商务合作
动脉网APP
可切换为仅中文
AbstractPolyploidization plays an important role in plant speciation and adaptation. To address the role of polyploidization in grass diversification, we studied Phragmites australis, an invasive species with intraspecific variation in chromosome numbers ranging from 2n = 36 to 144. We utilized a combined analysis of ploidy estimation, phylogeny, population genetics and model simulations to investigate the evolution of P.
摘要多倍体化在植物物种形成和适应中起着重要作用。为了解决多倍体化在草地多样化中的作用,我们研究了芦苇(Phragmites australis),这是一种入侵物种,染色体数量的种内变异范围为2n=36至144。。
australis. Using restriction site-associated DNA sequencing (RAD-seq), we conducted a genome-wide analysis of 88 individuals sourced from diverse populations worldwide, revealing the presence of six distinct intraspecific lineages with extensive genetic admixture. Each lineage was characterized by a specific ploidy level, predominantly tetraploid or octoploid, indicative of multiple independent polyploidization events.
澳大利亚。使用限制性位点相关DNA测序(RAD-seq),我们对来自全球不同人群的88个个体进行了全基因组分析,揭示了存在六个不同的种内谱系,具有广泛的遗传混合物。每个谱系的特征在于特定的倍性水平,主要是四倍体或八倍体,表明存在多个独立的多倍体化事件。
The population size of each lineage has declined moderately in history while remaining large, except for the North American native and the US Land types, which experienced constant population size contraction throughout their history. Our investigation did not identify direct association between polyploidization events and grass invasions.
每个血统的人口规模在历史上都有所下降,但仍然很大,除了北美原住民和美国土地类型,它们在整个历史上都经历了不断的人口规模收缩。我们的调查没有发现多倍体事件与草入侵之间的直接关联。
Nonetheless, we observed octoploid and hexaploid lineages at contact zones in Romania, Hungary, and South Africa, suggestively due to genomic conflicts arising from allotetraploid parental lineages..
尽管如此,我们在罗马尼亚,匈牙利和南非的接触区观察到了八倍体和六倍体谱系,这可能是由于异源四倍体亲本谱系引起的基因组冲突。。
IntroductionPolyploidization in the form of allopolyploidization, autopolyploidization, or segmental polyploidization, has been associated with speciation and shaping genetic diversity in the plant kingdom1,2,3. Polyploids have been suggested to outperform their diploid progenitors in highly stressed abiotic environments4, and hence have an access to a wider range of habitats.
引言异源多倍体化,自多倍体化或节段多倍体化形式的多倍体化与植物王国的物种形成和遗传多样性形成有关1,2,3。已经提出多倍体在高度胁迫的非生物环境中优于其二倍体祖细胞4,因此可以获得更广泛的栖息地。
Successful polyploids may be more disposed towards evolving into invasive species5 and drive diploid ancestors to extinction by recurrent hybridization followed by genomic recombination and duplications, as seen in the well-known Spartina species6. However, several empirical studies have challenged this view7, and in contrast Martin and Husband8 suggested that differing ploidy levels might facilitate the coexistence of diploid and tetraploid congeners.
成功的多倍体可能更倾向于进化成入侵物种5,并通过反复杂交,然后进行基因组重组和重复,使二倍体祖先灭绝,如众所周知的米草属物种6所示。然而,一些实证研究对这一观点提出了挑战7,相反,Martin和Husband8认为不同的倍性水平可能有助于二倍体和四倍体同源物的共存。
After the founding polyploid event (or Whole Genome Duplication, WGD), genomic redundancy is reduced through major genomic arrangements including shuffling and deletion of chromosome segments in a process known as “diploidization”. This allows the newly formed genome to function cohesively in the new species9,10.
在建立多倍体事件(或全基因组复制,WGD)后,通过主要的基因组安排(包括在称为“二倍体化”的过程中改组和删除染色体片段)减少了基因组冗余。这使得新形成的基因组在新物种中具有凝聚力9,10。
WGD events are particularly common among grasses11. For example, all cereals have undergone rho, sigma and tau WGD events. The grass family (Poaceae), which includes more than 10,000 species today, originated from a common ancestor with five chromosomes12. A series of genome duplication and subsequent genome fractionation events, involving chromosomal structural rearrangements and loss of redundancy, led to a common ancestral genome with 12 chromosomes in cereals.
WGD事件在草地中特别常见11。例如,所有谷物都经历了rho,sigma和tau WGD事件。禾本科(禾本科)今天包括10000多种,起源于具有五个染色体的共同祖先12。。
This genome structure is shared across the early diverging grass subfamilies Anomochlooideae, Pharoideae, and Puelioideae12,13. Hence, all extant Poaceae species are paleopolyploi.
这种基因组结构在早期分化的草亚科Anomochlooideae,Pharoideae和Puelioideae12,13中共享。因此,所有现存的禾本科物种都是古水龙骨科。
For RAD-seq data, a histogram of the proportion of reads supporting the alternative allele revealed modes at around 0.5 for flow cytometry-confirmed tetraploids, at 0.35 and 0.65 for hexaploids, and between 0.35 and 0.65 for octoploids (Fig. 4). These proportions indicate that the RAD-seq loci were unique to the two subgenomes of the allotetraploid common reed.
