EN
登录

小豆染色体基因组组装及注释

Chromosome genome assembly and annotation of Adzuki Bean (Vigna angularis)

Nature 等信源发布 2024-10-02 22:37

可切换为仅中文


AbstractAdzuki bean (Vigna angularis) is a significant dietary legume crop that is prevalent in East Asia. It also holds traditional medicinal importance in China. In this study, we report a high-quality, chromosome-level genome assembly of adzuki bean obtained by employing Illumina short-read sequencing, PacBio long-read sequencing, and Hi-C technology.

摘要小豆(Vigna angularis)是东亚地区流行的一种重要的食用豆类作物。它在中国也具有传统医学的重要性。在这项研究中,我们报告了通过使用Illumina短读测序,PacBio长读测序和Hi-C技术获得的高质量,染色体水平的小豆基因组组装。

The assembly spans 447.8 Mb, encompassing 96.32% of the estimated genome, with contig and scaffold N50 values of 16.5 and 41.0 Mb, respectively. More than 98.2% of the 1,614 BUSCO genes were fully identified, and 25,939 genes were annotated, with 98.23% of them being functionally identifiable. Vigna angularis was estimated to diverge successively from Vigna unguiculata and Vigna radiata about 15.3 and 8.7 million years ago (Ma), respectively.

该组件跨越447.8Mb,占估计基因组的96.32%,重叠群和支架N50值分别为16.5和41.0Mb。1614个BUSCO基因中有98.2%以上被完全鉴定,25939个基因被注释,其中98.23%在功能上可识别。。

This chromosome-level reference genome of Vigna angularis provides a robust foundation for exploring the functional genomics and genome evolution of adzuki bean, thereby facilitating advancements in molecular breeding of adzuki bean..

豇豆的染色体水平参考基因组为探索小豆的功能基因组学和基因组进化提供了坚实的基础,从而促进了小豆分子育种的进步。。

Background & SummaryAdzuki bean [Vigna angularis (Willd.) Ohwi & Ohashi] is an annual cultivated crop belonging to the genus Vigna and subgenus Ceratotropis1. The grains can exhibit a range of colors including red, white, black, gray, and others2,3. The ideal temperature range for its growth is between 20–24 °C.

背景与总结小豆(Vigna angularis(Willd。)Ohwi&Ohashi)是一种一年生栽培作物,属于Vigna属和Ceratotropis1亚属。颗粒可以呈现一系列颜色,包括红色,白色,黑色,灰色和其他颜色2,3。其生长的理想温度范围为20-24℃。

Temperatures that are excessively high will result in elongated seedlings, while lower temperatures will impede developmental progress4. As a warm-season pulse crop, it is extensively cultivated in East Asia, particularly in China, Japan, and Korea. Presently, adzuki beans are grown in over 20 countries, with China and Japan being the leading producers5.

过高的温度会导致幼苗伸长,而较低的温度会阻碍发育进程4。作为一种暖季脉冲作物,它在东亚广泛种植,特别是在中国,日本和韩国。。

Adzuki beans can be sown in spring, summer, or autumn, depending on climatic conditions. However, they are predominantly planted in spring in the northeastern regions of China, which represent the primary production areas4. In Japan, the adzuki bean ranks as the second most significant legume, following the soybean6.

红小豆可以在春季、夏季或秋季播种,具体取决于气候条件。然而,它们主要在中国东北地区春季种植,这些地区代表了初级生产区4。在日本,小豆是仅次于大豆的第二大豆类。

The annual cultivation areas of adzuki beans are estimated to be 670,000 hectares in China, 120,000 hectares in Japan, and 30,000 hectares on the Korean Peninsula7.The exact origin of the adzuki bean remains unclear; however, wild species such as V. angularis var. nipponensis, V. nakashimae, and V. nepalensis are broadly distributed throughout East Asia and the Himalayan countries6.

