EN
登录

可待因处方计数的全基因组关联研究

A genome-wide Association study of the Count of Codeine prescriptions

Nature 等信源发布 2024-10-01 16:44

可切换为仅中文


AbstractOpioid prescription records in existing electronic health record (EHR) databases are a potentially useful, high-fidelity data source for opioid use-related risk phenotyping in genetic analyses. Prescriptions for codeine derived from EHR records were used as targeting traits by screening 16 million patient-level medication records.

摘要现有电子健康记录(EHR)数据库中的阿片类药物处方记录是遗传分析中与阿片类药物使用相关的风险表型分析的潜在有用的高保真数据源。通过筛选1600万患者级药物记录,将来自EHR记录的可待因处方用作靶向特征。

Genome-wide association analyses were then conducted to identify genomic loci and candidate genes associated with different count patterns of codeine prescriptions. Both low- and high-prescription counts were captured by developing 8 types of phenotypes with selected ranges of prescription numbers to reflect potentially different levels of opioid risk severity.

然后进行全基因组关联分析,以鉴定与可待因处方的不同计数模式相关的基因组位点和候选基因。通过开发具有选定处方数范围的8种表型来捕获低处方数和高处方数,以反映潜在不同水平的阿片类药物风险严重程度。

We identified one significant locus associated with low-count codeine prescriptions (1, 2 or 3 prescriptions), while up to 7 loci were identified for higher counts (≥ 4, ≥ 5, ≥6, or ≥ 7 prescriptions), with a strong overlap across different thresholds. We identified 9 significant genomic loci with all-count phenotype.

我们确定了一个与低计数可待因处方(1,2或3个处方)相关的重要基因座,而高计数(≥4,≥5,≥6或≥7个处方)最多有7个基因座,不同阈值之间有很强的重叠。我们确定了9个具有全计数表型的重要基因组位点。

Further, using the polygenic risk approach, we identified a significant correlation (Tau = 0.67, p = 0.01) between an externally derived polygenic risk score for opioid use disorder and numbers of codeine prescriptions. As a proof-of-concept study, our research provides a novel and generalizable phenotyping pipeline for the genomic study of opioid-related risk traits..

此外,使用多基因风险方法,我们确定了阿片类药物使用障碍的外部多基因风险评分与可待因处方数量之间的显着相关性(Tau=0.67,p=0.01)。作为概念验证研究,我们的研究为阿片类药物相关风险特征的基因组研究提供了一种新颖且可推广的表型分析管道。。

IntroductionOpioids are among the top 10 most-prescribed prescription medications in the U.S., and about 80% of surgical patients are treated with opioids for acute post-surgical pain1,2.Opioids are also commonly prescribed for patients with moderate or severe chronic pain that is not managed well by non-opioid drugs3.

简介阿片类药物是美国处方最多的前10种处方药之一,约80%的手术患者接受阿片类药物治疗急性手术后疼痛1,2。阿片类药物也常用于中度或重度慢性疼痛患者,非阿片类药物治疗效果不佳3。

Starting in the early 1990s, opioid prescriptions increased significantly for pain management, leading to surges in overdoses, opioid use disorder (OUD), and the so-called “opioid crisis”4,5. While opioid drugs are very effective for controlling pain, they are highly addictive6.Side effects of opioid use include respiratory depression and excessive sedation7.

。虽然阿片类药物对控制疼痛非常有效,但它们很容易上瘾6。阿片类药物的副作用包括呼吸抑制和过度镇静7。

Further, patients who take opioids for longer than 90 days have an increased risk of developing OUD8. In the U.S., up to 3 million people have current or past OUD9. It also has been estimated that 80,816 deaths were related to opioid overdose in the United States in 202110. In recent years, opioid prescription rates have dropped precipitously and most deaths are due to illicit fentanyl, but prescription opioids are still associated with about 12,000 overdose deaths in the U.S.

此外,服用阿片类药物超过90天的患者患OUD8的风险增加。在美国,多达300万人目前或过去拥有OUD9。据估计,202110年,美国有80816人死亡与阿片类药物过量有关。近年来,阿片类药物处方率急剧下降,大多数死亡是由于非法芬太尼引起的,但在美国,处方阿片类药物仍与约12000例过量死亡有关。

each year11. Additionally, opioid-related adverse drug events (ORADEs) can cause harmful patient outcomes, including inpatient costs, readmissions, and mortality12.Genome-wide association studies (GWAS) have suggested that both OUD and opioid-related patient responses have strong genetic underpinnings13,14,15,16,17,18,19.

。此外,与阿片类药物相关的不良药物事件(ORADEs)可导致有害的患者结局,包括住院费用,再入院率和死亡率12。全基因组关联研究(GWAS)表明,OUD和阿片类药物相关的患者反应都有很强的遗传基础13,14,15,16,17,18,19。

GWAS have identified significant genomic loci and related genes that can affect efficacy, metabolism, and adverse effects of opioids, which can in turn cause heterogeneous individual responses to drugs, including both pain levels and development of addiction20,21,22. This is particularly relevant to codeine, i.

GWAS已经确定了可能影响阿片类药物疗效,代谢和不良反应的重要基因组位点和相关基因,这反过来又可能导致个体对药物的异质反应,包括疼痛程度和成瘾的发展20,21,22。这与可待因特别相关。

(1)

(1)

Three low-count prescription phenotypes: patients with 1, 2 or 3 codeine prescriptions.