对于RAD-seq数据,支持替代等位基因的读数比例的直方图显示,流式细胞术证实的四倍体模式约为0.5,六倍体为0.35和0.65,八倍体为0.35和0.65(图4)。这些比例表明RAD-seq基因座对于异源四倍体普通芦苇的两个亚基因组是独特的。
Out of the 88 individuals, the ploidy levels of 64 were quantified using flow cytometry. Only three samples (Y24, E3, Y37) showed discrepancies between the flow cytometry and our read-based prediction method, which may be attributed to mislabeling of samples or potential aneuploidy. Therefore, the prediction accuracy is at least 95.3% (Table 1), demonstrating that the prediction of ploidy levels from RAD-seq data can be done accurately.Fig.
在88名个体中,使用流式细胞术定量了64倍性水平。只有三个样品(Y24,E3,Y37)显示流式细胞术与我们基于读数的预测方法之间存在差异,这可能归因于样品的错误标记或潜在的非整倍性。因此,预测精度至少为95.3%(表1),表明可以准确地从RAD-seq数据预测倍性水平。图。
4: The alternative allele frequency histograms from aligning the RAD-seq reads to the reference genome.Solid line shows frequency distribution of alternative alleles in individuals where the result was confirmed with flow cytometry. Dashed line shows frequency distribution of alternative alleles in individuals with missing or differing flow cytometry measurement.
4: 将RAD-seq读数与参考基因组对齐的替代等位基因频率直方图。实线显示了用流式细胞术证实结果的个体中替代等位基因的频率分布。虚线显示缺失或不同流式细胞术测量的个体中替代等位基因的频率分布。
Turquoise, red, and blue color represented tetraploid, hexaploidy, and octoploid respectively. Pattern of alternative allele frequency in population tetraploids (a), USnat (b), hexaploids (c), and octoploids (d).Full size imageWe predicted the ploidy levels for the remaining 24 individuals using the in silico method.
绿松石色,红色和蓝色分别代表四倍体,六倍体和八倍体。群体四倍体(a),USnat(b),六倍体(c)和八倍体(d)中替代等位基因频率的模式。全尺寸图像我们使用计算机方法预测了其余24个人的倍性水平。
Most individuals from North America, Northern China, Mediterranean regions, and Europe (representing the USnat, CN, Med, EU lineages; see Fig. 4) were predicted to be allotetraploid, with a unimodal distribution peaking at 0.5 (Table 1; Fig. 4a, b). All representatives from the Gulf Coast (USland lineage).
来自北美,华北,地中海地区和欧洲(代表USnat,CN,Med,EU谱系;见图4)的大多数个体被预测为异源四倍体,单峰分布峰值为0.5(表1;图4a,b)。所有来自墨西哥湾海岸(USland血统)的代表。
Based on our phylogenetic analyses, the USnat lineage diverged early from the main Laurasian population. Consequently, genetic divergence between USnat and other lineages was high (Fst > 0.27, Fig. 2c), especially with USland, see refs. 27,47. The USland lineage showed high divergence from CN (Fst = 0.40) and showed moderate divergence with EU and Med (0.28 < Fst < 0.29).
。因此,USnat与其他谱系之间的遗传差异很高(Fst>0.27,图2c),尤其是USland,参见参考文献。27,47。USland血统与CN(Fst=0.40)表现出高度差异,与EU和Med(0.28 <Fst<0.29)表现出中度差异。
The lowest Fst values were observed between EU and Med, as well as between EU and CN lineages (0.213), suggesting more recent divergence and gene flow (Fig. 2c). We therefore analyzed gene flow using formal tests of introgression.To trace the origin of higher ploidy levels, we conducted f3 tests to investigate whether octoploids and hexaploids were sourced from hybridization among different populations within the same species.
在EU和Med之间以及EU和CN谱系之间观察到最低的Fst值(0.213),表明最近的分歧和基因流(图2c)。因此,我们使用基因渗入的正式测试分析了基因流。为了追踪更高倍性水平的起源,我们进行了f3测试,以调查八倍体和六倍体是否来自同一物种内不同种群之间的杂交。
In an f3 test, a negative value for f3(Pop1; Pop2, Pop3) indicates that Pop1 is admixed between populations related to Pop2 and Pop3. We tested all combinations of the six populations and found that none of the f3 tests yielded negative values, providing no evidence of hybridization (Supplementary Table S2; Supplementary Fig.
在f3测试中,f3的负值(Pop1;Pop2,Pop3)表明Pop1在与Pop2和Pop3相关的种群之间混合。我们测试了六个种群的所有组合,发现f3测试均未产生负值,未提供杂交证据(补充表S2;补充图)。
S4). Population migrations estimated with Treemix were consistent with the topology of the maximum likelihood phylogenetic tree. A model incorporating two migration events received the highest support from the data (Supplementary Fig. S5). This model suggests one migration event from an ancestral lineage genetically related to the USnat lineage into the USland lineage, alongside a more pronounced migration from the ancestral population of the EU lineage into the USnat lineage (Fig.
