商务合作
动脉网APP
可切换为仅中文
AbstractThe deciduous American sweetgum (Liquidambar styraciflua, Altingiaceae) is a popular ornamental and economically valuable tree renowned for its sweet-smelling bark resin, abundant volatile substances, and spectacular fall leaf color. However, the absence of a reference genome hinders thorough investigations into the mechanisms underlying phenotypic variation, secondary metabolite synthesis and adaptation, both in this species and other Liquidambar members.
摘要落叶美洲枫香(Liquidambar styraciflua,Altingiaceae)是一种受欢迎的观赏树种,具有经济价值,因其树皮树脂的芳香,丰富的挥发性物质和壮观的秋叶颜色而闻名。然而,缺乏参考基因组阻碍了对该物种和其他枫香成员的表型变异,次级代谢产物合成和适应机制的深入研究。
In this study, we sequenced and constructed a chromosome-level assembly of the L. styraciflua genome, covering 662.48 Mb with a scaffold N50 of 39.54 Mb, by integrating PacBio, Illumina and chromosome conformation capture data. We identified 58.83% of the genome sequences as repetitive elements and 25,713 protein-coding genes, 97.28% of which were functionally annotated.
在这项研究中,我们通过整合PacBio,Illumina和染色体构象捕获数据,对L.styraciflua基因组的染色体水平组装进行了测序和构建,覆盖662.48 Mb,支架N50为39.54 Mb。我们确定了58.83%的基因组序列为重复元件和25713个蛋白质编码基因,其中97.28%是功能注释的。
The genome sequencing reads, assembly and annotation data have been deposited in publicly available repositories. This high-quality genome assembly provides valuable resources for further evolutionary and functional genomic studies in American sweetgum and other Liquidambar species..
基因组测序读取,组装和注释数据已保存在公开可用的存储库中。这种高质量的基因组组装为美国枫香和其他枫香物种的进一步进化和功能基因组研究提供了宝贵的资源。。
Background & SummaryLiquidambar, the sole genus in Altingiaceae, comprises about 15 species disjunctively distributed in Southeast and East Asia, the eastern Mediterranean, eastern North America and Mesoamerica1. According to fossil records2,3, this genus was widespread across the Northern Hemisphere during the Cenozoic, with some extant species exhibiting morphological stasis4.
背景与总结枫香是Altingiaceae的唯一属,约有15种,分布于东南亚和东亚,东地中海,北美东部和中美洲1。根据化石记录2,3,该属在新生代广泛分布于北半球,一些现存物种表现出形态特征4。
Members of this genus are globally appreciated for their ornamental, aromatic, industrial and medicinal values5,6,7. L. styraciflua is a deciduous forest tree native to the eastern United States, eastern and central Mexico and the Central America8. It is commonly used as ornamental tree because of its colorful leaves and high resilience, and has been widely cultivated outside its natural habitat.
该属的成员因其观赏,芳香,工业和药用价值而受到全球赞赏5,6,7。五十、 styraciflua是一种落叶乔木,原产于美国东部,墨西哥东部和中部以及中美洲8。它因其彩色的叶子和高弹性而常被用作观赏树,并且在其自然栖息地之外被广泛种植。
In addition, this species is commonly called American sweetgum for its production of a sweet-smelling gum from its cracked trunk. The medicinal qualities of resins and essential oils extracted from the leaves have been traditionally utilized by native Americans to treat various ailments such as inflammation, stomachaches, wounds, coughs, bronchitis, liver enlargement, and amenorrhea9,10.
此外,该物种通常被称为美国甜口香糖,因为它从破裂的树干中产生一种甜味口香糖。从叶子中提取的树脂和精油的药用品质传统上被美洲原住民用于治疗各种疾病,如炎症,胃痛,伤口,咳嗽,支气管炎,肝脏肿大和闭经9,10。
Terpenes are the main chemical components of the leaf and stem oils10,11, that are proven to have important therapeutic potential with anti-inflammatory, antioxidant and anticancer properties12,13. However, the terpenoids synthesis pathway in L. styraciflua remains uncharacterized due to the lack of a high-quality genome assembly for the species.
。然而,由于缺乏该物种的高质量基因组组装,styraciflua中的萜类化合物合成途径仍未表征。
Additionally, to date, there is only one reference genome sequence available for Liquidambar14. The limited genomic resources have hindered investigation of species relationships and their evolutionary history over time in the genus.In this study, we utilized a combination of t.