三种低计数处方表型:服用1、2或3种可待因处方的患者。

(2)

(2)

Four high-count prescription phenotypes: patients with 4 or more, 5 or more, 6 or more, or 7 or more codeine prescriptions. For both low- and high-count prescription groups, the control group was defined as patients with no opioid prescriptions.

四种高计数处方表型:具有4种或更多,5种或更多,6种或更多或7种或更多可待因处方的患者。对于低剂量和高剂量处方组,对照组被定义为没有阿片类药物处方的患者。

(3)

(3)

All-count prescription phenotype: codeine prescription count was coded as integers and winsorized at 8 prescriptions to reduce the influence of outliers.

所有计数处方表型:可待因处方计数被编码为整数,并在8个处方中获胜,以减少异常值的影响。

Genotyping data and quality controlGenotyping was performed by the MGB Biobank team. Prior to imputation, standard GWAS quality control procedures were carried out. These included: (1) sample-level QC. samples with discrepant reported and predicted sex or high missing rates were excluded; (2) Variant-level QC.

基因分型数据和质量控制基因分型由MGB生物库团队进行。在插补之前,执行了标准GWAS质量控制程序。。报告和预测性别不一致或缺失率高的样本被排除在外;(2) 变体级别QC。

variants with invalid alleles, allele mismatch with the reference panel, SNPs not found within the reference panel and duplicated, monomorphic variants, indels (insertion and deletions), and variants with low call rate (less than 90%) were excluded. Imputation was performed using the Michigan Imputation Server with 1000 Genomes panel and haplotype phasing was performed using SHAPEIT34,35,36.Post-imputation quality control was conducted to select high-quality SNPs and control for population stratification and family structure.

排除了具有无效等位基因的变体,与参考面板不匹配的等位基因,在参考面板中未发现的SNP以及重复的单态变体,插入缺失(插入和缺失)和呼叫率低(低于90%)的变体。使用具有1000个基因组面板的密歇根插补服务器进行插补,并使用SHAPEIT34,35,36进行单倍型定相。进行插补后质量控制以选择高质量的SNP并控制种群分层和家庭结构。

The relatedness of the cohort was detected by pairwise IBD estimation filtered by pi-hat (1 for 100% identical by descent [IBD], 0.5 for 50%, 0.25 for 25%) using PLINK to estimate the probability of sharing 0, 1, or 2 alleles IBD for any two individuals from the study population. Only autosomal biallelic SNPs with minor allele frequencies (MAF) of at least 1%, an info score above 0.8 and call rates above 98% were retained, which led to ~ 5 million SNPs.

使用PLINK通过pi hat过滤的成对IBD估计来检测队列的相关性(1代表100%相同的血统[IBD],0.5代表50%,0.25代表25%),以估计来自研究人群的任何两个个体共享0,1或2个等位基因IBD的概率。仅保留次要等位基因频率(MAF)至少为1%,信息得分高于0.8且呼叫率高于98%的常染色体双等位基因SNP,这导致约500万个SNP。

A principal components analysis was applied in a linkage-disequilibrium-pruned set of genotyped SNPs to characterize population structure within samples from included individuals.Genome-wide association and gene-level analysisWe used PLINK 2.0 to conduct the genome-wide association analysis for each codeine prescription phenotype, using linear regression for continuous phenotypes and logistic regression for binary phenotypes37.

主成分分析应用于连锁不平衡修剪的基因型SNP集,以表征来自所包括个体的样本中的种群结构。。

All association analyses were adjusted for age, sex and the top 5 .

所有关联分析均针对年龄,性别和前5名进行了调整。

Data availability

数据可用性

The clinical/genetic datasets generated and analyzed during the current study are not publicly available due to hospital IRB regulation and patient privacy. The genetic summary statistics are available from the corresponding author upon request.

由于医院IRB法规和患者隐私,当前研究期间生成和分析的临床/遗传数据集无法公开获得。遗传摘要统计数据可应要求从通讯作者处获得。

ReferencesRocha, V. et al. Geographic Variation in Top-10 prescribed Medicines and potentially inappropriate medication in Portugal: An ecological study of 2.2 million older adults. Int. J. Environ. Res. Public. Health. https://doi.org/10.3390/ijerph191912938 (2022).Ladha, K. S. et al. Opioid prescribing after surgery in the United States, Canada, and Sweden.

ReferencesRocha,V。等人,《葡萄牙十大处方药和潜在不适当药物的地理差异:一项针对220万老年人的生态学研究》。内景J.环境。公共资源。健康。https://doi.org/10.3390/ijerph191912938(2022年)。。

JAMA Netw. Open 2, e1910734. https://doi.org/10.1001/jamanetworkopen.2019.10734 (2019).Article .