S4)。用Treemix估计的种群迁移与最大似然系统发育树的拓扑结构一致。包含两个迁移事件的模型得到了数据的最高支持(补充图S5)。该模型表明,从与USnat谱系遗传相关的祖先谱系向USland谱系的一次迁移事件,以及从欧盟谱系的祖先种群向USnat谱系的更明显迁移(图)。
6a). This suggests that one of the ancestors of the hexaploid USland lineage may be a ghost lineage not sampled in our study. In fact, the USland lineage, habituated in the Gulf C.
6a)。这表明六倍体USland血统的祖先之一可能是我们研究中未采样的幽灵血统。事实上,USland血统习惯于海湾C。
Data Availability
数据可用性
The data underlying this article are available in NCBI SRA database and can be accessed with the BioProject ID PRJNA753984.
本文的基础数据可在NCBI SRA数据库中找到,可以使用生物项目ID PRJNA753984进行访问。
Code availability
代码可用性
The scripts used for the reads mapping, SNP calling, as well as population genetic analysis in this article could be found from github https://github.com/smallfishcui/PhragPopGen.
本文中用于读取映射、SNP调用以及种群遗传分析的脚本可以从github找到https://github.com/smallfishcui/PhragPopGen.
ReferencesWinge, Ö. The chromosome. Their numbers and general importance. Compt. Rend. Trav. Lab. Carlsberg. 13, 131–175 (1917).
参考文献Winge,Ö。染色体。他们的数量和普遍重要性。Compt公司。撕裂。特拉夫。《嘉士伯实验室》,1311-175(1917)。
Google Scholar
谷歌学者
Blakeslee, A. F. Effect of induced polyploidy in plants. Am. Nat. 75, 117–135 (1941).Article
Blakeslee,A.F。植物诱导多倍体的作用。《美国国家汇编》第75117-135页(1941年)。文章
Google Scholar
谷歌学者
Ramsey, J. & Ramsey, T. S. Ecological studies of polyploidy in the 100 years following its discovery. Philoso. Trans. R. Soc. B Biol. Sci. 369, 20130352 (2014).Article
Ramsey,J.&Ramsey,T.S。多倍体发现后100年的生态学研究。哲学。事务处理。R、 社会学B生物学。科学。36920130352(2014)。文章
Google Scholar
谷歌学者
Godfree, R. C., Marshall, D. J., Young, A. G., Miller, C. H. & Mathews, S. Empirical evidence of fixed and homeostatic patterns of polyploid advantage in a keystone grass exposed to drought and heat stress. R. Soc. Open Sci. 4, 170934 (2017).Article
。R、 社会开放科学。4170934(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pandit, M. K., Pocock, M. J. & Kunin, W. E. Ploidy influences rarity and invasiveness in plants. J. Ecol. 99, 1108–1115 (2011).Article
Pandit,M.K.,Pocock,M.J。&Kunin,W.E。倍性影响植物的稀有性和侵袭性。J、 Ecol公司。991108-1115(2011)。文章
Google Scholar
谷歌学者
Aïnouche, M. L. et al. Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol. Invasions 11, 1159 (2009).Article
Aïnouche,M.L.等人,《杂交,多倍体和入侵:来自米草属(禾本科)的教训》。。文章
Google Scholar
谷歌学者
Husband, B. C., Baldwin, S. J. & Suda, J. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes, (Springer, 2013).Martin, S. L. & Husband, B. C. Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol. 97, 913–922 (2009).Article .
Hurst,B.C.,Baldwin,S.J。&Suda,J。天然植物种群中多倍体的发生率:主要模式和进化过程,(Springer,2013)。Martin,S.L。&Hurst,B.C。系统发育和倍性对北美被子植物物种范围的影响。J、 Ecol公司。97913-922(2009)。文章。
Google Scholar
谷歌学者
Comai, L. The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836 (2005).Article
。Genet自然Rev。6836(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Conant, G. C., Birchler, J. A. & Pires, J. C. Dosage, duplication, and diploidization: clarifying the interplay of multiple models for duplicate gene evolution over time. Curr. Opin. Plant Biol. 19, 91–98 (2014).Article
Conant,G.C.,Birchler,J.A。&Pires,J.C。剂量,重复和二倍体化:阐明随着时间的推移重复基因进化的多个模型的相互作用。货币。奥平。植物生物学。19,91-98(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Estep, M. C. et al. Allopolyploidy, diversification, and the Miocene grassland expansion. Proc. Natl Acad. Sci. USA 111, 15149–15154 (2014).Article
Estep,M.C.等人,《异源多倍体、多样化和中新世草原扩张》。程序。国家科学院。科学。美国11115149–15154(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Salse, J. et al. Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20, 11–24 (2008).Article
水稻和小麦之间共享重复的鉴定和表征为草基因组进化提供了新的见解。植物细胞20,11-24(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Levy, A. A. & Feldman, M. The impact of polyploidy on grass genome evolution. Plant Physiol. 130, 1587–1593 (2002).Article
Levy,A.A。&Feldman,M。多倍体对草基因组进化的影响。植物生理学。1301587-1593(2002)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Brysting, A. K., Fay, M. F., Leitch, I. J. & Aiken, S. G. One or more species in the arctic grass genus Dupontia?–a contribution to the Panarctic Flora project. Taxon 53, 365–382 (2004).Article
Brysting,A.K.,Fay,M.F.,Leitch,I.J.&Aiken,S.G.北极草属Dupontia?中的一种或多种物种对泛北极植物区系项目的贡献。分类群53365-382(2004)。文章
Google Scholar
谷歌学者
Abdeddaim-Boughanmi, K. et al. A single species, two basic chromosomal numbers: case of Lygeum spartum (Poaceae). Plant Biosyst. Int. J. Dealing Asp. Plant Biol. 153, 775–783 (2019).
