReferencesHegde, P. S. & Chen, D. S. Top 10 challenges in cancer immunotherapy. Immunity 52, 17–35 (2020).Article

参考Shegde,P.S。和Chen,D.S。癌症免疫治疗中的十大挑战。豁免52,17-35(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mueller, D. L., Jenkins, M. K. & Schwartz, R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7, 445–480 (1989).Article

Mueller,D.L.,Jenkins,M.K。&Schwartz,R.H。克隆扩增与功能性克隆失活:共刺激信号通路决定T细胞抗原受体占据的结果。年。修订版Immunol。7445-480(1989)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Jhajj, H. S., Lwo, T. S., Yao, E. L. & Tessier, P. M. Unlocking the potential of agonist antibodies for treating cancer using antibody engineering. Trends Mol. Med 29, 48–60 (2023).Article

Jhajj,H.S.,Lwo,T.S.,Yao,E.L。和Tessier,P.M。利用抗体工程释放激动剂抗体治疗癌症的潜力。趋势分子医学29,48-60(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mayes, P. A., Hance, K. W. & Hoos, A. The promise and challenges of immune agonist antibody development in cancer. Nat. Rev. Drug Discov. 17, 509–527 (2018).Article

Mayes,P.A.,Hance,K.W。&Hoos,A。癌症中免疫激动剂抗体发展的前景和挑战。《药物目录》修订版。17509-527(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Choi, Y. et al. T-cell agonists in cancer immunotherapy. J. Immunother. Cancer 8, e000966 (2020).Bantia, S. & Choradia, N. Treatment duration with immune-based therapies in Cancer: an enigma. J. Immunother. Cancer 6, 143 (2018).Article

Choi,Y。等人。癌症免疫治疗中的T细胞激动剂。J、 免疫疗法。癌症8,e000966(2020)。Bantia,S。和Choradia,N。癌症免疫疗法的治疗持续时间:一个谜。J、 免疫疗法。癌症6143(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Binder, C. et al. CD2 immunobiology. Front Immunol. 11, 1090 (2020).Article

Binder,C.等人,《CD2免疫生物学》。前免疫。111090(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yeo, J., Ko, M., Lee, D. H., Park, Y. & Jin, H. S. TIGIT/CD226 axis regulates anti-tumor immunity. Pharmaceuticals (Basel) 14, 200 (2021).Jin, H. S. et al. CD226(hi)CD8(+) T cells are a prerequisite for anti-TIGIT immunotherapy. Cancer Immunol. Res. 8, 912–925 (2020).Article

Yeo,J.,Ko,M.,Lee,D.H.,Park,Y。&Jin,H.S。TIGIT/CD226轴调节抗肿瘤免疫力。制药(巴塞尔)14200(2021)。Jin,H.S.等人CD226(hi)CD8(+)T细胞是抗TIGIT免疫疗法的先决条件。癌症免疫。第8912-925号决议(2020年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Banta, K. L. et al. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8(+) T cell responses. Immunity 55, 512–526.e519 (2022).Article

Banta,K.L。等人。TIGIT和PD-1抑制途径的机制收敛需要共同阻断以优化抗肿瘤CD8(+)T细胞应答。免疫力55512–526.e519(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Romain, G. et al. Multidimensional single-cell analysis identifies a role for CD2-CD58 interactions in clinical antitumor T cell responses. J. Clin. Invest 132, e159402 (2022).Article

多维单细胞分析确定了CD2-CD58相互作用在临床抗肿瘤T细胞反应中的作用。J、 临床。投资132,e159402(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, X. Y. et al. CD58 genetic alterations and its contribution to upregulation of PD-L1 and IDO Via LYN/CD22/SHP1 axis in DLBCL. Blood 142, 524 (2023).Article

Xu,X.Y.等人。CD58基因改变及其通过DLBCL中的LYN/CD22/SHP1轴对PD-L1和IDO上调的贡献。。文章

Google Scholar

谷歌学者

Ho, P. et al. The CD58-CD2 axis is co-regulated with PD-L1 via CMTM6 and shapes anti-tumor immunity. Cancer Cell 41, 1207–1221.e1212 (2023).Article

Ho,P。等人。CD58-CD2轴通过CMTM6与PD-L1共同调节,并形成抗肿瘤免疫力。癌细胞411207-1221.e1212(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Majzner, R. G. et al. CD58 aberrations limit durable responses to CD19 CAR in large B cell lymphoma patients treated with axicabtagene ciloleucel but can be overcome through novel CAR engineering. Blood 136, 53–54 (2020).Article

Majzner,R.G.等人,《CD58畸变限制了用阿西卡巴基因-睫状体ucel治疗的大B细胞淋巴瘤患者对CD19 CAR的持久反应,但可以通过新型CAR工程来克服。《血液136,53-54》(2020)。文章

Google Scholar

谷歌学者

Miao, B. et al. CMTM6 shapes antitumor T cell response through modulating protein expression of CD58 and PD-L1. Cancer Cell 41, 1817–1828.e1819 (2023).Article

Miao,B。等人。CMTM6通过调节CD58和PD-L1的蛋白表达来形成抗肿瘤T细胞应答。癌细胞411817-1828.e1819(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet 53, 332–341 (2021).Article

Frangieh,C.J.等人。患者模型中的多模式合并扰动引用序列筛选定义了癌症免疫逃避的机制。《国家遗传学》53332-341(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Conner, M., Hance, K. W., Yadavilli, S., Smothers, J. & Waight, J. D. Emergence of the CD226 axis in cancer immunotherapy. Front Immunol. 13, 914406 (2022).Article

Conner,M.,Hance,K.W.,Yadavilli,S.,Smothers,J。&Waight,J.D。癌症免疫治疗中CD226轴的出现。前免疫。13914406(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, G., Hu, Y., Jin, S. & Jiang, Q. Genetic variant rs763361 regulates multiple sclerosis CD226 gene expression. Proc. Natl. Acad. Sci. USA 114, E906–E907 (2017).PubMed

Liu,G.,Hu,Y.,Jin,S。&Jiang,Q。遗传变异rs763361调节多发性硬化症CD226基因表达。程序。纳特尔。阿卡德。科学。美国114,E906–E907(2017)。PubMed出版社

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Maiti, A. K. et al. Non-synonymous variant (Gly307Ser) in CD226 is associated with susceptibility to multiple autoimmune diseases. Rheumatology (Oxford) 49, 1239–1244 (2010).Article

CD226中的非同义变体(Gly307Ser)与多种自身免疫性疾病的易感性有关。风湿病学(牛津)491239-1244(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hafler, J. P. et al. CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun. 10, 5–10 (2009).Article

Hafler,J.P.等人,CD226 Gly307Ser与多种自身免疫性疾病的关联。基因免疫。10,5-10(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Todd, J. A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet 39, 857–864 (2007).Article

Todd,J.A.等人。来自1型糖尿病全基因组分析的四个新染色体区域的强大关联。《自然遗传学》39857-864(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qiu, Z. X., Zhang, K., Qiu, X. S., Zhou, M. & Li, W. M. CD226 Gly307Ser association with multiple autoimmune diseases: a meta-analysis. Hum. Immunol. 74, 249–255 (2013).Article

Qiu,Z.X.,Zhang,K.,Qiu,X.S.,Zhou,M。&Li,W.M。CD226 Gly307Ser与多种自身免疫性疾病的关联:荟萃分析。嗯,免疫。74249-255(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Smyth, D. J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med 359, 2767–2777 (2008).Article

Smyth,D.J.等人在1型糖尿病和乳糜泻中共享和独特的遗传变异。N、 英语。J、 Med 3592767–2777(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dieude, P. et al. Association of the CD226 Ser(307) variant with systemic sclerosis: evidence of a contribution of costimulation pathways in systemic sclerosis pathogenesis. Arthritis Rheum. 63, 1097–1105 (2011).Article

CD226 Ser(307)变体与系统性硬化症的关联:共刺激途径在系统性硬化症发病机制中的贡献的证据。大黄性关节炎。631097-1105(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lofgren, S. E. et al. A 3’-untranslated region variant is associated with impaired expression of CD226 in T and natural killer T cells and is associated with susceptibility to systemic lupus erythematosus. Arthritis Rheum. 62, 3404–3414 (2010).Article