《美国医学会杂志》网络版。2号门,e1910734。https://doi.org/10.1001/jamanetworkopen.2019.10734(2019).第条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martell, B. A. et al. Systematic review: Opioid treatment for chronic back pain: Prevalence, efficacy, and association with addiction. Ann. Intern. Med. 146, 116–127. https://doi.org/10.7326/0003-4819-146-2-200701160-00006 (2007).Article

Martell,B.A.等人,《系统综述:阿片类药物治疗慢性背痛:患病率,疗效以及与成瘾的关系》。安,实习生。医学146116-127。https://doi.org/10.7326/0003-4819-146-2-200701160-00006(2007年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gardner, E. A., McGrath, S. A., Dowling, D. & Bai, D. The Opioid Crisis: Prevalence and markets of opioids. Forensic Sci. Rev. 34, 43–70 (2022).CAS

Gardner,E.A.,McGrath,S.A.,Dowling,D。和Bai,D。阿片类药物危机:阿片类药物的流行和市场。法医科学。第34版,第43-70页(2022年)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jani, M. et al. Opioid prescribing among new users for non-cancer pain in the USA, Canada, UK, and Taiwan: A population-based cohort study. PLoS Med. 18, e1003829. https://doi.org/10.1371/journal.pmed.1003829 (2021).Article

Jani,M.等人,《美国、加拿大、英国和台湾地区非癌症疼痛新使用者中的阿片类药物处方:一项基于人群的队列研究》。公共科学图书馆医学杂志18,e1003829。https://doi.org/10.1371/journal.pmed.1003829(2021年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Volkow, N. D., Jones, E. B., Einstein, E. B. & Wargo, E. M. Prevention and treatment of opioid misuse and addiction: A review. JAMA Psychiatry 76, 208–216. https://doi.org/10.1001/jamapsychiatry.2018.3126 (2019).Article

Volkow,N.D.,Jones,E.B.,Einstein,E.B。&Wargo,E.M。预防和治疗阿片类药物滥用和成瘾:综述。JAMA精神病学76208-216。https://doi.org/10.1001/jamapsychiatry.2018.3126(2019年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Paul, A. K. et al. Opioid Analgesia and Opioid-Induced adverse effects: A review. Pharmaceuticals (Basel). https://doi.org/10.3390/ph14111091 (2021).Banerjee, G. et al. High-dose prescribed opioids are associated with increased risk of heroin use among United States military veterans.

Paul,A.K.等人。阿片类镇痛和阿片类药物引起的不良反应:综述。制药(巴塞尔)。https://doi.org/10.3390/ph14111091(2021年)。高剂量处方阿片类药物与美国退伍军人使用海洛因的风险增加有关。

Pain 160, 2126–2135. https://doi.org/10.1097/j.pain.0000000000001606 (2019).Article .

Pain 160, 2126–2135. https://doi.org/10.1097/j.pain.0000000000001606 (2019).Article .

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schuckit, M. A. Treatment of Opioid-Use disorders. N. Engl. J. Med. 375, 357–368. https://doi.org/10.1056/NEJMra1604339 (2016).Article

Schuckit,M.A。阿片类药物使用障碍的治疗。N、 英语。J、 医学375357-368。https://doi.org/10.1056/NEJMra1604339(2016年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Statistics, N. C. f. H. U.S. Overdose Deaths In. https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2022/202205.htm (2021).Ahmad, F. B., Rossen, C. J. & Sutton, L. M. P. Provisional Drug Overdose Death Counts. National Center for Health Statistics. https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm (2023).Urman, R.

统计数据显示,年美国北卡罗来纳州吸毒过量死亡人数。https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2022/202205.htm(2021年)。Ahmad,F.B.,Rossen,C.J。&Sutton,L.M.P。临时药物过量死亡计数。。https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm(2023年)。乌尔曼,R。

D. et al. The Burden of Opioid-related adverse drug events on hospitalized previously opioid-free Surgical patients. J. Patient Saf. 17, e76–e83. https://doi.org/10.1097/PTS.0000000000000566 (2021).Article .

D、 等。阿片类药物相关不良药物事件对住院前无阿片类药物手术患者的负担。J、 患者Saf。17,e76-e83。https://doi.org/10.1097/PTS.0000000000000566(2021年)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Song, W. et al. Genome-wide association analysis of opioid use disorder: A novel approach using clinical data. Drug Alcohol Depend. 217, 108276. https://doi.org/10.1016/j.drugalcdep.2020.108276 (2020).Article

Song,W。等人。阿片类药物使用障碍的全基因组关联分析:一种使用临床数据的新方法。药物依赖酒精。217108276年。https://doi.org/10.1016/j.drugalcdep.2020.108276(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nelson, E. C. et al. Evidence of CNIH3 involvement in opioid dependence. Mol. Psychiatry 21, 608–614. https://doi.org/10.1038/mp.2015.102 (2016).Article

Nelson,E.C.等人。CNIH3参与阿片类药物依赖的证据。摩尔精神病学21608-614。https://doi.org/10.1038/mp.2015.102(2016年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Polimanti, R. et al. Leveraging genome-wide data to investigate differences between opioid use vs. opioid dependence in 41,176 individuals from the Psychiatric Genomics Consortium. Mol. Psychiatry 25, 1673–1687. https://doi.org/10.1038/s41380-020-0677-9 (2020).Article

Polimanti,R.等人利用全基因组数据调查了来自精神病学基因组学协会的41176名个体中阿片类药物使用与阿片类药物依赖之间的差异。摩尔精神病学251673-1687。https://doi.org/10.1038/s41380-020-0677-9(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deak, J. D. et al. Genome-wide association study in individuals of European and African ancestry and multi-trait analysis of opioid use disorder identifies 19 independent genome-wide significant risk loci. Mol. Psychiatry 27, 3970–3979. https://doi.org/10.1038/s41380-022-01709-1 (2022).Article .