此外,迄今为止,只有一个参考基因组序列可用于枫香14。有限的基因组资源阻碍了对该属物种关系及其进化历史的研究。在这项研究中,我们利用了t的组合。
Code availability
代码可用性
All software and pipelines were executed according to the official instructions. No custom code was generated for this study.
所有软件和管道均按照官方指示执行。没有为这项研究生成自定义代码。
ReferencesIckert-Bond, S. M. & Wen, J. A taxonomic synopsis of Altingiaceae with nine new combinations. PhytoKeys 31, 21–61 (2013).Article
参考文献Sickert Bond,S.M。&Wen,J。Altingiaceae的分类概要,有9个新组合。植物键31,21-61(2013)。文章
Google Scholar
谷歌学者
Zhou, Z. K., Crepet, W. L. & Nixon, K. C. The earliest fossil evidence of the Hamamelidaceae: Late cretaceous (Turonian) inflorescences and fruits of Altingioideae. Am. J. Bot. 88, 753–766 (2001).Article
Zhou,Z.K.,Crepet,W.L。和Nixon,K.C。金缕梅科最早的化石证据:晚白垩世(土伦)花序和Altingioideae的果实。《美国法学杂志》第88753-766页(2001年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pigg, K. B., Ickert-Bond, S. M. & Wen, J. Anatomically preserved Liquidambar (Altingiaceae) from the middle Miocene of Yakima Canyon, Washington state, USA, and its biogeographic implications. Am. J. Bot. 91, 499–509 (2004).Article
Pigg,K.B.,Ickert Bond,S.M。&Wen,J。美国华盛顿州亚基马峡谷中中中新世解剖学保存的枫香(Altingiaceae)及其生物地理意义。《美国法学杂志》第91499-509页(2004年)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ickert-Bond, S. M. & Wen, J. Phylogeny and biogeography of Altingiaceae: Evidence from combined analysis of five non-coding chloroplast regions. Mol. Phylogenet. Evol. 39, 512–528 (2006).Article
Ickert Bond,S.M。&Wen,J。Altingiaceae的系统发育和生物地理学:来自五个非编码叶绿体区域的组合分析的证据。分子系统发育。进化。39512-528(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vink, W. in Flora Malesiana: Hamamelidaceae. (ed. van Steenis, C. G. J.) (National Herbarium, Leiden, 1957).Zhang, Z., Zhang, H. & Endress, P. K. in Flora of China: Hamamelidaceae. (eds. Wu, Z., Raven, P. & Hong, D.) (Science Press, Beijing, 2003).Ickert-Bond, S. M., Pigg, K. B. & Wen, J.
Vink,W.在Flora Malesiana中:金缕梅科。(ed.van Steenis,C.G.J.)(国家植物标本馆,莱顿,1957年)。中国植物志:金缕梅科。(编辑:Wu,Z.,Raven,P。&Hong,D。)(科学出版社,北京,2003)。Ickert Bond,S.M.,Pigg,K.B。和Wen,J。
Comparative infructescence morphology in Altingia (Altingiaceae) and discordance between morphological and molecular phylogenies. Am. J. Bot. 94, 1094–1115 (2007).Article .
Altingia(Altingiaceae)的比较果序形态以及形态和分子系统发育之间的不一致。《美国法学杂志》第941094-1115页(2007年)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Morris, A. B., Ickert-Bond, S. M., Brunson, D. B., Soltis, D. E. & Soltis, P. S. Phylogeographical structure and temporal complexity in American sweetgum (Liquidambar styraciflua; Altingiaceae). Mol. Ecol. 17, 3889–3900 (2008).Article
Morris,A.B.,Ickert-Bond,S.M.,Brunson,D.B.,Soltis,D.E。&Soltis,P.S。美国枫香的系统地理结构和时间复杂性(枫香;Altingiaceae)。。173889-3900(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Crandall, P., Lingbeck, J., O′Bryan, C., Martin, E. & Adams, J. Sweetgum: An ancient source of beneficial compounds with modern benefits. Pharmacogn Rev 9, 1 (2015).Article
Crandall,P.,Lingbeck,J.,O'Bryan,C.,Martin,E。&Adams,J。Sweetgum:具有现代益处的有益化合物的古老来源。Pharmacogn Rev 9,1(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
El-Readi, M. Z. et al. Variations of the chemical composition and bioactivity of essential oils from leaves and stems of Liquidambar styraciflua (Altingiaceae). J. Pharm. Pharmacol. 65, 1653–1663 (2013).Article
El Readi,M.Z.等人。枫香(枫香科)叶和茎挥发油化学成分和生物活性的变化。J、 药理学。651653-1663(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mancarz, G. F. F. et al. Chemical composition and biological activity of Liquidambar styraciflua L. leaf essential oil. Ind. Crops Prod. 138 (2019).Pozzobon, R. G. et al. Chemical evaluation of Liquidambar styraciflua L. fruits extracts and their potential as anticancer drugs. Molecules 28 (2023).Mancarz, G.