Lofgren,S.E.等人,3’-非翻译区变异与T细胞和自然杀伤T细胞中CD226的表达受损有关,并且与系统性红斑狼疮的易感性有关。大黄性关节炎。623404-3414(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med 198, 557–567 (2003).Article

Bottino,C.等人鉴定PVR(CD155)和Nectin-2(CD112)作为人DNAM-1(CD226)激活分子的细胞表面配体。J、 实验医学198557-567(2003)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pende, D. et al. PVR (CD155) and Nectin-2 (CD112) as ligands of the human DNAM-1 (CD226) activating receptor: involvement in tumor cell lysis. Mol. Immunol. 42, 463–469 (2005).Article

Pende,D。等人。PVR(CD155)和Nectin-2(CD112)作为人DNAM-1(CD226)激活受体的配体:参与肿瘤细胞裂解。分子免疫。42463-469(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, H. et al. Binding mode of the side-by-side two-IgV molecule CD226/DNAM-1 to its ligand CD155/Necl-5. Proc. Natl. Acad. Sci. USA 116, 988–996 (2019).Article

Wang,H。等人。并列的两个IgV分子CD226/DNAM-1与其配体CD155/Necl-5的结合模式。程序。纳特尔。阿卡德。科学。美国116988-996(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Deuss, F. A. et al. Structural basis for the recognition of nectin-like protein-5 by the human-activating immune receptor, DNAM-1. J. Biol. Chem. 294, 12534–12546 (2019).Article

Deuss,F.A.等人。人类激活性免疫受体DNAM-1识别nectin样蛋白-5的结构基础。J、 生物。化学。29412534-12546(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tahara-Hanaoka, S. et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int. Immunol. 16, 533–538 (2004).Article

Tahara Hanaoka,S.等人。DNAM-1(CD226)与其配体PVR(CD155)和nectin-2(PRR-2/CD112)相互作用的功能表征。内部免疫。16533-538(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ikeda, W. et al. Tage4/Nectin-like molecule-5 heterophilically trans-interacts with cell adhesion molecule Nectin-3 and enhances cell migration. J. Biol. Chem. 278, 28167–28172 (2003).Article

池田,W。等人。Tage4/Nectin样分子-5与细胞粘附分子Nectin-3异源反式相互作用并增强细胞迁移。J、 生物。化学。27828167-28172(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Samanta, D. et al. Structure of Nectin-2 reveals determinants of homophilic and heterophilic interactions that control cell-cell adhesion. Proc. Natl. Acad. Sci. USA 109, 14836–14840 (2012).Article

Samanta,D。等人。Nectin-2的结构揭示了控制细胞间粘附的同源和异源相互作用的决定因素。程序。纳特尔。阿卡德。科学。美国10914836–14840(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zeng, T. et al. The CD112R/CD112 axis: a breakthrough in cancer immunotherapy. J. Exp. Clin. Cancer Res. 40, 285 (2021).Article

Zeng,T。等。CD112R/CD112轴:癌症免疫治疗的突破。J、 实验临床。癌症研究40285(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pende, D. et al. Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood 107, 2030–2036 (2006).Article

树突状细胞上DNAM-1配体Nectin-2(CD112)和脊髓灰质炎病毒受体(CD155)的表达:与自然杀伤树突状细胞相互作用的相关性。血液1072030-2036(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kamran, N. et al. Toll-like receptor ligands induce expression of the costimulatory molecule CD155 on antigen-presenting cells. PLoS One 8, e54406 (2013).Article

Toll样受体配体诱导抗原呈递细胞上共刺激分子CD155的表达。PLoS One 8,e54406(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhan, M. et al. CD155 in tumor progression and targeted therapy. Cancer Lett. 545, 215830 (2022).Article

詹,M。等。CD155在肿瘤进展和靶向治疗中的作用。癌症Lett。545215830(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lepletier, A. et al. Tumor CD155 expression is associated with resistance to anti-PD1 immunotherapy in metastatic melanoma. Clin. Cancer Res. 26, 3671–3681 (2020).Article

Lepletier,A。等人。肿瘤CD155表达与转移性黑色素瘤中抗PD1免疫疗法的耐药性有关。。癌症研究263671-3681(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lee, B. R. et al. Combination of PD-L1 and PVR determines sensitivity to PD-1 blockade. JCI Insight 5, e128633 (2020).Article

Lee,B.R。等人。PD-L1和PVR的组合决定了对PD-1阻断的敏感性。JCI Insight 5,e128633(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shibuya, A., Lanier, L. L. & Phillips, J. H. Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J. Immunol. 161, 1671–1676 (1998).Article

Shibuya,A.,Lanier,L.L。&Phillips,J.H。蛋白激酶C参与DNAX辅助分子-1受体介导的信号传导和粘附的调节。J、 。1611671-1676(1998)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Shibuya, K. et al. Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 11, 615–623 (1999).Article

Shibuya,K。等人。LFA-1与DNAM-1粘附分子的物理和功能关联。豁免11615-623(1999)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kim, H. S. & Long, E. O. Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells. Sci. Signal 5, ra49 (2012).Article

Kim,H.S.&Long,E.O。衔接蛋白SLP-76中的互补磷酸化位点促进自然杀伤细胞的协同激活。科学。信号5,ra49(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Du, X. et al. CD226 regulates natural killer cell antitumor responses via phosphorylation-mediated inactivation of transcription factor FOXO1. Proc. Natl. Acad. Sci. USA 115, E11731–E11740 (2018).Article

Du,X。等人CD226通过磷酸化介导的转录因子FOXO1失活来调节自然杀伤细胞的抗肿瘤反应。程序。纳特尔。阿卡德。科学。美国115,E11731–E11740(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Z. et al. DNAM-1 controls NK cell activation via an ITT-like motif. J. Exp. Med 212, 2165–2182 (2015).Article

Zhang,Z。等人。DNAM-1通过ITT样基序控制NK细胞活化。J、 实验医学2122165-2182(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Murata, R. et al. G307S DNAM-1 Mutation Exacerbates Autoimmune Encephalomyelitis via Enhancing CD4(+) T Cell Activation. J. Immunol. 209, 2304–2312 (2022).Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023–1033 (2014).Article

Murata,R。等人,G307S DNAM-1突变通过增强CD4(+)T细胞活化而加剧自身免疫性脑脊髓炎。J、 。2092304-2312(2022)。Dustin,M.L。免疫突触。癌症免疫。第21023-1033号决议(2014年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kaizuka, Y., Douglass, A. D., Vardhana, S., Dustin, M. L. & Vale, R. D. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J. Cell Biol. 185, 521–534 (2009).Article

Kaizuka,Y.,Douglass,A.D.,Vardhana,S.,Dustin,M.L。&Vale,R.D。共受体CD2使用质膜微区来转导T细胞中的信号。J、 细胞生物学。185521-534(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Demetriou, P. et al. A dynamic CD2-rich compartment at the outer edge of the immunological synapse boosts and integrates signals. Nat. Immunol. 21, 1232–1243 (2020).Article

Demetriou,P。等人。免疫突触外边缘的动态富含CD2的隔室增强并整合信号。自然免疫。211232-1243(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ralston, K. J. et al. The LFA-1-associated molecule PTA-1 (CD226) on T cells forms a dynamic molecular complex with protein 4.1G and human discs large. J. Biol. Chem. 279, 33816–33828 (2004).Article

Ralston,K.J.等人。T细胞上的LFA-1相关分子PTA-1(CD226)与蛋白质4.1G和人类椎间盘形成动态分子复合物。J.Biol。化学。27933816–33828(2004)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Castriconi, R. et al. Functional characterization of natural killer cells in type I leukocyte adhesion deficiency. Blood 109, 4873–4881 (2007).Article

。血液1094873-4881(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kojima, H. et al. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J. Biol. Chem. 278, 36748–36753 (2003).Article

Kojima,H。等人,CD226介导血小板和巨核细胞与血管内皮细胞的粘附。J、 生物。化学。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Shibuya, K. et al. CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation. J. Exp. Med 198, 1829–1839 (2003).Article