欧洲和非洲血统个体的全基因组关联研究和阿片类药物使用障碍的多性状分析确定了19个独立的全基因组重要风险位点。摩尔精神病学273970-3979。https://doi.org/10.1038/s41380-022-01709-1(2022年)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheng, Z. et al. Genome-wide association study identifies a regulatory variant of RGMA associated with opioid dependence in European Americans. Biol. Psychiatry 84, 762–770. https://doi.org/10.1016/j.biopsych.2017.12.016 (2018).Article

Cheng,Z.等人。全基因组关联研究确定了与欧美人阿片类药物依赖相关的RGMA调控变异。生物精神病学84762-770。https://doi.org/10.1016/j.biopsych.2017.12.016(2018年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gelernter, J. et al. Genome-wide association study of opioid dependence: Multiple associations mapped to calcium and potassium pathways. Biol. Psychiatry 76, 66–74. https://doi.org/10.1016/j.biopsych.2013.08.034 (2014).Article

Gelernter,J。等人。阿片类药物依赖的全基因组关联研究:映射到钙和钾途径的多重关联。生物学精神病学76,66-74。https://doi.org/10.1016/j.biopsych.2013.08.034(2014年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hancock, D. B. et al. Cis-expression quantitative trait loci mapping reveals replicable associations with Heroin Addiction in OPRM1. Biol. Psychiatry 78, 474–484. https://doi.org/10.1016/j.biopsych.2015.01.003 (2015).Article

Hancock,D.B.等人。顺式表达数量性状基因座作图揭示了OPRM1中与海洛因成瘾的可复制关联。生物精神病学78474-484。https://doi.org/10.1016/j.biopsych.2015.01.003(2015年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Singh, A., Zai, C., Mohiuddin, A. G. & Kennedy, J. L. The pharmacogenetics of opioid treatment for pain management. J. Psychopharmacol. 34, 1200–1209. https://doi.org/10.1177/0269881120944162 (2020).Article

Singh,A.,Zai,C.,Mohiuddin,A.G。和Kennedy,J.L。阿片类药物治疗疼痛管理的药物遗传学。J、 精神药理学。341200-1209年。https://doi.org/10.1177/0269881120944162(2020年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hwang, I. C. et al. OPRM1 A118G gene variant and postoperative opioid requirement: A systematic review and meta-analysis. Anesthesiology 121, 825–834. https://doi.org/10.1097/ALN.0000000000000405 (2014).Article

Hwang,I.C.等。OPRM1 A118G基因变异和术后阿片类药物需求:系统评价和荟萃分析。麻醉学121825-834。https://doi.org/10.1097/ALN.0000000000000405(2014年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Nishizawa, D. et al. Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Mol. Psychiatry 19, 55–62. https://doi.org/10.1038/mp.2012.164 (2014).Article

Nishizawa,D。等人。全基因组关联研究确定了与人类阿片类药物敏感性相关的有效基因座。摩尔精神病学19,55-62。https://doi.org/10.1038/mp.2012.164(2014年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Virbalas, J., Morrow, B. E., Reynolds, D., Bent, J. P. & Ow, T. J. The prevalence of Ultrarapid Metabolizers of Codeine in a Diverse Urban Population. Otolaryngol. Head Neck Surg. 160, 420–425. https://doi.org/10.1177/0194599818804780 (2019).Article

Virbalas,J.,Morrow,B.E.,Reynolds,D.,Bent,J.P.&Ow,T.J。可待因超快速代谢者在不同城市人群中的流行。耳鼻喉科。头颈外科160420-425。https://doi.org/10.1177/0194599818804780(2019年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chawar, C. et al. A systematic review of GWAS identified SNPs associated with outcomes of medications for opioid use disorder. Addict. Sci. Clin. Pract.. https://doi.org/10.1186/s13722-021-00278-y (2021).Hu, L. L., Sparenborg, S. & Tai, B. Privacy protection for patients with substance use problems.

。瘾君子。科学。。实践。。https://doi.org/10.1186/s13722-021-00278-y(2021年)。Hu,L.L.,Sparenborg,S。&Tai,B。对有药物使用问题的患者的隐私保护。

Subst. Abuse Rehabil. 2, 227–233. https://doi.org/10.2147/SAR.S27237 (2011).Article .

第2227-233小节:虐待康复。https://doi.org/10.2147/SAR.S27237(2011年)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wu, Y. et al. Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat. Commun. 10, 1891. https://doi.org/10.1038/s41467-019-09572-5 (2019).Article

Wu,Y.等人。英国生物库中药物使用和相关疾病的全基因组关联研究。国家公社。101891年。https://doi.org/10.1038/s41467-019-09572-5(2019年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jennings, M. V. et al. Identifying high-risk comorbidities associated with opioid use patterns using Electronic Health record prescription data. Complex. Psychiatry 8, 47–55. https://doi.org/10.1159/000525313 (2022).Article

Jennings,M.V.等人。使用电子健康记录处方数据识别与阿片类药物使用模式相关的高风险合并症。复杂。。https://doi.org/10.1159/000525313(2022年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Breitenstein, M. K., Liu, H., Maxwell, K. N., Pathak, J. & Zhang, R. Electronic health record phenotypes for precision medicine: Perspectives and caveats from treatment of breast Cancer at a single Institution. Clin. Transl Sci. 11, 85–92. https://doi.org/10.1111/cts.12514 (2018).Article .

