商务合作
动脉网APP
可切换为仅中文
AbstractArtificial Intelligence (AI) systems are increasingly being deployed across various high-risk applications, especially in healthcare. Despite significant attention to evaluating these systems, post-deployment incidents are not uncommon, and effective mitigation strategies remain challenging.
摘要人工智能(AI)系统越来越多地部署在各种高风险应用程序中,特别是在医疗保健领域。尽管对评估这些系统给予了极大关注,但部署后事件并不罕见,有效的缓解策略仍然具有挑战性。
Drug safety has a well-established history of assessing, monitoring, understanding, and preventing adverse effects in real-world usage, known as pharmacovigilance. Drawing inspiration from pharmacovigilance methods, we discuss concepts that can be adapted for monitoring AI systems in healthcare. This discussion aims to improve responses to adverse effects and potential incidents and risks associated with AI deployment in healthcare but also beyond..
药物安全在评估,监测,理解和预防实际使用中的不良反应方面有着悠久的历史,称为药物警戒。从药物警戒方法中得到启发,我们讨论了可用于监测医疗保健中AI系统的概念。本次讨论旨在改进对医疗保健领域人工智能部署相关的不良影响、潜在事件和风险的应对措施,以及其他方面。。
IntroductionAs artificial intelligence (AI) systems are increasingly used across applications and sectors, ranging from healthcare to energy, financial, transportation, and others, the focus is increasingly shifting to the post-deployment stages of the AI lifecycle to ensure the safe use of these systems1.
引言随着人工智能(AI)系统越来越多地应用于从医疗保健到能源、金融、交通等各个应用和部门,重点越来越多地转移到AI生命周期的部署后阶段,以确保这些系统的安全使用1。
Monitoring of AI systems is becoming increasingly critical2, and new tools and practices are being developed for this purpose, such as statistical tools or so-called AI incidents databases3,4,5. Indeed, the number of AI incidents is already large and is expected to increase. For example, 10.196 AI-related incidents and hazards have been identified since 20146.
人工智能系统的监测变得越来越重要2,为此目的正在开发新的工具和实践,例如统计工具或所谓的人工智能事件数据库3,4,5。事实上,人工智能事件的数量已经很大,预计还会增加。例如,自20146年以来,已经确定了10.196起与AI相关的事件和危害。
While there is significant research on trustworthy AI7, there is only limited work on what happens after AI systems are deployed. Another limitation of AI monitoring is the lack of consideration of human or organizational factors8. For example, stakeholders like physicians who identify errors may lack effective feedback processes for reporting issues, hindering potential improvements to AI systems.However, large-scale monitoring of technologies, broadly defined, is not a new challenge.
虽然对值得信赖的AI7进行了大量研究,但在部署AI系统后会发生什么方面的工作却很有限。人工智能监测的另一个局限性是缺乏对人类或组织因素的考虑8。例如,识别错误的医生等利益相关者可能缺乏有效的反馈流程来报告问题,从而阻碍了人工智能系统的潜在改进。然而,对广泛定义的技术进行大规模监测并不是一项新挑战。
Healthcare regulators, such as the US Food and Drug Administration (FDA), use processes and practices to monitor potential negative side effects of drugs in the market despite rigorous clinical trials in their pre-approval stages9. For instance, each year, regulators and manufacturers recall, on average, more than 1300 drugs, with more than half potentially causing temporary or serious health problems10.
美国食品和药物管理局(FDA)等医疗保健监管机构使用流程和实践来监测市场上药物的潜在负面副作用,尽管在其预批准阶段进行了严格的临床试验9。例如,监管机构和制造商每年平均召回1300多种药物,其中一半以上可能导致暂时或严重的健康问题10。
According to the FDA, a recall is defined as a manufacturer’s removal or correction of a marketed product that the FDA considers to be in violation of the laws it administers11.Given the scale and potential of AI medical devices12.