Shibuya,K。等人。CD226(DNAM-1)参与淋巴细胞功能相关抗原1共刺激信号,用于幼稚T细胞分化和增殖。J、 实验医学1981829-1839(2003)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shirakawa, J., Shibuya, K. & Shibuya, A. Requirement of the serine at residue 329 for lipid raft recruitment of DNAM-1 (CD226). Int. Immunol. 17, 217–223 (2005).Article

Shirakawa,J.,Shibuya,K。&Shibuya,A。残基329处丝氨酸对DNAM-1(CD226)脂筏募集的要求。内部免疫。17217-223(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Shirakawa, J. et al. LFA-1-dependent lipid raft recruitment of DNAM-1 (CD226) in CD4+ T cell. Int. Immunol. 18, 951–957 (2006).Article

Shirakawa,J。等人。CD4+T细胞中DNAM-1(CD226)的LFA-1依赖性脂筏募集。内部免疫。18951-957(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hou, S. et al. CD226 protein is involved in immune synapse formation and triggers Natural Killer (NK) cell activation via its first extracellular domain. J. Biol. Chem. 289, 6969–6977 (2014).Article

Hou,S。等人。CD226蛋白参与免疫突触的形成,并通过其第一个细胞外结构域触发自然杀伤(NK)细胞活化。J、 生物。化学。2896969–6977(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Worboys, J. D. et al. TIGIT can inhibit T cell activation via ligation-induced nanoclusters, independent of CD226 co-stimulation. Nat. Commun. 14, 5016 (2023).Article

Worboys,J.D.等人,TIGIT可以通过连接诱导的纳米簇抑制T细胞活化,而不依赖于CD226共刺激。国家公社。145016(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramsbottom, K. M. et al. Cutting edge: DNAX accessory molecule 1-deficient CD8+ T cells display immunological synapse defects that impair antitumor immunity. J. Immunol. 192, 553–557 (2014).Article

Ramsbottom,K.M.等人。前沿:DNAX辅助分子1缺陷型CD8+T细胞显示免疫突触缺陷,损害抗肿瘤免疫力。J、 。192553-557(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gilfillan, S. et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J. Exp. Med 205, 2965–2973 (2008).Article

Gilfillan,S。等人,DNAM-1促进非专业抗原呈递细胞和肿瘤激活细胞毒性淋巴细胞。J、 实验医学2052965-2973(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2009).Article

Yu,X。等人。表面蛋白TIGIT通过促进成熟免疫调节树突状细胞的产生来抑制T细胞活化。自然免疫。10,48-57(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Levin, S. D. et al. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur. J. Immunol. 41, 902–915 (2011).Article

Levin,S.D.等人Vstm3是CD28家族的成员,是T细胞功能的重要调节剂。欧洲免疫学杂志。41902-915(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stengel, K. F. et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc. Natl. Acad. Sci. USA 109, 5399–5404 (2012).Article

与脊髓灰质炎病毒受体结合的TIGIT免疫受体的结构揭示了需要顺反受体聚集的细胞-细胞粘附和信号传导机制。纳特尔。阿卡德。科学。美国1095399–5404(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boles, K. S. et al. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur. J. Immunol. 39, 695–703 (2009).Article

Boles,K.S.等人。滤泡CD4 T细胞与滤泡DC粘附的新型分子相互作用。欧洲免疫学杂志。39695-703(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stanietsky, N. et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc. Natl. Acad. Sci. USA 106, 17858–17863 (2009).Article

Stanietsky,N。等人。TIGIT与PVR和PVRL2的相互作用抑制人NK细胞的细胞毒性。程序。纳特尔。阿卡德。科学。美国10617858–17863(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zinselmeyer, B. H. et al. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J. Exp. Med 210, 757–774 (2013).Article

Zinselmeyer,B.H。等人,PD-1通过诱导抗病毒T细胞运动性麻痹来促进免疫衰竭。J、 实验医学210757-774(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chauvin, J. M. et al. TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J. Clin. Invest 125, 2046–2058 (2015).Article

Chauvin,J.M.等人,TIGIT和PD-1损害黑色素瘤患者的肿瘤抗原特异性CD8(+)T细胞。J、 临床。Invest 1252046–2058(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quatrini, L. et al. The immune checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour immunotherapy. Cancers (Basel) 12, 3285 (2020).Article

Quatrini,L。等人。自然杀伤细胞中的免疫检查点PD-1:肿瘤免疫治疗中的表达,功能和靶向。癌症(巴塞尔)123285(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Iguchi-Manaka, A. et al. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J. Exp. Med. 205, 2959–2964 (2008).Article

Iguchi-Manaka,A。等人加速了DNAM-1受体缺陷小鼠的肿瘤生长。J、 实验医学2052959-2964(2008)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Braun, M. et al. CD155 on tumor cells drives resistance to immunotherapy by inducing the degradation of the activating receptor CD226 in CD8(+) T cells. Immunity 53, 805–823.e815 (2020).Article

Braun,M.等人,肿瘤细胞上的CD155通过诱导CD8(+)T细胞中活化受体CD226的降解来驱动对免疫疗法的抗性。免疫力53805–823.e815(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Weulersse, M. et al. Eomes-dependent loss of the co-activating receptor CD226 restrains CD8(+) T cell anti-tumor functions and limits the efficacy of cancer immunotherapy. Immunity 53, 824–839.e810 (2020).Article

Weulersse,M。等人。共激活受体CD226的Eomes依赖性丧失抑制了CD8(+)T细胞的抗肿瘤功能,并限制了癌症免疫疗法的功效。免疫力53824-839.e810(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26, 923–937 (2014).Article

Johnston,R.J。等人。免疫受体TIGIT调节抗肿瘤和抗病毒CD8(+)T细胞效应功能。癌细胞26923-937(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lakshmikanth, T. et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Invest 119, 1251–1263 (2009).Article

Lakshmikanth,T。等人。NCR和DNAM-1在体外和体内介导NK细胞识别和人和小鼠黑素瘤细胞系的裂解。J、 临床。投资1191251–1263(2009)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, B. et al. Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8(+) T cell dysfunction and maintain memory phenotype. Sci. Immunol 3, eaat7061 (2018).Article

针对PD-1和GITR的联合癌症免疫疗法可以挽救CD8(+)T细胞功能障碍并维持记忆表型。科学。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ma, J. et al. CD226 knockout reduces the development of CD8+ T by impairing the TCR sensitivity of double-positive thymocytes. Immunology 169, 83–95 (2023).Article

Ma,J。等人,CD226敲除通过损害双阳性胸腺细胞的TCR敏感性来减少CD8+T的发展。免疫学169,83-95(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Viot, J. et al. CD8(+) CD226(high) T cells in liver metastases dictate the prognosis of colorectal cancer patients treated with chemotherapy and radical surgery. Cell Mol. Immunol. 20, 365–378 (2023).Article

Viot,J。等人。肝转移瘤中的CD8(+)CD226(高)T细胞决定了接受化疗和根治性手术治疗的结直肠癌患者的预后。细胞分子免疫。20365-378(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Minnie, S. A. et al. Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood 132, 1675–1688 (2018).Article

Minnie,S.A.等人。干细胞移植后骨髓瘤逃逸是T细胞衰竭的结果,并且可以通过TIGIT阻断来预防。血液1321675-1688(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).Article

McLane,L.M.,Abdel Hakeem,M.S。&Wherry,E.J。慢性病毒感染和癌症期间CD8 T细胞耗竭。年。修订版Immunol。37457-495(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dikiy, S. & Rudensky, A. Y. Principles of regulatory T cell function. Immunity 56, 240–255 (2023).Article

Dikiy,S。&Rudensky,A.Y。调节性T细胞功能的原理。免疫力56240–255(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, N. et al. CD226 attenuates Treg suppressive capacity via CTLA-4 and TIGIT during EAE. Immunol. Res. 67, 486–496 (2019).Article

Wang,N。等人。CD226在EAE期间通过CTLA-4和TIGIT减弱Treg抑制能力。免疫。第67486-496号决议(2019年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Koyama, M. et al. Promoting regulation via the inhibition of DNAM-1 after transplantation. Blood 121, 3511–3520 (2013).Article

Koyama,M.等人。通过抑制移植后的DNAM-1来促进调节。血液1213511-3520(2013)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Thirawatananond, P. et al. Treg-specific CD226 deletion reduces diabetes incidence in NOD mice by improving regulatory T-cell stability. Diabetes 72, 1629–1640 (2023).Article

Thirawatananond,P。等人。Treg特异性CD226缺失通过改善调节性T细胞稳定性来降低NOD小鼠的糖尿病发病率。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sato, K. et al. DNAM-1 regulates Foxp3 expression in regulatory T cells by interfering with TIGIT under inflammatory conditions. Proc. Natl. Acad. Sci. USA 118, e2021309118 (2021).Ma, J. et al. CD226 maintains regulatory T cell phenotype stability and metabolism by the mTOR/Myc pathway under inflammatory conditions.