Breitenstein,M.K.,Liu,H.,Maxwell,K.N.,Pathak,J。&Zhang,R。精准医学的电子健康记录表型:单一机构治疗乳腺癌的观点和注意事项。。翻译科学。11,85-92。https://doi.org/10.1111/cts.12514(2018年)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wei, W. Q. & Denny, J. C. Extracting research-quality phenotypes from electronic health records to support precision medicine. Genome Med. https://doi.org/10.1186/s13073-015-0166-y (2015).Kember, R. L. et al. Cross-ancestry meta-analysis of opioid use disorder uncovers novel loci with predominant effects in brain regions associated with addiction.

Wei,W.Q.&Denny,J.C.从电子健康记录中提取研究质量表型以支持精准医学。基因组医学。https://doi.org/10.1186/s13073-015-0166-y(2015年)。Kember,R.L.等人,《阿片类药物使用障碍的跨血统荟萃分析》揭示了在与成瘾相关的大脑区域具有主要作用的新基因座。

Nat. Neurosci. 25, 1279–1287. https://doi.org/10.1038/s41593-022-01160-z (2022).Article .

纳特,神经科学。25, 1279–1287.https://doi.org/10.1038/s41593-022-01160-z(2022).第条。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mishriky, J., Stupans, I. & Chan, V. The views of Australian adults experiencing pain on the upscheduling of codeine-containing analgesics to ‘prescription only’. Int. J. Clin. Pharm. 43, 386–393. https://doi.org/10.1007/s11096-020-01026-z (2021).Article

Mishriky,J.,Stupans,I。&Chan,V。澳大利亚成年人对将含可待因的止痛药升级为“仅处方”感到疼痛的观点。国际J.临床。药物43386-393。https://doi.org/10.1007/s11096-020-01026-z(2021年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Robert, M., Jouanjus, E., Khouri, C., Sam-Lai, F., Revol, B. & N. & The opioid epidemic: A worldwide exploratory study using the WHO pharmacovigilance database. Addiction 118, 771–775. https://doi.org/10.1111/add.16081 (2023).Article

Robert,M.,Jouanjus,E.,Khouri,C.,Sam Lai,F.,Revol,B。&N。&阿片类药物流行:使用WHO药物警戒数据库进行的全球探索性研究。。https://doi.org/10.1111/add.16081(2023年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Castro, V. M. et al. The Mass General Brigham Biobank Portal: An i2b2-based data repository linking disparate and high-dimensional patient data to support multimodal analytics. J. Am. Med. Inf. Assoc. 29, 643–651. https://doi.org/10.1093/jamia/ocab264 (2022).Article

Castro,V.M.等人,《Mass General Brigham Biobank门户:一个基于i2b2的数据存储库,链接不同的高维患者数据以支持多模式分析》。J、 美国医学信息协会29643-651。https://doi.org/10.1093/jamia/ocab264(2022年)。文章

Google Scholar

谷歌学者

Fairley, S., Lowy-Gallego, E., Perry, E. & Flicek, P. The International Genome Sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 48, D941–D947. https://doi.org/10.1093/nar/gkz836 (2020).Article

Fairley,S.,Lowy Gallego,E.,Perry,E。&Flicek,P。国际基因组样本资源(IGSR)开放人类基因组变异资源的收集。核酸研究48,D941–D947。https://doi.org/10.1093/nar/gkz836(2020年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287. https://doi.org/10.1038/ng.3656 (2016).Article

Das,S.等人,《下一代基因型插补服务和方法》。纳特·吉内特。481284-1287年。https://doi.org/10.1038/ng.3656(2016年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181. https://doi.org/10.1038/nmeth.1785 (2011).Article

Delaneau,O.,Marchini,J。&Zagury,J.F。一种用于数千个基因组的线性复杂度定相方法。自然方法9179-181。https://doi.org/10.1038/nmeth.1785(2011年)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. https://doi.org/10.1186/s13742-015-0047-8 (2015).Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA.

Chang,C.C.等人,《第二代PLINK:迎接更大、更丰富数据集的挑战》。Gigascience公司。https://doi.org/10.1186/s13742-015-0047-8(2015年)。Watanabe,K.,Taskesen,E.,van Bochoven,A。&Posthuma,D。与FUMA遗传关联的功能定位和注释。

Nat. Commun. 8, 1826. https://doi.org/10.1038/s41467-017-01261-5 (2017).Article .

纳特,公社。8,1826.https://doi.org/10.1038/s41467-017-01261-5(2017).第条。

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219. https://doi.org/10.1371/journal.pcbi.1004219 (2015).Article

de Leeuw,C.A.,Mooij,J.M.,Heskes,T。和Posthuma,D。MAGMA:GWAS数据的广义基因组分析。PLoS计算机。生物学11,e1004219。https://doi.org/10.1371/journal.pcbi.1004219(2015年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sullivan, P. F. et al. Psychiatric Genomics: An update and an agenda. Am. J. Psychiatry 175, 15–27. https://doi.org/10.1176/appi.ajp.2017.17030283 (2018).Article

Sullivan,P.F.等人,《精神病学基因组学:更新和议程》。。https://doi.org/10.1176/appi.ajp.2017.17030283(2018年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Team, P. U. Pan-Ancestry Genetic Analysis of the UK Biobank. https://pan.ukbb.broadinstitute.org (2020).Sudlow, C. et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779. https://doi.org/10.1371/journal.pmed.1001779 (2015).Article .