Abdeddaim Boughanmi,K。等人。一个物种,两个基本的染色体数目:Lygeum spartum(禾本科)的情况。植物生物系统。国际J.交易Asp。植物生物学。153775-783(2019)。
Google Scholar
谷歌学者
Raicu, P., Staicu, S., Stoian, V. & Roman, T. The Phragmites communis Trin. chromosome complement in the Danube delta. Hydrobiologia 39, 83–89 (1972).Article
Raicu,P.,Staicu,S.,Stoian,V。&Roman,T。多瑙河三角洲的芦苇染色体互补。水生生物学39,83-89(1972)。文章
Google Scholar
谷歌学者
Zhang, J. et al. Variation in ploidy level and genome size of Cynodon dactylon (L.) Pers. along a latitudinal gradient. Folia Geobot. 54,267–278 (2020).Salojärvi, J. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch.
Zhang,J。等人。狗牙根(L.)Pers。倍性水平和基因组大小沿纬度梯度的变化。Folia Geobot。54267–278(2020)。Salojärvi,J.等人。基因组测序和种群基因组分析为银桦的适应性景观提供了见解。
Nat. Genet. 49, 904–912 (2017).Article .
Nat.Genet。49, 904–912 (2017).第[UNK]条。
PubMed
PubMed
Google Scholar
谷歌学者
dos Santos, R. A. C., Goldman, G. H. & Riaño-Pachón, D. M. ploidyNGS: Visually exploring ploidy with next generation sequencing data. bioRxiv, 086488 (2016).Margarido, G. R. & Heckerman, D. ConPADE: genome assembly ploidy estimation from next-generation sequencing data. PLoS Comput. Biol.
dos Santos,R.A.C.,Goldman,G.H。和Riaño-Pachón,D.M。倍性:用下一代测序数据可视化探索倍性。Biorxiv086488(2016)。Margarido,G.R。和Heckerman,D.ConPADE:从下一代测序数据估计基因组装配倍性。PLoS计算机。生物。
11, e1004229 (2015).Article .
11,e1004229(2015)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 1–8 (2018).Article
Weiß,C.L.,Pais,M.,Cano,L.M.,Kamoun,S。&Burbano,H.A.nQuire:使用下一代测序进行倍性估计的统计框架。BMC生物信息。19,1-8(2018)。文章
Google Scholar
谷歌学者
Clevering, O. A. & Lissner, J. Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat. Bot. 64, 185–208 (1999).Article
Clevering,O.A.&Lissner,J。芦苇的分类学,染色体数目,克隆多样性和种群动态。水。。文章
Google Scholar
谷歌学者
Connor, H., Dawson, M., Keating, R. & Gill, L. Chromosome numbers of Phragmites australis (Arundineae: Gramineae) in New Zealand. N.Z. J. Bot. 36, 465–469 (1998).Article
Connor,H.,Dawson,M.,Keating,R。&Gill,L。新西兰芦苇(Arundineae:禾本科)的染色体数。N、 Z.J.Bot.36465-469(1998)。文章
Google Scholar
谷歌学者
Saltonstall, K. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl Acad. Sci. USA 99, 2445–2449 (2002).Article
。程序。国家科学院。科学。美国992445-2449(2002)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tanaka, T. S., Irbis, C. & Inamura, T. Phylogenetic analyses of Phragmites spp. In southwest China identified two lineages and their hybrids. Plant Syst. Evol. 303, 699–707 (2017).Article
Tanaka,T.S.,Irbis,C。&Inamura,T。中国西南部芦苇属的系统发育分析确定了两个谱系及其杂种。工厂系统。进化。303699-707(2017)。文章
Google Scholar
谷歌学者
Lambertini, C. et al. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Syst. Evol. 258, 161–182 (2006).Article
Lambertini,C。等人。基于AFLP的世界性芦苇属(禾本科)的系统地理学研究。工厂系统。进化。。文章
Google Scholar
谷歌学者
Lambertini, C. et al. Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long‐distance dispersal and hybridization. Am. J. Bot. 99, 538–551 (2012).Article
Lambertini,C.等人,《追踪墨西哥湾沿岸芦苇(禾本科)的起源:远距离扩散和杂交的故事》。《美国法学杂志》第99538-551页(2012年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, L. L. et al. Cryptic lineages and potential introgression in a mixed‐ploidy species (Phragmites australis) across temperate China. J. Syst. Evol. 60, 398–410 (2020).Greuter, W. & Scholz, H. Phragmites in Crete, Cenchrus frutescens, and the nomenclature of the common reed (Gramineae).