佐藤,K。等人。DNAM-1通过在炎症条件下干扰TIGIT来调节调节性T细胞中Foxp3的表达。程序。纳特尔。阿卡德。科学。美国118,e2021309118(2021)。Ma,J。等人,CD226在炎症条件下通过mTOR/Myc途径维持调节性T细胞表型的稳定性和代谢。

Cell Rep. 42, 113306 (2023).Article .

细胞代表42113306(2023)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Qiao, W. et al. Costimulatory molecule CD226 regulates atopic dermatitis in a mouse model. J. Invest. Dermatol. 144, 1743–1753.e4 (2024).Joller, N. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581 (2014).Article .

共刺激分子CD226在小鼠模型中调节特应性皮炎。J、 投资。皮肤病。1441743-1753.e4(2024)。Joller,N。等人。表达共抑制分子TIGIT的Treg细胞选择性抑制促炎性Th1和Th17细胞反应。免疫力40569-581(2014)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, Y. et al. Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood 122, 2823–2836 (2013).Article

Zhang,Y。等人。全基因组DNA甲基化分析鉴定了人类调节性T细胞中由FOXP3调节的低甲基化基因。血液1222823-2836(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fourcade, J. et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 3, e121157 (2018).Article

Fourcade,J。等人CD226反对TIGIT破坏黑色素瘤中的Tregs。JCI Insight 3,e121157(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brown, M. E. et al. Human CD4(+)CD25(+)CD226(-) Tregs demonstrate increased purity, lineage stability, and suppressive capacity versus CD4(+)CD25(+)CD127(lo/-) Tregs for adoptive cell therapy. Front Immunol. 13, 873560 (2022).Article

Brown,M.E。等人。人类CD4(+)CD25(+)CD226(-)Tregs与过继性细胞治疗的CD4(+)CD25(+)CD127(lo/-)Tregs相比,表现出更高的纯度,谱系稳定性和抑制能力。前免疫。13873560(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fuhrman, C. A. et al. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J. Immunol. 195, 145–155 (2015).Article

Fuhrman,C.A.等人。表达受体TIGIT和CD226的人类调节性T细胞的不同表型。J、 。195145-155(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Huang, H. et al. CD226 identifies functional CD8(+)T cells in the tumor microenvironment and predicts a better outcome for human gastric cancer. Front Immunol. 14, 1150803 (2023).Article

Huang,H。等人CD226鉴定肿瘤微环境中的功能性CD8(+)T细胞,并预测人类胃癌的更好结果。前免疫。141150803(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jin, Z. et al. Higher TIGIT(+)CD226(-) gammadelta T cells in patients with acute myeloid leukemia. Immunol. Invest 51, 40–50 (2022).Article

Jin,Z。等人。急性髓系白血病患者中较高的TIGIT(+)CD226(-)gammadelta T细胞。免疫。投资51,40-50(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

McArdel, S. L., Terhorst, C. & Sharpe, A. H. Roles of CD48 in regulating immunity and tolerance. Clin. Immunol. 164, 10–20 (2016).Article

McArdel,S.L.,Terhorst,C。&Sharpe,A.H。CD48在调节免疫和耐受中的作用。。免疫。164,10-20(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Krensky, A. M. et al. The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions. J. Immunol. 131, 611–616 (1983).Article

Krensky,A.M.等人。LFA-1,LFA-2和LFA-3的功能意义,分布和结构:与CTL-靶标相互作用相关的细胞表面抗原。J、 。131611-616(1983)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Matsui, T. et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J. Immunol. 182, 6815–6823 (2009).Article

Matsui,T。等人CD2区分了具有不同表型和功能的人浆细胞样树突状细胞的两个亚群。J、 。1826815-6823(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kingma, D. W. et al. CD2 is expressed by a subpopulation of normal B cells and is frequently present in mature B-cell neoplasms. Cytometry 50, 243–248 (2002).Article

Kingma,D.W。等人,CD2由正常B细胞亚群表达,并且经常存在于成熟的B细胞肿瘤中。细胞计数50243-248(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yagita, H. et al. Expression and function of CD2 during murine thymocyte ontogeny. Eur. J. Immunol. 19, 2211–2217 (1989).Article

Yagita,H。等人。小鼠胸腺细胞个体发育过程中CD2的表达和功能。欧洲免疫学杂志。192211-2217(1989)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Li, J., Smolyar, A., Sunder-Plassmann, R. & Reinherz, E. L. Ligand-induced conformational change within the CD2 ectodomain accompanies receptor clustering: implication for molecular lattice formation. J. Mol. Biol. 263, 209–226 (1996).Article

Li,J.,Smolyar,A.,Sunder-Plassmann,R。&Reinherz,E.L。配体诱导的CD2胞外域内的构象变化伴随着受体聚集:对分子晶格形成的影响。J、 分子生物学。263209-226(1996)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Meuer, S. C. et al. An alternative pathway of T-cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein. Cell 36, 897–906 (1984).Article

Meuer,S.C.等人,《T细胞活化的另一种途径:50 kd T11绵羊红细胞受体蛋白的功能作用》。细胞36897-906(1984)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, J. H. et al. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell 97, 791–803 (1999).Article

Wang,J.H.等人。人CD2和CD58(LFA-3)反受体之间的异源粘附复合物的结构。细胞97791-803(1999)。文章

PubMed

PubMed

Google Scholar

谷歌学者

van der Merwe, P. A. et al. Human cell-adhesion molecule CD2 binds CD58 (LFA-3) with a very low affinity and an extremely fast dissociation rate but does not bind CD48 or CD59. Biochemistry 33, 10149–10160 (1994).Article

van der Merwe,P.A。等人。人类细胞粘附分子CD2以非常低的亲和力和极快的解离速率结合CD58(LFA-3),但不结合CD48或CD59。生物化学3310149-10160(1994)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Arulanandam, A. R. et al. A soluble multimeric recombinant CD2 protein identifies CD48 as a low affinity ligand for human CD2: divergence of CD2 ligands during the evolution of humans and mice. J. Exp. Med 177, 1439–1450 (1993).Article

Arulanandam,A.R。等人。一种可溶性多聚体重组CD2蛋白将CD48鉴定为人CD2的低亲和力配体:人和小鼠进化过程中CD2配体的分化。J、 实验医学1771439-1450(1993)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y., Liu, Q., Yang, S. & Liao, Q. CD58 immunobiology at a glance. Front. Immunol. 12, 705260 (2021).Article

Zhang,Y.,Liu,Q.,Yang,S。&Liao,Q。CD58免疫生物学概览。正面。免疫。12705260(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

van der Merwe, P. A. A subtle role for CD2 in T cell antigen recognition. J. Exp. Med 190, 1371–1374 (1999).Article

van der Merwe,P.A。CD2在T细胞抗原识别中的微妙作用。J、 实验医学1901371-1374(1999)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, D. M., Dustin, M. L., Cairo, C. W., Thatte, H. S. & Golan, D. E. Mechanisms of cellular avidity regulation in CD2-CD58-mediated T cell adhesion. ACS Chem. Biol. 1, 649–658 (2006).Article