英国生物库的P.U.泛血统遗传分析团队。https://pan.ukbb.broadinstitute.org(2020年)。Sudlow,C.等人,《英国生物库:一种开放获取资源,用于识别中老年各种复杂疾病的原因。。https://doi.org/10.1371/journal.pmed.1001779(2015年)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ge, T., Chen, C. Y., Ni, Y., Feng, Y. A. & Smoller, J. W. Polygenic prediction via bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776. https://doi.org/10.1038/s41467-019-09718-5 (2019).Article

Ge,T.,Chen,C.Y.,Ni,Y.,Feng,Y.A.&Smoller,J.W。通过贝叶斯回归和连续收缩先验进行多基因预测。国家公社。101776年。https://doi.org/10.1038/s41467-019-09718-5(2019年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, F., Zhu, W. & Gonzalez, F. J. Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol. Ther. 178, 18–30. https://doi.org/10.1016/j.pharmthera.2017.03.007 (2017).Article

Li,F.,Zhu,W。和Gonzalez,F。J。CYP1B1在代谢性疾病的发展和治疗中的潜在作用。药理学。他们。178、18-30岁。https://doi.org/10.1016/j.pharmthera.2017.03.007(2017年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fan, S. et al. Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans. Am. J. Hum. Genet. 108, 324–336. https://doi.org/10.1016/j.ajhg.2021.01.010 (2021).Article

Fan,S。等人,C14orf39/SIX6OS1的纯合突变会导致人类非阻塞性无精子症和卵巢早衰。上午J。嗯。Genet。108324-336。https://doi.org/10.1016/j.ajhg.2021.01.010(2021年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martin, J. et al. A genetic investigation of Sex Bias in the prevalence of Attention-Deficit/Hyperactivity disorder. Biol. Psychiatry 83, 1044–1053. https://doi.org/10.1016/j.biopsych.2017.11.026 (2018).Article

Martin,J.等人,《注意力缺陷多动障碍患病率中性别偏见的遗传学调查》。生物学精神病学831044-1053。https://doi.org/10.1016/j.biopsych.2017.11.026(2018年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 21, 1656–1669. https://doi.org/10.1038/s41593-018-0275-1 (2018).Article

Walters,R.K。等人。酒精依赖的跨脑GWAS揭示了精神疾病的共同遗传基础。自然神经科学。211656-1669年。https://doi.org/10.1038/s41593-018-0275-1(2018年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413. https://doi.org/10.1038/s41588-018-0311-9 (2019).Article

全基因组荟萃分析确定了影响阿尔茨海默病风险的新基因座和功能途径。纳特·吉内特。51404-413。https://doi.org/10.1038/s41588-018-0311-9(2019年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Karczewski, K. et al. Pan-UK Biobank GWAS improves discovery, analysis of genetic architecture, and resolution into ancestry-enriched effects. medRxiv https://doi.org/10.1101/2024.03.13.24303864 (2024).McCarty, C. A. et al. The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies.

Karczewski,K。等人,Pan UK Biobank GWAS改进了遗传结构的发现,分析和祖先富集效应的解析。medRxiv公司https://doi.org/10.1101/2024.03.13.24303864(2024年)。麦卡蒂(McCarty,C.A.)等人(The eMERGE Network):一个与电子病历数据相关的生物存储库联盟,用于进行基因组研究。

BMC Med. Genomics 4, 13. https://doi.org/10.1186/1755-8794-4-13 (2011).Article .

BMC医学基因组学4,13。https://doi.org/10.1186/1755-8794-4-13(2011).第条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

All of Us Research Program. The all of Us Research Program. N. Engl. J. Med. 381, 668–676. https://doi.org/10.1056/NEJMsr1809937 (2019).Article

我们所有人的研究计划。我们所有人的研究计划。N、 英语。J、 医学381668-676。https://doi.org/10.1056/NEJMsr1809937(2019年)。文章

Google Scholar

谷歌学者

Song, W., Huang, H., Zhang, C. Z., Bates, D. W. & Wright, A. Using whole genome scores to compare three clinical phenotyping methods in complex diseases. Sci. Rep. 8, 11360. https://doi.org/10.1038/s41598-018-29634-w (2018).Article

Song,W.,Huang,H.,Zhang,C.Z.,Bates,D.W。&Wright,A。使用全基因组评分来比较复杂疾病中的三种临床表型分型方法。科学。代表811360。https://doi.org/10.1038/s41598-018-29634-w(2018年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mosley, J. D. et al. Identifying genetically driven clinical phenotypes using linear mixed models. Nat. Commun. 7, 11433. https://doi.org/10.1038/ncomms11433 (2016).Article

Mosley,J.D.等人。使用线性混合模型识别遗传驱动的临床表型。国家公社。711433年。https://doi.org/10.1038/ncomms11433(2016年)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

DeBoever, C. et al. Assessing digital phenotyping to enhance genetic studies of human diseases. Am. J. Hum. Genet. 106, 611–622. https://doi.org/10.1016/j.ajhg.2020.03.007 (2020).Article

DeBoever,C.等人。评估数字表型以增强人类疾病的遗传研究。上午J。嗯。Genet。106611-622。https://doi.org/10.1016/j.ajhg.2020.03.007(2020年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sinnott, J. A. et al. Improving the power of genetic association tests with imperfect phenotype derived from electronic medical records. Hum. Genet. 133, 1369–1382. https://doi.org/10.1007/s00439-014-1466-9 (2014).Article

Sinnott,J.A.等人。改进来自电子病历的不完美表型的遗传关联测试的能力。嗯,Genet。1331369-1382年。https://doi.org/10.1007/s00439-014-1466-9(2014年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