据FDA称,召回被定义为制造商删除或纠正FDA认为违反其管理法律的上市产品11。鉴于人工智能医疗设备的规模和潜力12。
ReferencesHwang, T. J., Kesselheim, A. S. & Vokinger, K. N. Lifecycle regulation of artificial intelligence- and machine learning-based software devices in medicine. JAMA 322, 2285–2286 (2019).Article
参考文献Hwang,T.J.,Kesselheim,A.S。和Vokinger,K.N。医学中基于人工智能和机器学习的软件设备的生命周期管理。JAMA 3222285-2286(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Babic, B., Gerke, S., Evgeniou, T. & Cohen, I. G. Algorithms on regulatory lockdown in medicine. Science 366, 1202–1204 (2019).Article
Babic,B.,Gerke,S.,Evgeniou,T。&Cohen,I.G。关于医学监管锁定的算法。科学3661202-1204(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Testi, M. et al. MLOps: a taxonomy and a methodology. IEEE Access 10, 63606–63618 (2022).Article
Testi,M.等人,《MLOps:分类学和方法论》。IEEE Access 1063606–63618(2022)。文章
Google Scholar
谷歌学者
McGregor, S. Preventing Repeated Real World AI Failures by Cataloging Incidents: The AI Incident Database. In Proc. AAAI Conference on Artificial Intelligence, 35, 17, 15458–15463 https://doi.org/10.1609/aaai.v35i17.17817 (2021).AIAAIC. AI, Algorithmic, and Automation Incidents and Controversies (AIAAIC) Repository https://www.aiaaic.org/aiaaic-repository (2019).OECD.
McGregor,S。通过对事件进行分类来防止重复的真实世界AI失败:AI事件数据库。在过程中。AAAI人工智能会议,35,1715458-15463https://doi.org/10.1609/aaai.v35i17.17817(2021年)。AIAIC公司。https://www.aiaaic.org/aiaaic-repository(2019年)。经合组织。
AIM: The OECD AI Incidents Monitor, an Evidence Base for Trustworthy AI https://oecd.ai/en/incidents (2023).High-Level Expert Group on AI (AI HLEG). Ethics Guidelines for Trustworthy AI https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (2019).Gerke, S., Babic, B., Evgeniou, T.
目标:经合组织人工智能事件监测,可信人工智能的证据基础https://oecd.ai/en/incidents(2023年)。人工智能高级别专家组(AI HLEG)。可信AI的道德准则https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai(2019年)。Gerke,S.,Babic,B.,Evgeniou,T。
& Cohen, I. G. The need for a system view to regulate artificial intelligence/machine learning-based software as medical device. NPJ Digit. Med. 3, 53 (2020).Article .
&Cohen,I.G。需要一个系统视图来规范基于人工智能/机器学习的软件作为医疗设备。NPJ数字。。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
U.S. Food & Drug Administration (FDA). Postmarketing Surveillance Programs (U.S. Food & Drug Administration (FDA), 2020).U.S. Food & Drug Administration (FDA). FDA Dashboards—Recalls (U.S. Food & Drug Administration (FDA), 2024).Food and Drug Administration, Department of Health and Human Services.
U、 美国食品和药物管理局(FDA)。上市后监测计划(美国食品和药物管理局(FDA),2020)。U、 美国食品和药物管理局(FDA)。FDA仪表盘召回(美国食品和药物管理局(FDA),2024)。食品和药物管理局,卫生和公众服务部。
21 Code of Federal Regulations (CFR) Part 7—Enforcement Policy (Food and Drug Administration, Department of Health and Human Services, 2024).Benjamens, S., Dhunnoo, P. & Meskó, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit. Med.
21《联邦法规》(CFR)第7部分-执行政策(食品和药物管理局,卫生与公众服务部,2024年)。Benjamens,S.,Dhunnoo,P。&Meskó,B。基于人工智能的FDA批准的医疗设备和算法的状态:在线数据库。NPJ数字。医学。
3, 118 (2020).Article .