中国小豆的年种植面积估计为670000公顷,日本为120000公顷,朝鲜半岛为30000公顷。小豆的确切起源尚不清楚;然而,野生物种如V.angularis var.nipponensis,V.nakashimae和V.nepalensis广泛分布于东亚和喜马拉雅国家6。

The likely wild progenitor of the cultivated adzuki bean is V. angularisvar var. nipponensis, found in Japan, Korea, China, Nepal, Bhutan, and the Himalayan region, which exhibit substantial genetic diversity8. Additionally, archaeological evidence indicates that northeastern Asia was the primary site of adzuki bean domestication6.Adzuki bean is a diploid legume crop with 22 chromosomes (2n = 2x = 22)7.

栽培红小豆的可能野生祖先是在日本,韩国,中国,尼泊尔,不丹和喜马拉雅地区发现的V.angularisvar.nipponensis,它们表现出显着的遗传多样性8。此外,考古证据表明,东北亚是小豆驯化的主要地点6。小豆是一种具有22条染色体(2n 2x 22)的二倍体豆类作物7。

Several adzuki be.

几个adzuki是。

De novo assembly of the adzuki bean genomeShort next-generation sequencing (NGS) reads were employed for estimating the genome size, heterozygosity, and repeat content of V. angularis before the de novo genome assembly. Jellyfish (v2.1.3)13 was adopted to count the number of 21-mers, which was used to calculate the basic information of the genome (Table 3).

小豆基因组的从头组装使用下一代测序(NGS)读数来估计从头基因组组装之前V.angularis的基因组大小,杂合性和重复含量。水母(v2.1.3)13被用来计算21聚体的数量,用于计算基因组的基本信息(表3)。

The genome size of V. angularis was estimated at 464.9 Mb, with heterozygosity of 0.54% and a repeat content percentage of 43.878%.Table 3 Statistics of the 21-mer analysis of the Vigna angularis (cultivar Longxiaodou 4) genome.Full size tableThe long reads from the PacBio SEQUAL sequencing platform were utilized for the contig assembly using Canu (v2.0)14, with the parameter of the corrected ErrorRate set to 0.045 and corOutCoverage set to 40, respectively.

V.angularis的基因组大小估计为464.9Mb,杂合性为0.54%,重复含量百分比为43.878%。表3豇豆(品种龙小豆4)基因组21-mer分析的统计数据。全尺寸表使用Canu(v2.0)14将来自PacBio-SEQUAL测序平台的长读数用于重叠群组装,校正的错误率参数分别设置为0.045和corOutCoverage设置为40。

Approximately 150-fold coverage of the estimated genome size was generated after self-correction. The primary assembled genome size was 495 Mb, with a contig N50 of 16.14 Mb. To revise the random error introduced by the PacBio sequencing reads, this assembled genome sequence was polished with the long reads obtained with Racon (v1.3.3)15 and then further polished with the short reads obtained with Pilon (v1.23)16.

自我校正后,估计基因组大小的覆盖率约为150倍。主要组装的基因组大小为495 Mb,重叠群N50为16.14 Mb。为了修正PacBio测序读数引入的随机误差,用Racon(v1.3.3)15获得的长读数抛光该组装的基因组序列,然后用Pilon(v1.23)16获得的短读数进一步抛光。

Purge_haplotigs (v1.0.4)17 was used to purge the heterozygous and redundancy regions of the polished sequences. Ultimately, a high-quality genome of Vigna angularis was obtained, featuring a total size of 447.80 Mb, with a contig N50 of 16.53 Mb and a total of 47 contigs.The completeness and accuracy of the assembled genome were then evaluated with multiple methods.

Purge\u haplotigs(v1.0.4)17用于清除抛光序列的杂合和冗余区域。最终,获得了高质量的豇豆基因组,总大小为447.80Mb,重叠群N50为16.53Mb,共有47个重叠群。然后用多种方法评估组装基因组的完整性和准确性。

BUSCO (Benchmarking Universal Single-Copy Orthologs, v3.0.0)18 was employed to assess the completeness of the single-copy genes from the orthologs database, with 95.42% complete and 0.68% pa.