King, C., Englander, H., Priest, K. C., Korthuis, P. T. & McPherson, S. Addressing missing data in substance use research: A review and data justice-based approach. J. Addict. Med. 14, 454–456. https://doi.org/10.1097/ADM.0000000000000644 (2020).Article

King,C.,Englander,H.,Priest,K.C.,Korthuis,P.T。&McPherson,S。解决物质使用研究中缺失的数据:基于审查和数据正义的方法。J、 。医学14454-456。https://doi.org/10.1097/ADM.0000000000000644(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deyo, R. A. et al. Association between initial opioid prescribing patterns and subsequent long-term use among opioid-naive patients: A statewide retrospective cohort study. J. Gen. Intern. Med. 32, 21–27. https://doi.org/10.1007/s11606-016-3810-3 (2017).Article

Deyo,R.A.等人,《初始阿片类药物处方模式与未服用阿片类药物患者随后长期使用之间的关联:全州回顾性队列研究》。J、 总实习生。医学32,21-27。https://doi.org/10.1007/s11606-016-3810-3(2017年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lopes, G. S. et al. Identification of sex-specific genetic associations in response to opioid analgesics in a White, non-hispanic cohort from Southeast Minnesota. Pharmacogenom. J. 22, 117–123. https://doi.org/10.1038/s41397-022-00265-9 (2022).Article

。药物遗传学。J、 22117-123。https://doi.org/10.1038/s41397-022-00265-9(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Santo, T. Jr. et al. Prevalence of mental disorders among people with opioid use disorder: A systematic review and meta-analysis. Drug Alcohol Depend. 238, 109551. https://doi.org/10.1016/j.drugalcdep.2022.109551 (2022).Article

Santo,T.Jr.等人,《阿片类药物使用障碍患者精神障碍的患病率:系统综述和荟萃分析》。药物依赖酒精。238109551。https://doi.org/10.1016/j.drugalcdep.2022.109551(2022年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sullivan, M. D., Edlund, M. J., Zhang, L., Unutzer, J. & Wells, K. B. Association between mental health disorders, problem drug use, and regular prescription opioid use. Arch. Intern. Med. 166, 2087–2093. https://doi.org/10.1001/archinte.166.19.2087 (2006).Article

Sullivan,M.D.,Edlund,M.J.,Zhang,L.,Unutzer,J。&Wells,K.B。心理健康障碍,问题药物使用和常规处方阿片类药物使用之间的关联。拱门。实习生。医学1662087-2093。https://doi.org/10.1001/archinte.166.19.2087(2006年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Compton, W. M., Valentino, R. J. & DuPont, R. L. Polysubstance use in the U.S. opioid crisis. Mol. Psychiatry 26, 41–50. https://doi.org/10.1038/s41380-020-00949-3 (2021).Article

康普顿,W.M.,瓦伦蒂诺,R.J。和杜邦,R.L。多物质在美国阿片类药物危机中的使用。分子精神病学26,41-50。https://doi.org/10.1038/s41380-020-00949-3(2021年)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Von Korff, M. et al. De facto long-term opioid therapy for noncancer pain. Clin. J. Pain 24, 521–527. https://doi.org/10.1097/AJP.0b013e318169d03b (2008).Article

Von Korff,M.等人。事实上长期阿片类药物治疗非癌性疼痛。。J、 疼痛24521-527。https://doi.org/10.1097/AJP.0b013e318169d03b(2008年)。文章

Google Scholar

谷歌学者

Wong, A. K., Somogyi, A. A., Rubio, J. & Philip, J. The role of pharmacogenomics in opioid prescribing. Curr. Treat. Options Oncol. 23, 1353–1369. https://doi.org/10.1007/s11864-022-01010-x (2022).Article

Wong,A.K.,Somogyi,A.A.,Rubio,J。和Philip,J。药物基因组学在阿片类药物处方中的作用。Curr。治疗。选项Oncol。231353-1369年。https://doi.org/10.1007/s11864-022-01010-x(2022年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis study was supported by National Institute on Drug Abuse (NIDA) 1K01DA059572-01.The authors would like to acknowledge contributions of The Mass General Brigham (MGB) Biobank for providing genomic data and health information data, and The MGB Biobank Team for providing all the technique support.We gratefully acknowledge all the studies and databases that made GWAS summary data available: Psychiatric Genomics Consortium, the Pan-UKB project and UK Biobank.Psychiatric Genomics Consortium: https://pgc.unc.edu/for-researchers/download-results/Pan-UKB team: https://pan.ukbb.broadinstitute.org.

下载参考文献致谢本研究得到了美国国家药物滥用研究所(NIDA)1K01DA059572-01的支持。作者要感谢马萨诸塞州布莱根将军(MGB)生物库为提供基因组数据和健康信息数据所做的贡献,以及MGB生物库团队为提供所有技术支持。我们非常感谢所有提供GWAS摘要数据的研究和数据库:精神病学基因组学联盟,泛UKB项目和英国生物库。精神病学基因组学协会:https://pgc.unc.edu/for-researchers/download-results/Pan-UKB团队:https://pan.ukbb.broadinstitute.org.

2020.UK Biobank: https://biobank.ctsu.ox.ac.uk/crystal/exinfo.cgi? src=accessing_data_guide.Author informationAuthors and AffiliationsDepartment of Medicine, Brigham and Women’s Hospital, Boston, MA, USAWenyu Song & David W. BatesStanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USAWenyu Song, Max Lam & Ruize LiuAnalytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USARuize LiuNorth Region, Institute of Mental Health, Singapore, SingaporeMax LamDepartment of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA, USAScott G.