Zhu,D.M.,Dustin,M.L.,Cairo,C.W.,Thatte,H.S。&Golan,D.E。CD2-CD58介导的T细胞粘附中细胞亲合力调节的机制。ACS化学。生物学1649-658(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Singleton, K. et al. A large T cell invagination with CD2 enrichment resets receptor engagement in the immunological synapse. J. Immunol. 177, 4402–4413 (2006).Article

Singleton,K。等人。CD2富集的大T细胞内陷重置了免疫突触中的受体参与。J、 。1774402-4413(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dustin, M. L. Adhesive bond dynamics in contacts between T lymphocytes and glass-supported planar bilayers reconstituted with the immunoglobulin-related adhesion molecule CD58. J. Biol. Chem. 272, 15782–15788 (1997).Article

Dustin,M.L。T淋巴细胞与用免疫球蛋白相关粘附分子CD58重建的玻璃支撑平面双层之间接触的粘附键动力学。J、 生物。化学。27215782-15788(1997)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Jones, E. Y., Davis, S. J., Williams, A. F., Harlos, K. & Stuart, D. I. Crystal structure at 2.8 A resolution of a soluble form of the cell adhesion molecule CD2. Nature 360, 232–239 (1992).Article

Jones,E.Y.,Davis,S.J.,Williams,A.F.,Harlos,K。&Stuart,D.I。晶体结构为可溶性形式的细胞粘附分子CD2的2.8A分辨率。《自然》360232-239(1992)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zaru, R., Cameron, T. O., Stern, L. J., Muller, S. & Valitutti, S. Cutting edge: TCR engagement and triggering in the absence of large-scale molecular segregation at the T cell-APC contact site. J. Immunol. 168, 4287–4291 (2002).Article

Zaru,R.,Cameron,T.O.,Stern,L.J.,Muller,S。&Valitutti,S。前沿:TCR参与并在T细胞APC接触位点没有大规模分子分离的情况下触发。J、 。1684287-4291(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chang, V. T. et al. Initiation of T cell signaling by CD45 segregation at ‘close contacts. Nat. Immunol. 17, 574–582 (2016).Article

Chang,V.T.等人。通过“密切接触”的CD45分离启动T细胞信号传导。自然免疫。17574-582(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hahn, W. C. & Bierer, B. E. Separable portions of the CD2 cytoplasmic domain involved in signaling and ligand avidity regulation. J. Exp. Med 178, 1831–1836 (1993).Article

Hahn,W.C。&Bierer,B.E。CD2细胞质结构域的可分离部分参与信号传导和配体亲和力调节。J、 实验医学1781831-1836(1993)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Li, B. et al. Cis interactions between CD2 and its ligands on T cells are required for T cell activation. Sci. Immunol. 7, eabn6373 (2022).Article

T细胞活化需要CD2及其配体在T细胞上的顺式相互作用。科学。免疫。7,eabn6373(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yan, X. et al. CD58 loss in tumor cells confers functional impairment of CAR T cells. Blood Adv. 6, 5844–5856 (2022).Article

Yan,X。等人。肿瘤细胞中CD58的丢失会导致CAR T细胞功能受损。血液杂志65844-5856(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tibaldi, E. V., Salgia, R. & Reinherz, E. L. CD2 molecules redistribute to the uropod during T cell scanning: implications for cellular activation and immune surveillance. Proc. Natl. Acad. Sci. USA 99, 7582–7587 (2002).Article

Tibaldi,E.V.,Salgia,R。&Reinherz,E.L。CD2分子在T细胞扫描过程中重新分布到uropod:对细胞活化和免疫监视的影响。程序。纳特尔。阿卡德。科学。美国997582-7587(2002)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jenkins, E. et al. Antigen discrimination by T cells relies on size-constrained microvillar contact. Nat. Commun. 14, 1611 (2023).Article

Jenkins,E。等人。T细胞的抗原识别依赖于大小受限的微绒毛接触。国家公社。141611(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nishizawa, K., Freund, C., Li, J., Wagner, G. & Reinherz, E. L. Identification of a proline-binding motif regulating CD2-triggered T lymphocyte activation. Proc. Natl. Acad. Sci. USA 95, 14897–14902 (1998).Article

Nishizawa,K.,Freund,C.,Li,J.,Wagner,G。&Reinherz,E.L。鉴定调节CD2触发的T淋巴细胞活化的脯氨酸结合基序。程序。纳特尔。阿卡德。科学。美国9514897–14902(1998)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kivens, W. J. et al. Identification of a proline-rich sequence in the CD2 cytoplasmic domain critical for regulation of integrin-mediated adhesion and activation of phosphoinositide 3-kinase. Mol. Cell Biol. 18, 5291–5307 (1998).Article

Kivens,W.J.等人。在CD2细胞质结构域中鉴定富含脯氨酸的序列,这对于调节整合素介导的粘附和磷酸肌醇3-激酶的激活至关重要。分子细胞生物学。185291-5307(1998)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bell, G. M., Fargnoli, J., Bolen, J. B., Kish, L. & Imboden, J. B. The SH3 domain of p56lck binds to proline-rich sequences in the cytoplasmic domain of CD2. J. Exp. Med. 183, 169–178 (1996).Article

Bell,G.M.,Fargnoli,J.,Bolen,J.B.,Kish,L。&Imboden,J.B。p56lck的SH3结构域与CD2细胞质结构域中富含脯氨酸的序列结合。J、 实验医学183169-178(1996)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Freund, C. et al. Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules. EMBO J. 21, 5985–5995 (2002).Article

Freund,C。等人。CD2与区室效应分子的GYF和SH3结构域的动态相互作用。EMBO J.215985–5995(2002)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, J. et al. A cdc15-like adaptor protein (CD2BP1) interacts with the CD2 cytoplasmic domain and regulates CD2-triggered adhesion. EMBO J. 17, 7320–7336 (1998).Article

。EMBO J.17,7320–7336(1998)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moncalian, G. et al. Atypical polyproline recognition by the CMS N-terminal Src homology 3 domain. J. Biol. Chem. 281, 38845–38853 (2006).Article

Moncalian,G。等人。CMS N端Src同源性3结构域对非典型多脯氨酸的识别。J、 生物。化学。28138845–38853(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tibaldi, E. V. & Reinherz, E. L. CD2BP3, CIN85 and the structurally related adaptor protein CMS bind to the same CD2 cytoplasmic segment, but elicit divergent functional activities. Int. Immunol. 15, 313–329 (2003).Article

Tibaldi,E.V。&Reinherz,E.L。CD2BP3,CIN85和结构相关的衔接蛋白CM与相同的CD2细胞质片段结合,但引起不同的功能活性。内部免疫。15313-329(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Dustin, M. L. et al. A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts. Cell 94, 667–677 (1998).Article

Dustin,M.L。等人。一种新型衔接蛋白协调T细胞接触中的受体模式和细胞骨架极性。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Freund, C., Dotsch, V., Nishizawa, K., Reinherz, E. L. & Wagner, G. The GYF domain is a novel structural fold that is involved in lymphoid signaling through proline-rich sequences. Nat. Struct. Biol. 6, 656–660 (1999).Article

Freund,C.,Dotsch,V.,Nishizawa,K.,Reinherz,E.L。&Wagner,G。GYF结构域是一种新型结构折叠,通过富含脯氨酸的序列参与淋巴信号传导。自然结构。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hutchings, N. J., Clarkson, N., Chalkley, R., Barclay, A. N. & Brown, M. H. Linking the T cell surface protein CD2 to the actin-capping protein CAPZ via CMS and CIN85. J. Biol. Chem. 278, 22396–22403 (2003).Article

Hutchings,N.J.,Clarkson,N.,Chalkley,R.,Barclay,A.N。&Brown,M.H。通过CMS和CIN85将T细胞表面蛋白CD2连接到肌动蛋白封端蛋白CAPZ。J、 生物。化学。27822396–22403(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bruck, S. et al. Identification of a novel inhibitory actin-capping protein binding motif in CD2-associated protein. J. Biol. Chem. 281, 19196–19203 (2006).Article