BUSCO(Benchmarking Universal Single Copy Orthologs,v3.0.0)18用于评估Orthologs数据库中单拷贝基因的完整性,完成率为95.42%,pa为0.68%。

Code availability

代码可用性

No specific code or script were used in this work. All commands used in the data processing were executed according to the manual of the instrument of the corresponding bioinformatics software.

这项工作没有使用特定的代码或脚本。数据处理中使用的所有命令都是根据相应生物信息学软件的仪器手册执行的。

ReferencesXie, Y., Xu, J. H., Lu, W. Y. & Lin, G. Q. Adzuki bean: a new resource of biocatalyst for asymmetric reduction of aromatic ketones with high stereoselectivity and substrate tolerance. Bioresour Technol. 100, 2463–8 (2009).Article

参考文献Xie,Y.,Xu,J.H.,Lu,W.Y。&Lin,G.Q。小豆:一种新的生物催化剂资源,用于不对称还原具有高立体选择性和底物耐受性的芳香酮。生物酸技术。1002463-8(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Yook, J. S. et al. Black Adzuki bean (Vigna angularis) attenuates high-fat diet-induced colon inflammation in mice. J Med Food. 20, 367–375 (2017).Article

Yook,J.S。等人。黑小豆(Vigna angularis)减轻高脂饮食诱导的小鼠结肠炎症。J Med食品。20367-375(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chu, L. et al. Genetic analysis of seed coat colour in adzuki bean (Vigna angularis L.). Plant Genet Resour. 19, 67–73 (2021).Article

Chu,L.等人。小豆(Vigna angularis L.)种皮颜色的遗传分析。植物基因资源。19,67-73(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Xiang, H. et al. Uniconazole foliar spray treatment alleviates cold stress in adzuki bean (Vigna angularis) seedlings. Intl J Agric Biol. 23, 235–240 (2020).CAS

Xiang,H。等人。烯效唑叶面喷施处理减轻了小豆(Vigna angularis)幼苗的冷胁迫。国际农业生物学杂志。23235-240(2020)。中科院

Google Scholar

谷歌学者

Kramer, C. et al. Control of volunteer adzuki bean in soybean. Agri Sci. 3, 501–509 (2012).CAS

Kramer,C。等人。大豆中志愿者小豆的控制。农业科学。3501-509(2012)。中科院

Google Scholar

谷歌学者

Jameel, M., Al-Khayri, ShriMohan Jain, Dennis V. Johnson. Advances in plant breeding strategies: Legumes. Springer Nature Switzerland AG. Chapter 1 (2019)Kang, Y. J. et al. Draft genome squence of adzuki bean, Vigna angularis. Sci Rep. 5, 8069 (2015).Article

Jameel,M.,Al-Khayri,ShriMohan Jain,Dennis V.Johnson。植物育种策略的进展:豆类。Springer Nature Switzerland AG.第1章(2019)Kang,Y.J.等人,《红小豆基因组草图》,Vigna angularis,《科学报告》58069(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yamaguchi, H. Wild and weed azuki beans in Japan. Econ Bot. 46, 384–394 (1992).Article

山口,H。日本的野生和杂草azuki豆。经济Bot.46384–394(1992)。文章

Google Scholar

谷歌学者

Sakai, H. et al. The power of single molecule real-time sequencing technology in the de novo assembly of a eukaryotic genome. Sci. Rep. 5, 1–13 (2015).Article

Sakai,H.等人。单分子实时测序技术在真核基因组从头组装中的作用。科学。代表5,1-13(2015)。文章

Google Scholar

谷歌学者

Yang, K. et al. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc. Natl. Acad. Sci. USA 112, 13213–13218 (2015).Article