。J、 系统。进化。60398-410(2020)。Greuter,W.&Scholz,克里特岛的H.Phragmites,Cenchrus frutescens和普通芦苇(禾本科)的命名法。
Taxon 45, 521–523 (1996).Article .
分类群45521-523(1996)。文章。
Google Scholar
谷歌学者
Peterson, K. S. P. M. & Soreng, R. J. Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. Sida 21, 683–692 (2004).
Peterson,K.S.P.M。和Soreng,R.J。芦苇亚种的识别。北美的americanus(禾本科:Arundinoideae):来自形态和遗传分析的证据。Sida 21683-692(2004)。
Google Scholar
谷歌学者
Saltonstall, K., Peterson, P. M. & Soreng, R. J. Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North Merica: evidence from morphological and genetic analyses. SIDA, Contrib. Bot. 21, 683–692 (2004).Saltonstall, K. The naming of Phragmites haplotypes.
Saltonstall,K.,Peterson,P.M。和Soreng,R.J。芦苇亚种的识别。北美美洲(禾本科:斑茅科):形态学和遗传学分析的证据。。Saltonstall,K。芦苇单倍型的命名。
Biol. Invasions 18, 2433–2441 (2016).Article .
。文章。
Google Scholar
谷歌学者
Colin, R. & Eguiarte, L. E. Phylogeographic analyses and genetic structure illustrate the complex evolutionary history of Phragmites australis in Mexico. Am. J. Bot. 103, 876–887 (2016).Article
Colin,R。&Eguiarte,L。E。系统地理学分析和遗传结构说明了墨西哥芦苇的复杂进化历史。《美国期刊》Bot.103876-887(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
An, J. X., Wang, Q., Yang, J. & LIU, J. Q. Phylogeographic analyses of Phragmites australis in China: native distribution and habitat preference of the haplotype that invaded North America. J. Syst. Evol. 50, 334–340 (2012).Article
An,J.X.,Wang,Q.,Yang,J。&LIU,J.Q。中国芦苇的系统地理学分析:入侵北美的单倍型的本地分布和栖息地偏好。J、 系统。进化。50334-340(2012)。文章
Google Scholar
谷歌学者
Lambertini, C. Why are tall-statured energy grasses of polyploid species complexes potentially invasive? A review of their genetic variation patterns and evolutionary plasticity. Biol. Invasions 21, 3019–3041 (2019).Meyerson, L. A. et al. Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores? Biol.
为什么多倍体物种复合物的高大能量草具有潜在的入侵性?综述了它们的遗传变异模式和进化可塑性。生物入侵213019-3041(2019)。Meyerson,L.A.等人。倍性水平、核基因组大小和起源纬度是否会改变芦苇性状的表达以及与草食动物的相互作用?生物。
Invasions 18, 2531–2549 (2016).Article .
。文章。
Google Scholar
谷歌学者
Oh, D. H. et al. Novel genome characteristics contribute to the invasiveness of Phragmites australis (common reed). Mol. Ecol. 31, 1142–1159 (2022).Article
Oh,D.H.等人。新的基因组特征有助于芦苇(普通芦苇)的入侵。摩尔Ecol。311142-1159(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saltonstall, K. Microsatellite variation within and among North American lineages of Phragmites australis. Mol. Ecol. 12, 1689–1702 (2003).Article
Saltonstall,K。澳大利亚芦苇北美血统内部和之间的微卫星变异。摩尔Ecol。121689-1702(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lambertini, C. et al. Phylogenetic diversity shapes salt tolerance in Phragmites australis estuarine populations in East China. Sci. Rep. 10, 1–12 (2020).Article
Lambertini,C。等人。系统发育多样性影响了中国东部河口芦苇种群的耐盐性。科学。代表10,1-12(2020)。文章
Google Scholar
谷歌学者
Lambertini, C. et al. Revisiting Phragmites australis variation in the Danube Delta with DNA molecular techniques. In International Conference Proceedings: Water Resources and Wetlands 142–150 https://www.limnology.ro/water2012/Proceedings/019.html (2012).Arnold, B., Kim, S.-T. & Bomblies, K.
Lambertini,C.等人。利用DNA分子技术重新审视多瑙河三角洲芦苇的变异。在国际会议论文集:水资源与湿地142-150https://www.limnology.ro/water2012/Proceedings/019.html(2012年)。阿诺德(Arnold,B.),金(Kim,S.-T.)和邦姆斯(Bomblies),K。
Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol. Biol. Evol. 32, 1382–1395 (2015).Article .