3118(2020)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Beninger, P. Pharmacovigilance: an overview. Clin. Ther. 40, 1991–2004 (2018).Article
Beninger,P。药物警戒:概述。临床。他们。401991-2004(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Przybyła, G. W., Szychowski, K. A. & Gmiński, J. Paracetamol—an old drug with new mechanisms of action. Clin. Exp. Pharmacol. Physiol. 48, 3–19 (2021).Article
Przybyła,G.W.,Szychowski,K.a.&Gmiński,J.对乙酰氨基酚——一种具有新作用机制的老药。克林顿。实验药理学。生理学。48, 3–19 (2021).文章
PubMed
PubMed
Google Scholar
谷歌学者
Embi, P. J. Algorithmovigilance—advancing methods to analyze and monitor artificial intelligence-driven health care for effectiveness and equity. JAMA Netw. Open 4, e214622 (2021).Article
Embi,P。J。Algorithmovigiliance推进分析和监测人工智能驱动的医疗保健有效性和公平性的方法。JAMA网络。开放4,e214622(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Finlayson, S. G. et al. The clinician and dataset shift in artificial intelligence. N. Engl. J. Med. 385, 283–286 (2021).Article
Finlayson,S.G.等人,《人工智能中的临床医生和数据集转变》。N、 英语。J、 医学385283-286(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Duckworth, C. et al. Using explainable machine learning to characterise data drift and detect emergent health risks for emergency department admissions during COVID-19. Sci. Rep. 11, 23017 (2021).Article
Duckworth,C.等人使用可解释的机器学习来表征数据漂移并检测新型冠状病毒肺炎期间急诊科入院的紧急健康风险。科学。代表1123017(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rabanser, S., Günnemann, S. & Lipton, Z. C. Failing loudly: an empirical study of methods for detecting dataset shift. In Proc. 33rd International Conference on Neural Information Processing Systems, 1396–1408 (Curran Associates Inc., Red Hook, NY, USA, 2019).Wu, E. et al. How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals.
Rabanser,S.,Günnemann,S。&Lipton,Z.C。大声失败:检测数据集移位方法的实证研究。在过程中。第33届神经信息处理系统国际会议,1396-1408(Curran Associates Inc.,Red Hook,NY,USA,2019)。Wu,E.等人。如何评估医疗AI设备:FDA批准分析的局限性和建议。
Nat. Med. 27, 582–584 (2021).Article .
《自然医学》27582-584(2021)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Beede, E. et al. A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In Proc. 2020 CHI Conference on Human Factors in Computing Systems, 1–12 (Association for Computing Machinery, Honolulu, HI, USA, 2020).Strom, B. L. How the US drug safety system should be changed.
Beede,E.等人。以人为中心的深度学习系统评估,该系统部署在临床上用于检测糖尿病视网膜病变。在过程中。2020 CHI计算系统中的人为因素会议,1-12(计算机械协会,檀香山,HI,美国,2020)。。
JAMA 295, 2072 (2006).Article .
牙买加2952072(2006)。第条。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Etminan, M. & Samii, A. Pharmacoepidemiology I: a review of pharmacoepidemiologic study designs. Pharmacotherapy 24, 964–969 (2004).Article
Etminan,M。和Samii,A。药物流行病学I:药物流行病学研究设计的回顾。药物治疗24964-969(2004)。文章
PubMed
PubMed
Google Scholar
谷歌学者
European Medicines Agency. Guideline on Good Pharmacovigilance Practices (GVP) Module VII—Periodic Safety Update Report (Rev 1) (European Medicines Agency, 2013).de Hond, A. A. H. et al. Perspectives on validation of clinical predictive algorithms. Npj Digit. Med. 6, 1–3 (2023).