Yang,K。等人。小豆(Vigna angularis)的基因组测序提供了对高淀粉和低脂积累和驯化的见解。程序。纳特尔。阿卡德。科学。美国11213213–13218(2015)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chu, L. et al. Chromosome-level reference genome and resequencing of 322 accessions reveal evolution, genomic imprint and key agronomic traits in adzuki bean. Plant Biotechnol. J. https://doi.org/10.1111/pbi.14337 (2024).Article

Chu,L.等人。染色体水平参考基因组和322份种质的重测序揭示了小豆的进化,基因组印记和关键农艺性状。。J。https://doi.org/10.1111/pbi.14337(2024年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. Pan-Genome of Wild and Cultivated Soybeans. Cell 182, 162–176 (2020).Article

Liu,Y.等人。野生和栽培大豆的泛基因组。细胞182162-176(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 27, 764 (2011).Article

Marçais,G。&Kingsford,C。一种快速,无锁的方法,用于有效并行计数k聚体的发生。生物信息学。27764(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sergey, K. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).Article

Sergey,K。等人。Canu:通过自适应K-mer加权和重复分离,可扩展且准确的长读取组装。基因组研究27722-736(2017)。文章

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Robert, V. et al. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).Article

Robert,V.等人。从长时间未校正的读数中快速准确地从头组装基因组。基因组研究27737-746(2017)。文章

Google Scholar

谷歌学者

Bruce, W. et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PloS One. 9, 112 (2014).

Bruce,W.等人。Pilon:用于全面微生物变异检测和基因组组装改进的综合工具。。9112(2014)。

Google Scholar

谷歌学者

Roach, M. J. et al. Purge Haplotigs: Synteny Reduction for Third-gen Diploid Genome Assemblies. BMC Bioinformatics. 19, 460 (2018).Article

Roach,M.J.等人,《清除单倍体:第三代二倍体基因组组装的同线性减少》。BMC生物信息学。19460(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Simao, F. A. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 31, 3210–3212 (2015).Article

Simao,F.A。等人,BUSCO:使用单拷贝直系同源物评估基因组组装和注释完整性。生物信息学。313210-3212(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, X. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, 265–268 (2007).Article

Zhao,X。&Wang,H。LTR\u FINDER:预测全长LTR逆转录转座子的有效工具。核酸研究35265-268(2007)。文章

Google Scholar

谷歌学者

Ou, S. J. & Jian, N. LTR_retriever: a highly accurate and sensitive program for identification of 2 long terminal-repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2017).Article

Ou,S.J。&Jian,N。LTR\U retriever:一种高度准确且灵敏的程序,用于鉴定2个长末端重复反转录转座子。植物生理学。1761410-1422(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nicolas, S. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).Article

Nicolas,S.等人,《HiC Pro:用于Hi-C数据处理的优化且灵活的管道》。。16259(2015)。文章

Google Scholar

谷歌学者

Jung, Y. & Han, D. BWA-MEME: BWA-MEM emulated with a machine learning approach. Bioinformatics. 38, 2404–2413 (2022).Article

Jung,Y.&Han,D。BWA-MEM:BWA-MEM采用机器学习方法进行仿真。生物信息学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 3, 95–98 (2016).Article

Durand,N.C.等人的Juicer提供了一个一键系统,用于分析循环分辨率的Hi-C实验。细胞系统。3,95-98(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 356, 92–95 (2017).Article

Dudchenko,O。等人。使用Hi-C从头组装埃及伊蚊基因组产生染色体长度支架。科学。356,92-95(2017)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics. 21, i351–i358 (2005).Article

Price,A.L.,Jones,N.C。和Pevzner,P.A。从头鉴定大基因组中的重复家族。生物信息学。21,i351–i358(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tempel, S. Using and Understanding RepeatMasker. Methods Mol Biol. 859, 29–51 (2012).Article

Tempel,S。使用和理解RepeatMasker。方法Mol Biol。859,29-51(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 6, 11 (2015).Article