广泛的同源四倍体拟南芥砂质谱系的单一地理起源,然后是倍体间混合物。分子生物学。进化。321382-1395(2015)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Israels, A. Z. Redundancy analysis for qualitative variables. Psychometrika 49, 331–346 (1984).Article
Israels,A.Z。定性变量的冗余分析。心理测量学49331-346(1984)。文章
Google Scholar
谷歌学者
Capblancq, T., Luu, K., Blum, M. G. & Bazin, E. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol. Ecol. Resour. 18, 1223–1233 (2018).Article
Capblancq,T.,Luu,K.,Blum,M.G。&Bazin,E。评估冗余分析以识别局部适应的特征。摩尔Ecol。资源。181223-1233(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).Article
休伊特,G.M。冰期的一些遗传后果,以及它们在分歧和物种形成中的作用。生物学J.林恩。Soc.58247-276(1996)。文章
Google Scholar
谷歌学者
DeGiorgio, M., Jakobsson, M. & Rosenberg, N. A. Explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc. Natl Acad. Sci. USA 106, 16057–16062 (2009).Article
DeGiorgio,M.,Jakobsson,M。&Rosenberg,N.A。使用基于合并的从非洲向外迁移的系列创始人模型解释了全球人类遗传变异的模式。程序。国家科学院。科学。美国10616057–16062(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pound, M. J. et al. A Tortonian (late Miocene, 11.61–7.25 Ma) global vegetation reconstruction. Palaeogeogr., Palaeoclimatol. Palaeoecol. 300, 29–45 (2011).Article
Pound,M.J.等人,《Tortonian(晚中新世,11.61–7.25 Ma)全球植被重建》。古地理。,古气候。古生态。300,29-45(2011)。文章
Google Scholar
谷歌学者
Liu, L. et al. Genetic and epigenetic changes during the invasion of a cosmopolitan species (Phragmites australis). Ecol. Evol. 8, 6615–6624 (2018).Article
Liu,L.等人。世界性物种(芦苇)入侵期间的遗传和表观遗传变化。Ecol公司。进化。86615-6624(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nguyen, L. X. et al. Photosynthesis of co-existing Phragmites haplotypes in their non-native range: are characteristics determined by adaptations derived from their native origin? AoB Plants 5, plt016 (2013).Canavan, K., Paterson, I. D., Lambertini, C. & Hill, M. P. Expansive reed populations—alien invasion or disturbed wetlands? AoB Plants 10, ply014 (2018).Article .
Nguyen,L.X.等人。共存的芦苇单倍型在其非本地范围内的光合作用:特征是否由源自其本地起源的适应性决定?AoB工厂5,plt016(2013)。Canavan,K.,Paterson,I.D.,Lambertini,C.&Hill,M.P。膨胀的芦苇种群是外来入侵还是湿地受到干扰?。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, C. et al. Chromosome-level genome assemblies reveal genome evolution of an invasive plant Phragmites australis. Commun. Biol. 7, 1007 (2014).Clark, L. V. et al. Population structure of Miscanthus sacchariflorus reveals two major polyploidization events, tetraploid-mediated unidirectional introgression from diploid M.
Wang,C.等人。染色体水平的基因组组装揭示了入侵植物芦苇的基因组进化。Commun公司。生物学71007(2014)。Clark,L.V.等人。芒草的种群结构揭示了两个主要的多倍体化事件,四倍体介导的二倍体M的单向渗入。
sinensis, and diversity centred around the Yellow Sea. Ann. Bot. 124, 731–748 (2019).Article .
中华绒螯蟹和多样性集中在黄海周围。安·博特124731-748(2019)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Paucã-Comãnescu, M., Clevering, O. A., Hanganu, J. & Gridin, M. Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquat. Bot. 64, 223–234 (1999).Article
Paucã-Comãnescu,M.,Clevering,O.A.,Hanganu,J。&Gridin,M。罗马尼亚生长的芦苇倍性水平之间的表型差异。水。Bot.64223-234(1999)。文章
Google Scholar
谷歌学者
Renny-Byfield, S. et al. Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Ann. Bot. 105, 527–533 (2010).Article
Renny Byfield,S。等人的流式细胞术和GISH揭示了混合倍性种群和具有互花米草和S.maritima起源基因组的米草属非倍体。安·博特105527-533(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stuessy, T. & Weiss-Schneeweiss, H. What drives polyploidization in plants? N. Phytolo. 223, 1690 (2019).Article
Stuessy,T。&Weiss-Schneeweiss,H。是什么驱动植物多倍体化?N、 植物。2231690(2019)。文章
Google Scholar
谷歌学者
Manzaneda, A. J. et al. Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). N. Phytol. 193, 797–805 (2012).Article
Manzaneda,A.J.等人。环境干旱与短柄草(禾本科)的细胞型分离和多倍体发生有关。N、 植物醇。193797-805(2012)。文章
Google Scholar
谷歌学者
Achenbach, L., Lambertini, C. & Brix, H. Phenotypic traits of Phragmites australis clones are not related to ploidy level and distribution range. AoB Plants 2012, pls017 (2012).Article
Achenbach,L.,Lambertini,C。&Brix,H。芦苇克隆的表型性状与倍性水平和分布范围无关。AoB工厂2012,pls017(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).Article
Catchen,J.,Hohenlohe,P.A.,Bassham,S.,Amores,A。&Cresko,W.A。Stacks:用于群体基因组学的分析工具集。摩尔Ecol。223124–3140(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinform. 19, 1–10 (2018).Article
Roach,M.J.,Schmidt,S.A。&Borneman,A.R。Purge Haplotigs:第三代二倍体基因组装配的等位基因重叠群重新分配。BMC生物信息。19,1-10(2018)。文章
Google Scholar
谷歌学者