Bruck,S。等人。CD2相关蛋白中新型抑制性肌动蛋白加帽蛋白结合基序的鉴定。J、 生物。化学。28119196-19203(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kabanova, A., Zurli, V. & Baldari, C. T. Signals controlling lytic granule polarization at the cytotoxic immune synapse. Front Immunol. 9, 307 (2018).Article

Kabanova,A.,Zurli,V。&Baldari,C.T。信号控制细胞毒性免疫突触处的溶解颗粒极化。前免疫。9307(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Howard, F. D. et al. The CD3 zeta cytoplasmic domain mediates CD2-induced T cell activation. J. Exp. Med 176, 139–145 (1992).Article

Howard,F.D。等人。CD3 zeta细胞质结构域介导CD2诱导的T细胞活化。J、 实验医学176139-145(1992)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Steeg, C., von Bonin, A., Mittrucker, H. W., Malissen, B. & Fleischer, B. CD2-mediated signaling in T cells lacking the zeta-chain-specific immune receptor tyrosine-based activation (ITAM) motif. Eur. J. Immunol. 27, 2233–2238 (1997).Article

Steeg,C.,von Bonin,A.,Mittrucker,H.W.,Malissen,B。&Fleischer,B。缺乏zeta链特异性免疫受体酪氨酸激活(ITAM)基序的T细胞中CD2介导的信号传导。欧洲免疫学杂志。272233-2238(1997)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Moingeon, P. et al. CD3 zeta dependence of the CD2 pathway of activation in T lymphocytes and natural killer cells. Proc. Natl. Acad. Sci. USA 89, 1492–1496 (1992).Article

Moingeon,P。等人。T淋巴细胞和自然杀伤细胞中CD2激活途径的CD3 zeta依赖性。程序。纳特尔。阿卡德。科学。美国891492-1496(1992)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kanner, S. B., Damle, N. K., Blake, J., Aruffo, A. & Ledbetter, J. A. CD2/LFA-3 ligation induces phospholipase-C gamma 1 tyrosine phosphorylation and regulates CD3 signaling. J. Immunol. 148, 2023–2029 (1992).Article

Kanner,S.B.,Damle,N.K.,Blake,J.,Aruffo,A。&Ledbetter,J.A。CD2/LFA-3连接诱导磷脂酶-Cγ1酪氨酸磷酸化并调节CD3信号传导。J、 。1482023-2029(1992)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Martelli, M. P., Lin, H., Zhang, W., Samelson, L. E. & Bierer, B. E. Signaling via LAT (linker for T-cell activation) and Syk/ZAP70 is required for ERK activation and NFAT transcriptional activation following CD2 stimulation. Blood 96, 2181–2190 (2000).Article

Martelli,M.P.,Lin,H.,Zhang,W.,Samelson,L.E。&Bierer,B.E。通过LAT(T细胞活化接头)和Syk/ZAP70的信号传导是ERK激活和CD2刺激后NFAT转录激活所必需的。血液962181-2190(2000)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Meinl, E. et al. Differential requirement of ZAP-70 for CD2-mediated activation pathways of mature human T cells. J. Immunol. 165, 3578–3583 (2000).Article

Meinl,E。等人。ZAP-70对CD2介导的成熟人T细胞活化途径的不同要求。J、 。1653578-3583(2000)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lin, H. et al. Association of p59(fyn) with the T lymphocyte costimulatory receptor CD2. Binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J. Biol. Chem. 273, 19914–19921 (1998).Article

Lin,H。等人。p59(fyn)与T淋巴细胞共刺激受体CD2的关联。Fyn-Src同源性(SH)3结构域的结合受Fyn SH2结构域的调节。J、 生物。化学。27319914-19921(1998)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fukai, I., Hussey, R. E., Sunder-Plassmann, R. & Reinherz, E. L. A critical role for p59(fyn) in CD2-based signal transduction. Eur. J. Immunol. 30, 3507–3515 (2000).Article

Fukai,I.,Hussey,R.E.,Sunder-Plassmann,R。&Reinherz,E.L。p59(fyn)在基于CD2的信号转导中的关键作用。欧洲免疫学杂志。303507-3515(2000)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Espagnolle, N. et al. CD2 and TCR synergize for the activation of phospholipase Cgamma1/calcium pathway at the immunological synapse. Int Immunol. 19, 239–248 (2007).Article

Espagnolle,N。等人,CD2和TCR在免疫突触中协同激活磷脂酶Cgamma1/钙途径。Int免疫。19239-248(2007)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zurli, V. et al. Phosphoproteomics of CD2 signaling reveals AMPK-dependent regulation of lytic granule polarization in cytotoxic T cells. Sci. Signal. 13, eaaz1965 (2020).Sasada, T. & Reinherz, E. L. A critical role for CD2 in both thymic selection events and mature T cell function. J.

Zurli,V。等人。CD2信号传导的磷酸化蛋白质组学揭示了细胞毒性T细胞中溶解颗粒极化的AMPK依赖性调节。科学。信号。13,eaaz1965(2020)。Sasada,T。&Reinherz,E.L。CD2在胸腺选择事件和成熟T细胞功能中的关键作用。J。

Immunol. 166, 2394–2403 (2001).Article .

免疫。1662394-2403(2001)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Teh, S. J., Killeen, N., Tarakhovsky, A., Littman, D. R. & Teh, H. S. CD2 regulates the positive selection and function of antigen-specific CD4- CD8+ T cells. Blood 89, 1308–1318 (1997).Article

Teh,S.J.,Killeen,N.,Tarakhovsky,A.,Littman,D.R。&Teh,H.S。CD2调节抗原特异性CD4-CD8+T细胞的阳性选择和功能。血液891308-1318(1997)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sasada, T., Yang, H. & Reinherz, E. L. CD2 facilitates differentiation of CD4 Th cells without affecting Th1/Th2 polarization. J. Immunol. 168, 1113–1122 (2002).Article

Sasada,T.,Yang,H。&Reinherz,E.L。CD2促进CD4 Th细胞的分化而不影响Th1/Th2极化。J、 。1681113-1122(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Guckel, B. et al. Anti-CD2 antibodies induce T cell unresponsiveness in vivo. J. Exp. Med 174, 957–967 (1991).Article

Guckel,B。等人。抗CD2抗体在体内诱导T细胞无反应。J、 实验医学174957-967(1991)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fortner, K. A., Russell, J. Q. & Budd, R. C. Down-modulation of CD2 delays deletion of superantigen-responsive T cells. Eur. J. Immunol. 28, 70–79 (1998).Article

Fortner,K.A.,Russell,J.Q。&Budd,R.C。CD2的下调延迟了超抗原反应性T细胞的缺失。欧洲免疫学杂志。28,70-79(1998)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Boucher, N. et al. CD28 expression in T cell aging and human longevity. Exp. Gerontol. 33, 267–282 (1998).Article

Boucher,N。等人。CD28在T细胞衰老和人类寿命中的表达。实验Gerontol。33267-282(1998)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Voehringer, D., Koschella, M. & Pircher, H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood 100, 3698–3702 (2002).Article

Voehringer,D.,Koschella,M。&Pircher,H。缺乏表达杀伤细胞凝集素样受体G1(KLRG1)的人效应和记忆T细胞的增殖能力。血液1003698-3702(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lo, D. J. et al. Selective targeting of human alloresponsive CD8+ effector memory T cells based on CD2 expression. Am. J. Transpl. 11, 22–33 (2011).Article

Lo,D.J.等人。基于CD2表达的人同种异体反应性CD8+效应记忆T细胞的选择性靶向。美国交通杂志。11,22-33(2011)。文章

Google Scholar

谷歌学者

Leitner, J., Herndler-Brandstetter, D., Zlabinger, G. J., Grubeck-Loebenstein, B. & Steinberger, P. CD58/CD2 is the primary costimulatory pathway in human CD28-CD8+ T cells. J. Immunol. 195, 477–487 (2015).Article

Leitner,J.,Herndler-Brandstetter,D.,Zlabinger,G.J.,Grubeck-Loebenstein,B。&Steinberger,P。CD58/CD2是人CD28-CD8+T细胞中的主要共刺激途径。J、 。195477-487(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Boussiotis, V. A. et al. CD2 is involved in maintenance and reversal of human alloantigen-specific clonal anergy. J. Exp. Med. 180, 1665–1673 (1994).Article