Bao,W.,Kojima,K。K。&Kohany,O。Repbase Update,真核基因组中重复元件的数据库。暴徒DNA。6,11(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).Article

Benson,G。Tandem repeats finder:一个分析DNA序列的程序。核酸研究27573-580(1999)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, D., Langmead, B. & Salzberg, S. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 12, 357–360 (2015).Article

Kim,D.,Langmead,B。&Salzberg,S。HISAT:一种具有低内存需求的快速拼接对准器。Nat方法。12357-360(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 33, 290–295 (2015).Article

Pertea,M。等人StringTie能够从RNA-seq读数改进转录组的重建。纳特生物技术。33290–295(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pertea, M. et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 11, 1650–1667 (2016).Article

Pertea,M.等人。用HISAT,StringTie和Ballground进行RNA-seq实验的转录水平表达分析。Nat协议。111650–1667(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gertz, E. M., Yu, Y. K., Agarwala, R., Schäffer, A. A. & Altschul, S. F. Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol. 4, 41 (2006).Article

Gertz,E.M.,Yu,Y.K.,Agarwala,R.,Schäffer,A.A。&Altschul,S.F。基于组成的统计和翻译的核苷酸搜索:改进BLAST的TBLASTN模块。。4,41(2006)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).Article

Stanke,M。&Morgenstern,B。AUGUSTUS:真核生物基因预测的网络服务器,允许用户定义的约束。核酸研究33,W465–W467(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 268, 78–94 (1997).Article

Burge,C。&Karlin,S。预测人类基因组DNA中的完整基因结构。J摩尔生物学。268,78-94(1997)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 22, 12, 491 (2011).The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2016).Article .

Holt,C。&Yandell,M。MAKER2:用于第二代基因组计划的注释管道和基因组数据库管理工具。BMC生物信息学。22,12491(2011)。UniProt财团。UniProt:通用蛋白质知识库。核酸研究45,D158–D169(2016)。文章。

Google Scholar

谷歌学者

Finn, R. D. et al. InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Res. 45, D190–D199 (2016).Article

Finn,R.D.等人于2017年发表了《超越蛋白质家族和结构域注释》的InterPro。核酸研究45,D190–D199(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tatusov, R. L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 11, 41 (2003).Article

Tatusov,R.L.等人。COG数据库:更新版本包括真核生物。BMC生物信息学。11,41(2003)。文章

Google Scholar

谷歌学者

The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).Article

基因本体论联盟。基因本体资源:20年,仍然很强大。核酸研究47,D330–D338(2019)。文章

Google Scholar

谷歌学者

Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic acids Res. 42, D199–205 (2014).Article

Kanehisa,M.等人。数据,信息,知识和原理:回到KEGG的新陈代谢。核酸研究42,D199-205(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xiang, H. whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:JABFOF000000000 (2020).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR11787767 (2020).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR11787766 (2020).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR11787768 (2020).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR11787765 (2020).Download referencesAcknowledgementsThis study was supported by Heilongjiang Key R&D Program project (GA21B009-14), China Agriculture Research System (CARS-08-G8), Heilongjiang Provincial Natural Science Foundation of China (LH2021C078).Author informationAuthor notesThese authors contributed equally: Wan Li, Fanglei He, Xueyang Wang.Authors and AffiliationsInstitute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, ChinaWan Li & Hongtao XiangHeilongjiang Academy of Agricultural Sciences, Harbin, 150086, ChinaWan Li, Xueyang Wang, Qi Liu & Xiaoqing ZhangInnovative Center of Molecular Genetics and Evolution, School of Life Sciences Guangzhou University, Guangzhou, 510405, ChinaFanglei He, Zhiquan Yang & Chao FangCollege of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, 650201, ChinaFanglei He & Xiaoqing ZhangSuihua Branch, Heilongjiang Academy of Agricultural Machinery Sciences, Suihua, 152054, ChinaHongtao XiangAuthorsWan LiView author publicationsYou can also search for this author in.