欧洲药品管理局。良好药物警戒实践指南(GVP)模块VII定期安全更新报告(Rev 1)(欧洲药品管理局,2013)。de Hond,A.A.H.等人。临床预测算法验证的观点。Npj数字。医学6,1-3(2023)。
Google Scholar
谷歌学者
Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).Article
Obermeyer,Z.,Powers,B.,Vogeli,C。&Mullainathan,S。在用于管理人群健康的算法中剖析种族偏见。科学366447-453(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Winkler, J. K. et al. Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. 155, 1135–1141 (2019).Article
Winkler,J.K.等人。皮肤镜图像中的手术皮肤标记与深度学习卷积神经网络对黑素瘤识别的诊断性能之间的关联。JAMA皮肤病。1551135-1141(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Laï, M.-C., Brian, M. & Mamzer, M.-F. Perceptions of artificial intelligence in healthcare: findings from a qualitative survey study among actors in France. J. Transl. Med. 18, 14 (2020).Article
Laï,M.-C.,Brian,M.&Mamzer,M.-F。对医疗保健中人工智能的看法:来自法国行为者的定性调查研究的结果。J、 翻译。医学杂志18、14(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Esmaeilzadeh, P. Use of AI-based tools for healthcare purposes: a survey study from consumers’ perspectives. BMC Med. Inform. Decis. Mak. 20, 170 (2020).Article
Esmaeilzadeh,P。基于AI的工具在医疗保健中的使用:从消费者角度进行的调查研究。BMC医疗通知。十分之一。马克。20170(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Esmaeilzadeh, P., Mirzaei, T. & Dharanikota, S. Patients’ perceptions toward human–artificial intelligence interaction in health care: experimental study. J. Med. Internet Res. 23, e25856 (2021).Article
Esmaeilzadeh,P.,Mirzaei,T。&Dharanikota,S。患者对医疗保健中人类与人工智能相互作用的看法:实验研究。J、 医学互联网研究23,e25856(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Center for Drug Evaluation and Research & U.S. Food and Drug Administration (FDA). Guidance for Industry Good Pharmacovigilance Practices and Pharmacoepidemiologic Assessment (Center for Drug Evaluation and Research & U.S. Food and Drug Administration (FDA), 2005).Dambal, A., Venkatesh, M.
药物评估与研究中心和美国食品和药物管理局(FDA)。行业良好药物警戒实践和药物流行病学评估指南(药物评估与研究中心和美国食品和药物管理局(FDA),2005年)。丹巴尔,A.,文卡特什,M。
P., Rao, S. B. & Kumar, T. M. P. Pharmacovigilance system in USA and WHO. J. Glob. Trends Pharm. Sci. 10, 6669–6684 (2019)..
P、 ,Rao,S.B。&Kumar,T.M.P。美国和世界卫生组织的药物警戒系统。J、 全球。趋势药物科学。106669-6684(2019)。。
Google Scholar
谷歌学者
European Medicines Agency (EMA). European Medicines Agency Policy on Access to EudraVigilance Data for Medicinal Products for Human Use (European Medicines Agency (EMA), 2019).Brown, E. G., Wood, L. & Wood, S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 20, 109–117 (1999).Article .
欧洲药品管理局(EMA)。欧洲药品管理局关于获取人类使用药品的EudraVigilance数据的政策(欧洲药品管理局(EMA),2019)。Brown,E。G.,Wood,L。&Wood,S。《监管活动医学词典》(MedDRA)。药物安全。。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Overhage, J. M., Ryan, P. B., Reich, C. G., Hartzema, A. G. & Stang, P. E. Validation of a common data model for active safety surveillance research. J. Am. Med. Inform. Assoc. JAMIA 19, 54–60 (2012).Article
Overage,J.M.,Ryan,P.B.,Reich,C.G.,Hartzema,A.G。&Stang,P.E。主动安全监测研究通用数据模型的验证。J、 上午医疗通知。JAMIA Assoc.19,54–60(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Rostamzadeh, N. et al. Healthsheet: Development of a Transparency Artifact for Health Datasets. In Proc. 2022 ACM Conference on Fairness, Accountability, and Transparency, 1943–1961 (Association for Computing Machinery, New York, NY, USA, 2022).Meyboom, R. H., Hekster, Y. A., Egberts, A.
。在过程中。2022年ACM公平、问责制和透明度会议,1943-1961年(美国纽约计算机协会,2022年)。梅布姆,R.H.,赫克斯特,Y.A.,埃格伯茨,A。
C., Gribnau, F. W. & Edwards, I. R. Causal or casual? The role of causality assessment in pharmacovigilance. Drug Saf. 17, 374–389 (1997).Article .