Boussiotis,V.A.等人,《CD2参与维持和逆转人类同种异体抗原特异性克隆无能》,《实验医学杂志》1801665-1673(1994)。文章

PubMed

PubMed

Google Scholar

谷歌学者

McKinney, E. F., Lee, J. C., Jayne, D. R., Lyons, P. A. & Smith, K. G. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).Article

McKinney,E.F.,Lee,J.C.,Jayne,D.R.,Lyons,P.A。&Smith,K.G。T细胞衰竭,共刺激和自身免疫和感染的临床结果。《自然》523612-616(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Orlik, C. et al. Keratinocytes costimulate naive human T cells via CD2: a potential target to prevent the development of proinflammatory Th1 cells in the skin. Cell Mol. Immunol. 17, 380–394 (2020).Article

角质形成细胞通过CD2共刺激幼稚的人类T细胞:这是防止皮肤中促炎性Th1细胞发育的潜在靶标。细胞分子免疫。17380-394(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Podesta, M. A. et al. Siplizumab selectively depletes effector memory T cells and promotes a relative expansion of alloreactive regulatory T cells in vitro. Am. J. Transpl. 20, 88–100 (2020).Article

Podesta,M.A。等人Siplizumab选择性地消耗效应记忆T细胞,并在体外促进同种异体反应性调节性T细胞的相对扩增。美国交通杂志。20,88-100(2020)。文章

Google Scholar

谷歌学者

Berglund, E. et al. Safety and pharmacodynamics of anti-CD2 monoclonal antibody treatment in cynomolgus macaques - an experimental study. Transpl. Int. 33, 98–107 (2020).Article

Berglund,E.等人。食蟹猴抗CD2单克隆抗体治疗的安全性和药效学-一项实验研究。运输。Int.33,98–107(2020年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ghosh, A. et al. CD2-negative lymphoma-associated T-cells: a potential mechanism of immune-evasion in diffuse large B-cell lymphoma. Virchows Arch. 481, 659–663 (2022).Article

Ghosh,A。等。CD2阴性淋巴瘤相关T细胞:弥漫性大B细胞淋巴瘤免疫逃避的潜在机制。Virchows拱门。481659-663(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Han, J. et al. MMP11 and CD2 as novel prognostic factors in hormone receptor-negative, HER2-positive breast cancer. Breast Cancer Res. Treat. 164, 41–56 (2017).Article

Han,J。等人。MMP11和CD2作为激素受体阴性,HER2阳性乳腺癌的新预后因素。乳腺癌研究治疗。164,41-56(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harcharik, S. et al. Defining the role of CD2 in disease progression and overall survival among patients with completely resected stage-II to -III cutaneous melanoma. J. Am. Acad. Dermatol. 70, 1036–1044 (2014).Article

Harcharik,S.等人定义了CD2在完全切除的II至III期皮肤黑色素瘤患者的疾病进展和总体生存中的作用。J、 美国科学院。皮肤病。701036-1044(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ouyang, G. et al. Clinically useful flow cytometry approach to identify immunophenotype in acute leukemia. J. Int. Med. Res. 47, 1483–1492 (2019).Article

欧阳,G。等。临床上有用的流式细胞术方法来鉴定急性白血病的免疫表型。J、 《国际医学》第471483-1492号决议(2019年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abdul Razak, F. R., Diepstra, A., Visser, L. & van den Berg, A. CD58 mutations are common in Hodgkin lymphoma cell lines and loss of CD58 expression in tumor cells occurs in Hodgkin lymphoma patients who relapse. Genes Immun. 17, 363–366 (2016).Article

Abdul Razak,F.R.,Diepstra,A.,Visser,L。&van den Berg,A。CD58突变在霍奇金淋巴瘤细胞系中很常见,复发的霍奇金淋巴瘤患者发生肿瘤细胞中CD58表达的丧失。基因免疫。17363-366(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Challa-Malladi, M. et al. Combined genetic inactivation of beta2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20, 728–740 (2011).Article

Challa-Malladi,M.等人。β2微球蛋白和CD58的联合基因失活揭示了弥漫性大B细胞淋巴瘤中免疫识别的频繁逃逸。癌细胞20728-740(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e924 (2018).Article

Jerby Arnon,L。等人。癌细胞计划促进T细胞排斥和对检查点封锁的抵抗。细胞175984-997.e924(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 e1020 (2018).Article

Sade Feldman,M.等人定义了与黑色素瘤检查点免疫治疗反应相关的T细胞状态。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Koneru, M., Monu, N., Schaer, D., Barletta, J. & Frey, A. B. Defective adhesion in tumor infiltrating CD8+ T cells. J. Immunol. 176, 6103–6111 (2006).Article

Koneru,M.,Monu,N.,Schaer,D.,Barletta,J。&Frey,A.B。肿瘤浸润性CD8+T细胞中的粘附缺陷。J、 。1766103-6111(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Veldman, J. et al. Rosetting T cells in Hodgkin lymphoma are activated by immunological synapse components HLA class II and CD58. Blood 136, 2437–2441 (2020).Article

Veldman,J。等人。霍奇金淋巴瘤中的玫瑰花结T细胞被免疫突触成分HLA II类和CD58激活。血液1362437-2441(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Burton, J. et al. Inefficient exploitation of accessory receptors reduces the sensitivity of chimeric antigen receptors. Proc. Natl. Acad. Sci. USA 120, e2216352120 (2023).Article

辅助受体的低效利用降低了嵌合抗原受体的敏感性。程序。纳特尔。阿卡德。科学。美国120,e2216352120(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiang, J. et al. An “off-the-shelf” CD2 universal CAR-T therapy for T-cell malignancies. Leukemia 37, 2448–2456 (2023).Article

Xiang,J.等人,“现成的”CD2通用CAR-T治疗T细胞恶性肿瘤。白血病372448-2456(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shen, Y. et al. Cancer cell-intrinsic resistance to BiTE therapy is mediated by loss of CD58 costimulation and modulation of the extrinsic apoptotic pathway. J. Immunother Cancer 10, e004348 (2022).Article

Shen,Y。等人。癌细胞对咬合疗法的内在抗性是由CD58共刺激的丧失和外在凋亡途径的调节介导的。J、 。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Burr, M. L. et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549, 101–105 (2017).Article

Burr,M.L。等人,CMTM6维持PD-L1的表达并调节抗肿瘤免疫。自然549101-105(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Robinson, M. H. et al. Regulation of antigen-specific T cell infiltration and spatial architecture in multiple myeloma and premalignancy. J. Clin. Invest 133, e167629 (2023).Article

Robinson,M.H.等人。多发性骨髓瘤和癌前病变中抗原特异性T细胞浸润和空间结构的调节。J、 临床。投资133,e167629(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wild, M. K., Strittmatter, W., Matzku, S., Schraven, B. & Meuer, S. C. Tumor therapy with bispecific antibody: the targeting and triggering steps can be separated employing a CD2-based strategy. J. Immunol. 163, 2064–2072 (1999).Article

Wild,M.K.,Strittmatter,W.,Matzku,S.,Schraven,B。&Meuer,S.C。使用双特异性抗体进行肿瘤治疗:可以使用基于CD2的策略分离靶向和触发步骤。J、 。1632064-2072(1999)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Kodama, H. et al. Specific and effective targeting cancer immunotherapy with a combination of three bispecific antibodies. Immunol. Lett. 81, 99–106 (2002).Article

Kodama,H。等人。用三种双特异性抗体的组合进行特异性和有效的靶向癌症免疫疗法。免疫。利特。81,99-106(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tam, E. M. et al. EVOLVE-104, a novel ULBP2-targeted T cell engager that integrates CD2 costimulation for the treatment of basal and squamous lineage tumors. Society for Immunotherapy of Cancer (SITC); 2023; San Diego CA USA: BMJ J. (2023).Sergeeva, O. A. et al. 1386 EVOLVE-106, a T cell engager with integrated CD2 costimulation targeting B7-H4, is a precision therapy for estrogen and Her2 receptor low breast cancers.