2020.UK生物库:https://biobank.ctsu.ox.ac.uk/crystal/exinfo.cgi?src=访问\u data\u指南。作者信息作者和附属机构马萨诸塞州波士顿布莱根妇女医院医学系,USAWenyu Song&David W.BatesStanley精神病学研究中心,麻省理工学院和哈佛大学布罗德研究所,马萨诸塞州剑桥,USAWenyu Song,Max Lam&Ruize LIU马萨诸塞州波士顿总医院医学系分析和转化遗传学系,USARUZE LiuNorth地区,新加坡精神卫生研究所,新加坡Max Lam急诊医学系,马萨诸塞州波士顿布莱根妇女医院,USAScott G。

WeinerDepartment of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USAKenneth J. MukamalDepartment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USAAdam WrightDepartment of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USARichard D.

韦纳医学系,贝斯以色列女执事医学中心,波士顿,马萨诸塞州,美国肯尼斯·J·穆卡马尔生物医学信息学系,范德比尔特大学医学中心,纳什维尔,田纳西州,美国亚当·赖特俄亥俄州立大学韦克斯纳医学中心麻醉学系,哥伦布,俄亥俄州,美国理查德·D。

UrmanDivision of Clinical Pharmacology and Toxicology, Geneva University Hospitals and Faculty of Medicine, Geneva, SwitzerlandAurélien SimonaHarvard Medical School, Boston, MA, USAWenyu Song, Scott.

日内瓦大学医院和医学院临床药理学和毒理学研究所,日内瓦,瑞士Daurélien SimonaHarvard医学院,马萨诸塞州波士顿,USAWenyu Song,斯科特。

PubMed Google ScholarMax LamView author publicationsYou can also search for this author in

PubMed Google ScholarMax LamView作者出版物您也可以在

PubMed Google ScholarRuize LiuView author publicationsYou can also search for this author in

PubMed Google ScholarRuize LiuView作者出版物您也可以在

PubMed Google ScholarAurélien SimonaView author publicationsYou can also search for this author in

PubMed Google ScholarAurélien SimonaView作者出版物您也可以在

PubMed Google ScholarScott G. WeinerView author publicationsYou can also search for this author in

PubMed Google ScholarScott G.WeinerView作者出版物您也可以在

PubMed Google ScholarRichard D. UrmanView author publicationsYou can also search for this author in

PubMed Google ScholarRichard D.UrmanView作者出版物您也可以在

PubMed Google ScholarKenneth J. MukamalView author publicationsYou can also search for this author in

PubMed Google ScholarkennethJ.MukamalView作者出版物您也可以在

PubMed Google ScholarAdam WrightView author publicationsYou can also search for this author in

PubMed Google ScholarAdam WrightView作者出版物您也可以在

PubMed Google ScholarDavid W. BatesView author publicationsYou can also search for this author in

PubMed Google ScholarDavid W.BatesView作者出版物您也可以在

PubMed Google ScholarContributionsWS initiated the study and developed the study cohort. WS, ML and RL designed and conducted data analysis. DB, KM, SW, RU and AS provided important clinical opinions. DB and AW were involved in study supervision. All authors are participated in manuscript development and are accountable for integrity of this work.Corresponding authorCorrespondence to.

PubMed Google ScholarContributionsWS启动了这项研究并开发了研究队列。WS,ML和RL设计并进行了数据分析。DB,KM,SW,RU和AS提供了重要的临床意见。DB和AW参与了研究监督。所有作者都参与了稿件的开发,并对这项工作的完整性负责。相应的作者回复。

Wenyu Song.Ethics declarations

。道德宣言

Competing interests

相互竞争的利益

Richard D. Urman received consulting fees from AcelRx and has received funding from National Institutes of Health.

Richard D.Urman从AcelRx获得了咨询费,并获得了美国国立卫生研究院的资助。

Ethics approval

道德认可

This project was reviewed and approved by the Mass General Brigham (MGB) Human Research Committee. Due to the retrospective nature of the study, the MGB Institutional Review Board waived the need of obtaining informed consent. All methods were carried out in accordance with relevant guidelines and regulations..

该项目已由马萨诸塞州布莱根将军(MGB)人类研究委员会审查和批准。由于该研究具有回顾性,MGB机构审查委员会放弃了获得知情同意的需要。所有方法均按照相关指南和规定进行。。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleSong, W., Lam, M., Liu, R. et al. A genome-wide Association study of the Count of Codeine prescriptions.

转载和许可本文引用本文Song,W.,Lam,M.,Liu,R。等人对可待因处方计数的全基因组关联研究。

Sci Rep 14, 22780 (2024). https://doi.org/10.1038/s41598-024-73925-4Download citationReceived: 21 March 2024Accepted: 23 September 2024Published: 01 October 2024DOI: https://doi.org/10.1038/s41598-024-73925-4Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1422780(2024)。https://doi.org/10.1038/s41598-024-73925-4Download引文接收日期:2024年3月21日接受日期:2024年9月23日发布日期:2024年10月1日OI:https://doi.org/10.1038/s41598-024-73925-4Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsMedication use phenotypeElectronic health recordGenome-wide association studyOpioid use disorderPolygenic risk scoreOpioid prescription phenotype

关键词药物使用表型电子健康记录全基因组关联研究类药物使用障碍多基因风险评分类药物处方表型

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。