Mancarz,G.F.F.等人。枫香叶精油的化学成分和生物活性。《工业作物生产》138(2019)。Pozzobon,R.G.等人。枫香果实提取物的化学评价及其作为抗癌药物的潜力。分子28(2023)。。
F. F. et al. Liquidambar styraciflua L.: A new potential source for therapeutic uses. J. Pharm. Biomed. Anal. 174, 422–431 (2019).Article .
F、 枫香:治疗用途的新潜在来源。J、 生物医学药学。肛门。174422-431(2019)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xu, W. et al. Genome sequences and population genomics reveal climatic adaptation and genomic divergence between two closely related sweetgum species. Plant J. 118, 1372–1387 (2024).Article
Xu,W.等人。基因组序列和种群基因组学揭示了两种密切相关的甜瓜物种之间的气候适应和基因组差异。工厂J.1181372–1387(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Santamour, F. S. Chromosome number in Liquidambar. Rhodora 74, 287–290 (1972).
Santamour,F.S。枫香的染色体数。罗多拉74287-290(1972)。
Google Scholar
谷歌学者
Belton, J. M. et al. Hi–C: A comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).Article
Belton,J.M.等人,《Hi–C:捕获基因组构象的综合技术》。方法58268-276(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, X. et al. Pangenome of water caltrop reveals structural variations and asymmetric subgenome divergence after allopolyploidization. Horticulture Research. 10, uhad203 (2023).Keller, O., Kollmar, M., Stanke, M. & Waack, S. A novel hybrid gene prediction method employing protein multiple sequence alignments.
。园艺研究。10,uhad203(2023)。Keller,O.,Kollmar,M.,Stanke,M。&Waack,S。一种采用蛋白质多序列比对的新型杂交基因预测方法。
Bioinformatics 27, 757–763 (2011).Article .
生物信息学27757-763(2011)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Parra, G., Blanco, E. & Guigó, R. GeneID in Drosophila. Genome Res. 10, 511–515 (2000).Article
帕拉,G.,布兰科,E.&Guigo,R.果蝇中的基因。基因组研究。10511-515(2000年)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).Article
Burge,C。&Karlin,S。预测人类基因组DNA中的完整基因结构。J、 分子生物学。268,78-94(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).Article
Majoros,W.H.,Pertea,M。&Salzberg,S.L。TigrScan和GlimmerHMM:两个开源从头算起的真核基因发现者。生物信息学202878-2879(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhu, S. et al. Genomic insights on the contribution of balancing selection and local adaptation to the long‐term survival of a widespread living fossil tree, Cercidiphyllum japonicum. New Phytol. 228, 1674–1689 (2020).Article
Zhu,S.等人。关于平衡选择和局部适应对广泛存在的活化石树Cercidiphyllum japonicum长期存活的贡献的基因组见解。新植物醇。2281674-1689(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Yang, X. et al. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat. Commun. 8, 1899 (2017).Article
Yang,X。等人。Kalanchoë基因组提供了对趋同进化和景天酸代谢构建模块的见解。国家公社。81899(2017)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).Article
Birney,E.,Clamp,M。&Durbin,R。GeneWise和Genomewise。Genome Res.14988–995(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).Article
Grabherr,M.G.等人,无参考基因组的RNA-Seq数据的全长转录组组装。。29644-652(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, 1–22 (2008).Article
Haas,B.J.等人。使用证据模型(EVidenceModeler)和组装剪接比对的程序自动进行真核基因结构注释。基因组生物学。9,1-22(2008)。文章
Google Scholar
谷歌学者
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).Article
Jones,P.等人,《InterProScan 5:基因组规模的蛋白质功能分类》。生物信息学301236-1240(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Conesa, A., Sato, Y. & Morishima, K. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 21, 3674–3676 (2005).Article
Conesa,A.,Sato,Y。和Morishima,K。Blast2GO:功能基因组学研究中注释,可视化和分析的通用工具。生物信息学。213674-3676(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334813 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334814 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334815 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334816 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334817 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334818 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334819 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334820 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334821 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334822 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334823 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334824 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334825 (2024).NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR29334826 (2024).NCBI GenBank https://identifiers.org/ncbi/insdc.gca:GCA_041721615.1 (2024).Ma, Y., Ding, S.
NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334813(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334814(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334815(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334816(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334817(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334818(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334819(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334820(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334821(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334822(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334823(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334824(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334825(2024).NCBI序列读取档案https://identifiers.org/ncbi/insdc.sra:SRR29334826(2024).基因库https://identifiers.org/ncbi/insdc.gca:GCA_041721615.1(2024).马,Y,丁,S。
& Qiu, Y. Genome assembly and annotation of the American sweetgum (Liquidambar styraciflua). Figshare https://doi.org/10.6084/m9.figshare.26076514 (2024).Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article .
&Qiu,Y。美国枫香(Liquidambar styraciflua)的基因组组装和注释。Figshare公司https://doi.org/10.6084/m9.figshare.26076514(2024年)。Li,H。&Durbin,R。使用Burrows-Wheeler变换进行快速准确的短读比对。生物信息学251754-1760(2009)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).Article
Simão,F.A.,Waterhouse,R.M.,Ioannidis,P.,Kriventseva,E.V。&Zdobnov,E.M.BUSCO:使用单拷贝直系同源物评估基因组组装和注释完整性。生物信息学313210-3212(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was supported by the National Natural Science Foundation of China (Grant No. 32161143003).Author informationAuthor notesThese authors contributed equally: Yazhen Ma, Shixiong Ding.Authors and AffiliationsWuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, ChinaYazhen Ma, Shixiong Ding & Yingxiong QiuUniversity of Chinese Academy of Sciences, Beijing, 100049, ChinaShixiong DingAuthorsYazhen MaView author publicationsYou can also search for this author in.
下载参考文献致谢这项工作得到了国家自然科学基金(批准号32161143003)的支持。作者信息作者注意到这些作者做出了同样的贡献:马亚珍,丁世雄。作者和附属机构中国科学院武汉植物园,武汉,430074,中国亚真马,丁石雄和营雄邱大学,北京,100049,丁石雄作者亚真MaView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarShixiong DingView author publicationsYou can also search for this author in
PubMed Google ScholarShixiong DingView作者出版物您也可以在
PubMed Google ScholarYingxiong QiuView author publicationsYou can also search for this author in
PubMed Google ScholaryYingXiongqiuview作者出版物您也可以在
PubMed Google ScholarContributionsY.X.Q. and Y.Z.M. designed and conceived the study. S.X.D. collected the samples. Y.Z.M. performed the analyses. Y.Z.M. and Y.X.Q. wrote the draft. Y.X.Q., Y.Z.M. and S.X.D. revised the paper.Corresponding authorCorrespondence to
PubMed谷歌学术贡献。十、 Q.和Y.Z.M.设计并构思了这项研究。S、 X.D.收集了样本。Y、 Z.M.进行了分析。Y、 Z.M.和Y.X.Q.写了草稿。Y、 X.Q.,Y.Z.M.和S.X.D.修订了论文。对应作者对应
Yingxiong Qiu.Ethics declarations
邱英雄。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleMa, Y., Ding, S. & Qiu, Y. Chromosome-level genome assembly of American sweetgum (Liquidambar styraciflua, Altingiaceae).
转载和许可本文引用本文Ma,Y.,Ding,S。&Qiu,Y。美国枫香(枫香,Altingiaceae)的染色体水平基因组组装。
Sci Data 11, 1078 (2024). https://doi.org/10.1038/s41597-024-03924-7Download citationReceived: 24 June 2024Accepted: 23 September 2024Published: 03 October 2024DOI: https://doi.org/10.1038/s41597-024-03924-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci数据111078(2024)。https://doi.org/10.1038/s41597-024-03924-7Download引文接收日期:2024年6月24日接受日期:2024年9月23日发布日期:2024年10月3日OI:https://doi.org/10.1038/s41597-024-03924-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Evolutionary geneticsGenome
进化遗传学基因组