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).Article
Langmead,B。&Salzberg,S.L。与Bowtie 2快速间隙读取对齐。《自然方法》9357(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Clark, L. V., Mays, W., Lipka, A. E. & Sacks, E. J. A population-level statistic for assessing Mendelian behavior of genotyping-by-sequencing data from highly duplicated genomes. BMC Bioinform. 23, 101 (2022).Article
Clark,L.V.,Mays,W.,Lipka,A.E。&Sacks,E.J。通过对高度重复的基因组数据进行测序来评估孟德尔基因分型行为的人口水平统计。BMC生物信息。23101(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Clark, L. V., Lipka, A. E. & Sacks, E. J. polyRAD: genotype calling with uncertainty from sequencing data in polyploids and diploids. G3: Genes, Genomes, Genet. 9, 663–673 (2019).Article
Clark,L.V.,Lipka,A.E。&Sacks,E.J。polyRAD:多倍体和二倍体测序数据的不确定性基因型调用。G3:基因,基因组,基因。9663-673(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).Article
Danecek,P。等人,《变体调用格式和VCFtools》。生物信息学272156-2158(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).Article
Stamatakis,A。RAxML VI HPC:基于最大似然的系统发育分析,具有数千个分类群和混合模型。生物信息学222688-2690(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).Article
Raj,A.,Stephens,M。&Pritchard,J.K。fastSTRUCTURE:大型SNP数据集中种群结构的变分推断。遗传学197573-589(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Francis, R. M. pophelper: an R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32 (2017).Article
Francis,R.M.pophelper:用于分析和可视化人口结构的R包和web应用程序。摩尔Ecol。资源。17,27-32(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article
Purcell,S。等人。PLINK:用于全基因组关联和基于人群的连锁分析的工具集。上午J。嗯。Genet。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Malinsky, M., Trucchi, E., Lawson, D. J. & Falush, D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Biol. Evol. 35, 1284–1290 (2018).Article
Malinsky,M.,Trucchi,E.,Lawson,D。J。&Falush,D。RADpainter和fineRADstructure:从RADseq数据推断人口。分子生物学。进化。351284-1290(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-4. Acesso em 23, 2010 (2010).
Oksanen,J.等人,《素食者:社区生态包》。R包版本1.17-4。Acesso em 231010(2010)。
Google Scholar
谷歌学者
Rochette, N. C., Rivera‐Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Mol. Ecol. 28, 4737–4754 (2019).Article
Rochette,N.C.,Rivera-ColóN,A.G。&Catchen,J.M。Stacks 2:配对末端测序的分析方法改进了基于RADseq的群体基因组学。摩尔Ecol。284737-4754(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).Article
Patterson,N.等人,《人类历史上的古代混合物》。遗传学1921065-1093(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cook, D. E. & Andersen, E. C. VCF-kit: assorted utilities for the variant call format. Bioinformatics 33, 1581–1582 (2017).Article
。生物信息学331581-1582(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, X. & Fu, Y.-X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555 (2015).Article
Liu,X。&Fu,Y.-X。使用SNP频谱探索种群规模的变化。纳特·吉内特。47555(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
De La Torre, A. R., Li, Z., Van de Peer, Y. & Ingvarsson, P. K. Contrasting rates of molecular evolution and patterns of selection among gymnosperms and flowering plants. Mol. Biol. Evol. 34, 1363–1377 (2017).Article
De La Torre,A.R.,Li,Z.,Van De Peer,Y.&Ingvarsson,P.K。裸子植物和开花植物的分子进化率和选择模式对比。分子生物学。进化。341363-1377(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pickrell, J. & Pritchard, J. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8, e1002967 (2012).RRs, F. optM: an R package to optimize the number of migration edges using threshold models. J. Heredi. (2019).Korneliussen, T. S., Albrechtsen, A.
Pickrell,J。&Pritchard,J。从全基因组等位基因频率数据推断种群分裂和混合物。PLoS Genet 8,e1002967(2012)。RRs,F。optM:使用阈值模型优化迁移边缘数量的R包。J、 埃雷迪。(2019年)。Korneliussen,T.S.,Albrechtsen,A。
& Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 1–13 (2014).Article .
&Nielsen,R。ANGSD:下一代测序数据的分析。BMC生物信息。15,1-13(2014)。文章。
Google Scholar
谷歌学者
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet 9, e1003905 (2013).Article
Excoffier,L.,Dupanloup,I.,Huerta-Sánchez,E.,Sousa,V.C。&Foll,M。从基因组和SNP数据进行稳健的人口统计推断。PLoS Genet 9,e1003905(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by International Postdoctoral Exchange Fellowship Program of China Postdoctoral Science Foundation (C.W.), the National Natural Science Foundation of China Grant No. U22A20558 to W.G., Grant No. 31800299 to T. W., and Nanyang Technological University startup grant and Academy of Finland (decisions 318288 and 319947) to J.S.