Xiang,H。全基因组鸟枪测序项目。基因库https://identifiers.org/ncbi/insdc:JABFOF000000000(2020年)。NCBI序列读取存档https://identifiers.org/ncbi/insdc.sra:SRR11787767(2020年)。NCBI序列读取存档https://identifiers.org/ncbi/insdc.sra:SRR11787766(2020年)。NCBI序列读取存档https://identifiers.org/ncbi/insdc.sra:SRR11787768(2020年)。NCBI序列读取存档https://identifiers.org/ncbi/insdc.sra:SRR11787765(2020年)。下载参考文献致谢本研究得到了黑龙江省重点研发项目(GA21B009-14),中国农业研究系统(CARS-08-G8),黑龙江省自然科学基金(LH2021C078)的支持。作者信息作者注意到这些作者做出了同样的贡献:万丽,何方磊,王雪阳。作者和所属单位黑龙江省农业科学院作物栽培与耕作研究所,哈尔滨,150086,李万丽和洪涛,黑龙江省农业科学院,哈尔滨,150086,李万丽,王雪阳,刘琦和张晓青,广州大学生命科学学院分子遗传与进化创新中心,广州,510405,何方磊,杨志泉和赵芳,云南农业大学农业与生物技术学院,昆明,650201,何方磊和张晓青,黑龙江省农业机械科学院,绥化,152054,中国洪涛,作者Wan LiView作者出版物您也可以搜索作者在。

PubMed Google ScholarFanglei HeView author publicationsYou can also search for this author in

PubMed Google ScholarFanglei HeView作者出版物您也可以在

PubMed Google ScholarXueyang WangView author publicationsYou can also search for this author in

PubMed谷歌学者Xueyang WangView作者出版物您也可以在

PubMed Google ScholarQi LiuView author publicationsYou can also search for this author in

PubMed Google ScholarQi LiuView作者出版物您也可以在

PubMed Google ScholarXiaoqing ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张晓青查看作者出版物您也可以在

PubMed Google ScholarZhiquan YangView author publicationsYou can also search for this author in

PubMed Google ScholarChao FangView author publicationsYou can also search for this author in

PubMed Google ScholarChao FangView作者出版物您也可以在

PubMed Google ScholarHongtao XiangView author publicationsYou can also search for this author in

PubMed谷歌学者洪涛XiangView作者出版物您也可以在

PubMed Google ScholarContributionsX.H. and F.C. conceived and devised the experimental design. L.W. and H.F. conducted the experiments. H.F., W.X., L.Q., Z.X. and Y.Z. performed the data analysis. F.C. and L.W. wrote the manuscript.Corresponding authorsCorrespondence to

PubMed谷歌学术贡献x。H、 F.C.构思并设计了实验设计。五十、 W.和H.F.进行了实验。H、 F.,W.X.,L.Q.,Z.X.和Y.Z.进行了数据分析。F、 C.和L.W.写了手稿。通讯作者通讯

Zhiquan Yang, Chao Fang or Hongtao Xiang.Ethics declarations

杨志全、赵芳或洪涛香。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

。权限和权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleLi, W., He, F., Wang, X. et al. Chromosome genome assembly and annotation of Adzuki Bean (Vigna angularis).

转载和许可本文引用本文Li,W.,He,F.,Wang,X。等人。小豆(Vigna angularis)的染色体基因组组装和注释。

Sci Data 11, 1074 (2024). https://doi.org/10.1038/s41597-024-03911-yDownload citationReceived: 19 June 2023Accepted: 23 September 2024Published: 02 October 2024DOI: https://doi.org/10.1038/s41597-024-03911-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Sci数据111074(2024)。https://doi.org/10.1038/s41597-024-03911-yDownload引文收到日期:2023年6月19日接受日期:2024年9月23日发布日期:2024年10月2日OI:https://doi.org/10.1038/s41597-024-03911-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供