Tam,E.M.等人EVOLVE-104是一种新型的ULBP2靶向T细胞接受者,可整合CD2共刺激治疗基底和鳞状谱系肿瘤。癌症免疫治疗学会(SITC);2023年;美国加利福尼亚州圣地亚哥:BMJ J.(2023)。Sergeeva,O.A.等人1386 EVOLVE-106是一种针对B7-H4的整合CD2共刺激的T细胞参与者,是雌激素和Her2受体低乳腺癌的精确疗法。

Society for Immunotherapy of Cancer (SITC); 2023; San Diego CA USA; 2023.Crawford, A. et al. A Mucin 16 bispecific T cell-engaging antibody for the treatment of ovarian cancer. Sci. Transl. Med. 11, eaau7534 (2019).Skokos, D. et al. A class of costimulatory CD28-bispecific antibodies that enhance the antitumor activity of CD3-bispecific antibodies.

癌症免疫治疗学会(SITC);2023年;美国加利福尼亚州圣地亚哥;Crawford,A.等人,一种用于治疗卵巢癌的粘蛋白16双特异性T细胞结合抗体。科学。翻译。医学杂志11,eaau7534(2019)。Skokos,D。等人。一类共刺激CD28双特异性抗体,可增强CD3双特异性抗体的抗肿瘤活性。

Sci. Transl. Med. 12, eaaw7888 (2020).Singh, A., Dees, S. & Grewal, I. S. Overcoming the challenges associated with CD3+ T-cell redirection in cancer. Br. J. Cancer 124, 1037–1048 (2021).Article .

科学。翻译。医学12,eaaw7888(2020)。Singh,A.,Dees,S。&Grewal,I.S。克服与癌症中CD3+T细胞重定向相关的挑战。Br.J.Cancer 1241037-1048(2021)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stein, M. N. et al. Preliminary results from a phase 1/2 study of co-stimulatory bispecific PSMAxCD28 antibody REGN5678 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). American Society of Clinical Oncology (ASCO); 2023; (2023).Zhang, J. S. et al. A phase I/II study of REGN5678 (Anti-PSMAxCD28, a costimulatory bispecific antibody) with cemiplimab (anti-PD-1) in patients with metastatic castration-resistant prostate cancer.

Stein,M.N.等人。转移性去势抵抗性前列腺癌(mCRPC)患者(pts)共刺激双特异性PSMAxCD28抗体REGN5678的1/2期研究的初步结果。美国临床肿瘤学会(ASCO);2023年;(2023年)。Zhang,J.S.等。转移性去势抵抗性前列腺癌患者中REGN5678(抗PSMAxCD28,一种共刺激双特异性抗体)与cemiplimab(抗PD-1)的I/II期研究。

J. Clin. Oncol. 39, 6_suppl (2021).Horvath, C. et al. Storm forecasting: additional lessons from the CD28 superagonist TGN1412 trial. Nat. Rev. Immunol. 12, 740 (2012).PubMed .

J、 临床。Oncol公司。39,6\u suppl(2021年)。。国家免疫修订版。12740(2012)。。

Google Scholar

谷歌学者

Hunig, T. The storm has cleared: lessons from the CD28 superagonist TGN1412 trial. Nat. Rev. Immunol. 12, 317–318 (2012).Article

Hunig,T。风暴已经平息:CD28超级性腺学家TGN1412试验的教训。国家免疫修订版。12317-318(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Connelly, R. J. et al. Mitogenic properties of a bispecific single-chain Fv-Ig fusion generated from CD2-specific mAb to distinct epitopes. Int. Immunol. 10, 1863–1872 (1998).Article

Connelly,R.J.等人。由CD2特异性mAb产生的双特异性单链Fv-Ig融合物对不同表位的促有丝分裂特性。内部免疫。101863-1872(1998)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Barrett, D. et al. TmPSMA-02: A CD2 endodomain containing double armored PSMA CAR T with enhanced efficacy and lower immune toxicity. J. Clin. Oncol. 40, 6_suppl (2022).Philipp, N. et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals.

Barrett,D。等人。TmPSMA-02:一种含有CD2内结构域的双装甲PSMA CAR T,具有增强的功效和较低的免疫毒性。J、 临床。Oncol公司。40,6\u供应(2022)。Philipp,N。等人。连续双特异性分子暴露诱导的T细胞衰竭通过无治疗间隔得到改善。

Blood 140, 1104–1118 (2022).Article .

血液1401104-1118(2022)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dammeijer, F. et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell 38, 685–700.e688 (2020).Article

Dammeijer,F。等人。PD-1/PD-L1-检查点抑制肿瘤引流淋巴结中的T细胞免疫。癌细胞38685-700.e688(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fransen, M. F. et al. Tumor-draining lymph nodes are pivotal in PD-1/PD-L1 checkpoint therapy. JCI Insight 3, e124507 (2018).Article

Fransen,M.F。等人。肿瘤引流淋巴结在PD-1/PD-L1检查点治疗中至关重要。JCI Insight 3,e124507(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, Q. et al. The primordial differentiation of tumor-specific memory CD8( + ) T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell 185, 4049–4066.e4025 (2022).Article

Huang,Q。等人。肿瘤特异性记忆CD8( + )T细胞的原始分化是引流淋巴结中PD-1/PD-L1阻断的真正反应者。细胞1854049-4066.e4025(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesFundingThis work was supported by an intramural grant from KIST to Y.P., as well as grants from the National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (NRF-2020M3A9G7103935 and RS-2024-00338729 to H.J. and RS-2024-00337093 to Y.P.). All of the figures were created using Biorender.com.Author informationAuthors and AffiliationsChemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South KoreaYunju Jo, Hye-In Sim & Yoon ParkDepartment of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South KoreaBohwan Yun & Hyung-seung JinAuthorsYunju JoView author publicationsYou can also search for this author in.

下载参考文献资助这项工作得到了KIST向Y.P.提供的校内资助,以及韩国政府(MSIT)资助的韩国国家研究基金会(NRF)的资助(NRF-2020M3A9G7103935和RS-2024-00338729授予H.J.和RS-2024-00337093授予Y.P.)。所有这些数字都是使用Biorender.com.Author informationAuthors和AffiliationsChemical and Biological integration Research Center,生物医学研究所,韩国科学技术研究所(KIST),首尔,韩国Yunju Jo,Hye In Sim&Yoon Park融合医学系,Asan生命科学研究所,Asan医学中心,蔚山大学医学院,首尔,韩国Bohwan Yun&Hyung seung Jin作者Yunju JoView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarHye-In SimView author publicationsYou can also search for this author in

SimView作者出版物中的PubMed Google ScholarHye您也可以在

PubMed Google ScholarBohwan YunView author publicationsYou can also search for this author in

PubMed Google ScholarBohwan YunView作者出版物您也可以在

PubMed Google ScholarYoon ParkView author publicationsYou can also search for this author in

PubMed Google ScholarYoon ParkView作者出版物您也可以在

PubMed Google ScholarHyung-seung JinView author publicationsYou can also search for this author in

PubMed谷歌学者Hyung seung JinView作者出版物您也可以在

PubMed Google ScholarCorresponding authorsCorrespondence to

PubMed谷歌学者通讯作者通讯

Yoon Park or Hyung-seung Jin.Ethics declarations

Yoon Park或Hyung seung Jin。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleJo, Y., Sim, HI., Yun, B. et al. Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2.

转载和许可本文引用本文Jo,Y.,Sim,HI。,Yun,B.等人重新审视T细胞粘附分子作为癌症免疫治疗的潜在靶点:CD226和CD2。

Exp Mol Med (2024). https://doi.org/10.1038/s12276-024-01317-9Download citationReceived: 30 April 2024Revised: 26 June 2024Accepted: 04 July 2024Published: 01 October 2024DOI: https://doi.org/10.1038/s12276-024-01317-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Exp Mol Med(2024)。https://doi.org/10.1038/s12276-024-01317-9Download引文收到日期:2024年4月30日修订日期:2024年6月26日接受日期:2024年7月4日发布日期:2024年10月1日OI:https://doi.org/10.1038/s12276-024-01317-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供