下载参考文献致谢这项工作得到了中国博士后科学基金会(C.W.)国际博士后交流奖学金计划,中国国家自然科学基金会授予W.G.的U22A20558号拨款,授予T.W.的31800299号拨款,以及南洋理工大学启动拨款和芬兰科学院(决定318288和319947)授予J.S。
We would like to thank Pasi Rastas for providing the script to calculate alternative allele count, and Carla Lambertini for the help of geographic coordinate corrections. Finally, we want to acknowledge CSC–IT Center for Science, Finland, and NTU HPCC, Singapore, for computational resources.Author informationAuthor notesThese authors contributed equally: Jarkko Salojärvi, Weihua Guo.Authors and AffiliationsInstitute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, ChinaCui Wang, Lele Liu, Meiqi Yin & Weihua GuoShandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, ChinaCui Wang, Lele Liu, Meiqi Yin & Weihua GuoOrganismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, Biocentre 3, Helsinki, FinlandCui Wang & Jarkko SalojärviDepartment of Biology, Aarhus University, Aarhus, DenmarkFranziska Eller & Hans BrixCollege of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, ChinaTong WangSchool of Biological Sciences, Nanyang Technological University, Singapore, SingaporeJarkko SalojärviAuthorsCui WangView author publicationsYou can also search for this author in.
我们要感谢Pasi Rastas提供了计算替代等位基因计数的脚本,感谢Carla Lambertini提供了地理坐标校正的帮助。最后,我们要感谢芬兰CSC-IT科学中心和新加坡NTU HPCC的计算资源。作者信息作者注意到这些作者做出了同样的贡献:Jarkko Salojärvi,Weihua Guo。作者和单位山东大学生命科学学院生态与生物多样性研究所,青岛,中国崔王,刘乐乐,尹美琪和郭卫华山东省植物生态工程技术研究中心,山东大学,青岛,中国崔王,刘乐乐,尹美琪和郭卫华生物与进化生物学研究计划,赫尔辛基大学生物与环境科学学院,维金卡里1号,生物中心3号,赫尔辛基,芬兰德崔王和Jarkko SalojärviDepartment of Biology,奥胡斯大学,奥胡斯,DenmarkFranziska Eller&Hans BrixCollege of Landscape和林业,青岛农业大学,青岛,中国通旺生物科学学院,南洋理工大学,新加坡,新加坡Jarkko SalojärviAuthorsCui WangView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarLele LiuView author publicationsYou can also search for this author in
PubMed Google ScholarLele LiuView作者出版物您也可以在
PubMed Google ScholarMeiqi YinView author publicationsYou can also search for this author in
PubMed谷歌学术期刊YinView作者出版物您也可以在
PubMed Google ScholarFranziska EllerView author publicationsYou can also search for this author in
PubMed Google ScholarFranziska EllerView作者出版物您也可以在
PubMed Google ScholarHans BrixView author publicationsYou can also search for this author in
PubMed Google ScholarHans BrixView作者出版物您也可以在
PubMed Google ScholarTong WangView author publicationsYou can also search for this author in
PubMed Google ScholarTong WangView作者出版物您也可以在
PubMed Google ScholarJarkko SalojärviView author publicationsYou can also search for this author in
PubMed Google ScholarJarkko SalojärviView作者出版物您也可以在
PubMed Google ScholarWeihua GuoView author publicationsYou can also search for this author in
PubMed谷歌学者Weihua GuoView作者出版物您也可以在
PubMed Google ScholarContributionsC.W., J.S., and W.G. conceived the study; H.B., L.L., F.E., and T.W. maintained and collected the samples as well as provided sampling information; C.W., L.L., and M.Y. performed DNA extraction; C.W. and J.S. led the data analysis; C.W. and J.S.
PubMed谷歌学术贡献中心。W、 ,J.S.和W.G.构思了这项研究;H、 B.,L.L.,F.E。和T.W.维护和收集样本以及提供的采样信息;C、 W.,L.L。和M.Y.进行了DNA提取;C、 W.和J.S.领导了数据分析;C、 W.和J.S。
wrote the paper with input from W.G., L.L., F.E., H.B., T.W., and M.Y.Corresponding authorsCorrespondence to.
根据W.G.,L.L.,F.E.,H.B.,T.W.和M.Y.通讯作者的意见撰写了这篇论文。
Jarkko Salojärvi or Weihua Guo.Ethics declarations
Jarkko Salojärvi或郭卫华。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary TablesSupplementary InformationRights and permissions
Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充表补充信息权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleWang, C., Liu, L., Yin, M. et al. Genome-wide analysis tracks the emergence of intraspecific polyploids in Phragmites australis.
转载和许可本文引用本文Wang,C.,Liu,L.,Yin,M。等人。全基因组分析追踪了芦苇种内多倍体的出现。
npj biodivers 3, 29 (2024). https://doi.org/10.1038/s44185-024-00060-8Download citationReceived: 28 February 2024Accepted: 29 August 2024Published: 01 October 2024DOI: https://doi.org/10.1038/s44185-024-00060-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj生物潜水员3,29(2024)。https://doi.org/10.1038/s44185-024-00060-8Download引文接收日期:2024年2月28日接受日期:2024年8月29日发布日期:2024年10月1日OI:https://doi.org/10.1038/s44185-024-00060-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供