C、 ,Gribnau,F.W。和Edwards,I.R。因果关系还是因果关系?因果关系评估在药物警戒中的作用。药物安全。17374-389(1997)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Agbabiaka, T. B., Savović, J. & Ernst, E. Methods for causality assessment of adverse drug reactions: a systematic review. Drug Saf. 31, 21–37 (2008).Article
Agbabiaka,T.B.,Savović,J。和Ernst,E。药物不良反应因果关系评估方法:系统评价。药物安全。31,21-37(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pande, S. Causality or relatedness assessment in adverse drug reaction and its relevance in dermatology. Indian J. Dermatol. 63, 18–21 (2018).Article
Pande,S。药物不良反应的因果关系或相关性评估及其在皮肤病学中的相关性。。63,18-21(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Edwards, I. R. & Biriell, C. Harmonisation in pharmacovigilance. Drug Saf. 10, 93–102 (1994).Article
。药物安全。10,93-102(1994)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Feng, J. et al. Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare. NPJ Digit. Med. 5, 66 (2022).Article
Feng,J.等人。临床人工智能质量改进:不断监测和更新医疗保健中的人工智能算法。NPJ数字。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
U.S. Food & Drug Administration (FDA). Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)—Discussion Paper and Request for Feedback (U.S. Food & Drug Administration (FDA), 2019).Babic, B., Gerke, S., Evgeniou, T.
U、 美国食品和药物管理局(FDA)。关于修改基于人工智能/机器学习(AI/ML)的软件作为医疗设备(SaMD)的拟议监管框架-讨论文件和反馈请求(美国食品和药物管理局(FDA),2019)。巴比奇(Babic),B。格克(Gerke),S。埃夫吉尼奥(Evgeniou)。
& Cohen, I. G. Beware explanations from AI in health care. Science 373, 284–286 (2021).Article .
&注意AI在医疗保健方面的解释。科学373284-286(2021)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, J., Wang, Y., Molino, P., Li, L. & Ebert, D. S. Manifold: a model-agnostic framework for interpretation and diagnosis of machine learning models. IEEE Trans. Vis. Comput. Graph. 25, 364–373 (2019).Article
Zhang,J.,Wang,Y.,Molino,P.,Li,L。&Ebert,D.S。流形:用于解释和诊断机器学习模型的模型不可知框架。IEEE Trans。可见。计算机。图表。25364-373(2019)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Mitchell, M. et al. Model Cards for Model Reporting. In Proc. Conference on Fairness, Accountability, and Transparency, 220–229 (Association for Computing Machinery, New York, NY, USA, 2019).Arnold, M. et al. FactSheets: increasing trust in AI services through supplier’s declarations of conformity.
Mitchell,M.等人,《模型报告的模型卡》。在过程中。公平、问责制和透明度会议,220-229(美国纽约州纽约市计算机协会,2019年)。。
IBM J. Res. Dev. 63, 6:1–6:13 (2019).Sendak, M. P., Gao, M., Brajer, N. & Balu, S. Presenting machine learning model information to clinical end users with model facts labels. Npj Digit. Med. 3, 1–4 (2020).Article .
IBM J.Res.Dev.63,6:1–6:13(2019)。Sendak,M.P.,Gao,M.,Brajer,N。&Balu,S。用模型事实标签向临床最终用户提供机器学习模型信息。Npj数字。医学3,1-4(2020)。文章。
Google Scholar
谷歌学者
European Medicines Agency (EMA). A Guideline on Summary of Product Characteristics (SmPC) (European Medicines Agency (EMA), 2009).Collins, G. S. et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 385, e078378 (2024).Article .
欧洲药品管理局(EMA)。产品特性总结指南(SmPC)(欧洲药品管理局(EMA),2009)。Collins,G.S.等人,《TRIPOD+AI声明:使用回归或机器学习方法报告临床预测模型的更新指南》。BMJ 385,e078378(2024)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hanks, H., Austin, A., Kailasanath, V. & Park, S. UK NHS Pilots AI Tool Aimed at Reducing Bias in Healthcare Datasets—a Step Toward ‘algorithmovigilance’? https://technologyquotient.freshfields.com/post/102hisr/uk-nhs-pilots-ai-tool-aimed-at-reducing-bias-in-healthcare-datasets-a-step-towa (2022).Download referencesAcknowledgementsThe study was realized in the context of the @Hotel-Dieu project, which was funded by the Banque Publique d’Investissement in France.
Hanks,H.,Austin,A.,Kailasanath,V。&Park,S。UK NHS飞行员AI工具旨在减少医疗保健数据集中的偏见-朝着“算法监管”迈出的一步?https://technologyquotient.freshfields.com/post/102hisr/uk-nhs-pilots-ai-tool-aimed-at-reducing-bias-in-healthcare-datasets-a-step-towa(2022年)。下载参考文献致谢这项研究是在@Hotel Dieu项目的背景下实现的,该项目由法国公共投资银行资助。
The funder played no role in the study design, data collection, analysis, and interpretation of data, or the writing of this manuscript. The authors thank Raphaël Porcher and Viet-Thi Tran for their feedback during the revision.Author informationAuthors and AffiliationsUniversité Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, FranceAlan Balendran, Mehdi Benchoufi & Philippe RavaudINSEAD, Fontainebleau, FranceTheodoros EvgeniouCentre d’Epidémiologie Clinique, AP-HP, Hôpital Hôtel-Dieu, Paris, FrancePhilippe RavaudColumbia University Mailman School of Public Health, Department of Epidemiology, New York, NY, USAPhilippe RavaudAuthorsAlan BalendranView author publicationsYou can also search for this author in.
资助者在研究设计,数据收集,分析和数据解释或撰写本手稿方面没有发挥任何作用。作者感谢Raphaël Porcher和Viet Thi Tran在修订期间的反馈。作者信息作者和附属机构巴黎Cit大学和巴黎诺德索邦大学,Inserm,INRAE,流行病学和统计研究中心(CRESS),巴黎,弗朗西兰·巴伦德兰,Mehdi Benchoufi&Philippe RavaudINSEAD,枫丹白露,FranceHodoros EvgeniouCentre d'Epidémiologie Clinique,AP-HP,巴黎Hôpital Hôtel Dieu,FrancePhilippe RavaudColumbia University Mailman School of Public Health,Department of Epidemiology,New York,NY,USAFilippe RavaudAuthorsAlan BalendranView作者出版物也可以在中搜索此作者。
PubMed Google ScholarMehdi BenchoufiView author publicationsYou can also search for this author in
PubMed Google Scholarmamehdi Benchoufiew作者出版物您也可以在
PubMed Google ScholarTheodoros EvgeniouView author publicationsYou can also search for this author in
PubMed Google ScholarTheodoros EvgeniouView作者出版物您也可以在
PubMed Google ScholarPhilippe RavaudView author publicationsYou can also search for this author in
PubMed Google ScholarPhilippe RavaudView作者出版物您也可以在
PubMed Google ScholarContributionsA.B., T.E., and P.R. were involved in the conceptualization of this study. A.B. and T.E. wrote the first draft of the manuscript. A.B., T.E., M.B., and P.R. contributed to subsequent drafts and revisions of the final manuscript.Corresponding authorCorrespondence to.
PubMed谷歌学术贡献。B、 ,T.E.和P.R.参与了这项研究的概念化。A、 B.和T.E.撰写了手稿的初稿。A、 B.,T.E.,M.B。和P.R.为最终稿件的后续草稿和修订做出了贡献。。
Alan Balendran.Ethics declarations
艾伦·巴伦德兰。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationReporting SummaryRights and permissions
。补充信息报告摘要权限
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleBalendran, A., Benchoufi, M., Evgeniou, T. et al. Algorithmovigilance, lessons from pharmacovigilance.
Balendran,A.,Benchoufi,M.,Evgeniou,T.等人,《算法警戒,药物警戒的教训》。
npj Digit. Med. 7, 270 (2024). https://doi.org/10.1038/s41746-024-01237-yDownload citationReceived: 30 January 2024Accepted: 27 August 2024Published: 02 October 2024DOI: https://doi.org/10.1038/s41746-024-01237-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj数字。医学杂志7270(2024)。https://doi.org/10.1038/s41746-024-01237-yDownloadhttps://doi.org/10.1038/s41746-024-01237-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供