商务合作
动脉网APP
可切换为仅中文
AbstractThe 26S proteasome is involved in degrading and regulating the majority of proteins in eukaryotic cells, which requires a sophisticated balance of specificity and promiscuity. In this Review, we discuss the principles that underly substrate recognition and ATP-dependent degradation by the proteasome.
摘要26S蛋白酶体参与降解和调节真核细胞中的大多数蛋白质,这需要特异性和滥交的复杂平衡。在这篇综述中,我们讨论了蛋白酶体对底物识别和ATP依赖性降解的基础原理。
We focus on recent insights into the mechanisms of conventional ubiquitin-dependent and ubiquitin-independent protein turnover, and discuss the plethora of modulators for proteasome function, including substrate-delivering cofactors, ubiquitin ligases and deubiquitinases that enable the targeting of a highly diverse substrate pool.
我们专注于对常规泛素依赖性和泛素非依赖性蛋白质更新机制的最新见解,并讨论了蛋白酶体功能的过多调节剂,包括底物传递辅因子,泛素连接酶和去泛素化酶,这些酶能够靶向高度多样化的底物库。
Furthermore, we summarize recent progress in our understanding of substrate processing upstream of the 26S proteasome by the p97 protein unfoldase. The advances in our knowledge of proteasome structure, function and regulation also inform new strategies for specific inhibition or harnessing the degradation capabilities of the proteasome for the treatment of human diseases, for instance, by using proteolysis targeting chimera molecules or molecular glues..
。我们对蛋白酶体结构,功能和调控知识的进步也为特异性抑制或利用蛋白酶体的降解能力治疗人类疾病提供了新的策略,例如,通过使用靶向嵌合体分子或分子胶的蛋白水解。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: Architecture and conformational changes of the 26S proteasome.Fig. 2: Model for ubiquitin-mediated degradation by 26S proteasome.Fig. 3: The 26S proteasome binds a plethora of modular cofactors that typically associate with the ubiquitin receptors Rpn1, Rpn10 and Rpn13.Fig. 4: Hijacking the 26S proteasome by pathogens or for therapeutic purposes..
图1:26S蛋白酶体的结构和构象变化。图2:26S蛋白酶体泛素介导的降解模型。图3:26S蛋白酶体结合了大量的模块化辅因子,这些辅因子通常与泛素受体Rpn1,Rpn10和Rpn13结合。图4:26S蛋白酶体被病原体劫持或用于治疗目的。。
ReferencesBard, J. A. M. et al. Structure and function of the 26S proteasome. Annu. Rev. Biochem. 87, 697–724 (2018).Article
参考文献Bard,J.A.M。等人。26S蛋白酶体的结构和功能。年。。87697-724(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Finley, D. & Prado, M. A. The proteasome and its network: engineering for adaptability. Cold Spring Harb. Perspect. Biol. 12, a033985 (2020).Article
Finley,D。&Prado,M.A。蛋白酶体及其网络:适应性工程。冷泉兔。透视图。生物学12,a033985(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Myeku, N. et al. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 22, 46–53 (2016).Article
通过激活cAMP-PKA信号传导,可以在疾病早期预防Tau驱动的26S蛋白酶体损伤和认知功能障碍。《自然医学》22,46-53(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Budenholzer, L., Cheng, C. L., Li, Y. & Hochstrasser, M. Proteasome structure and assembly. J. Mol. Biol. 429, 3500–3524 (2017).Article
Budenholzer,L.,Cheng,C.L.,Li,Y。&Hochstrasser,M。蛋白酶体结构和组装。J、 分子生物学。4293500–3524(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gomes, A. V. et al. Mapping the murine cardiac 26S proteasome complexes. Circ. Res. 99, 362–371 (2006).Article
Gomes,A.V.等人绘制了小鼠心脏26S蛋白酶体复合物的图谱。保监会。第99362-371号决议(2006年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zong, C. et al. Regulation of murine cardiac 20S proteasomes: role of associating partners. Circ. Res. 99, 372–380 (2006).Article
Zong,C.等人。小鼠心脏20S蛋白酶体的调节:缔合伴侣的作用。保监会。第99372-380号决议(2006年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tomko, R. J. Jr. & Hochstrasser, M. Order of the proteasomal ATPases and eukaryotic proteasome assembly. Cell Biochem. Biophys. 60, 13–20 (2011).Article
Tomko,R。J。Jr。&Hochstrasser,M。蛋白酶体ATP酶和真核蛋白酶体组装的顺序。细胞生物化学。生物物理。60,13-20(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998).Article
Glickman,M.H.等人。泛素缀合物降解所需的蛋白酶体调节颗粒的亚复合物,与COP9信号体和eIF3有关。细胞94615-623(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Glickman, M. H., Rubin, D. M., Fried, V. A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149–3162 (1998).Article
。摩尔电池。生物学杂志183149-3162(1998)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tomko, R. J. Jr., Funakoshi, M., Schneider, K., Wang, J. & Hochstrasser, M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell 38, 393–403 (2010).Article
Tomko,R。J。Jr.,Funakoshi,M.,Schneider,K.,Wang,J。&Hochstrasser,M。真核蛋白酶体ATP酶的异六聚体环排列:对蛋白酶体结构和组装的影响。分子细胞38393-403(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lander, G. C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186–191 (2012).Article
Lander,G.C.等人。蛋白酶体调节颗粒的完整亚基结构。自然482186-191(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lasker, K. et al. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc. Natl Acad. Sci. USA 109, 1380–1387 (2012).Article
Lasker,K。等人。通过综合方法确定的26S蛋白酶体全复合物的分子结构。程序。国家科学院。科学。美国1091380–1387(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Inobe, T. & Genmei, R. N-Terminal coiled-coil structure of ATPase subunits of 26S proteasome is crucial for proteasome function. PLoS ONE 10, e0134056 (2015).Article
Inobe,T。&Genmei,R。26S蛋白酶体ATPase亚基的N末端卷曲螺旋结构对蛋白酶体功能至关重要。PLoS ONE 10,e0134056(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dong, Y. et al. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature 565, 49–55 (2018).Article
Dong,Y。等人。低温电磁结构和底物参与的人26S蛋白酶体的动力学。自然565,49-55(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).Article
Yao,T。&Cohen,R.E。一种隐蔽的蛋白酶将去泛素化和蛋白酶体降解结合起来。自然419403-407(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).Article
Verma,R。等人。Rpn11金属蛋白酶在26S蛋白酶体去泛素化和降解中的作用。科学298611-615(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Worden, E. J., Padovani, C. & Martin, A. Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 21, 220–227 (2014).Article
。自然结构。分子生物学。21220-227(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Worden, E. J., Dong, K. C. & Martin, A. An AAA motor-driven mechanical switch in Rpn11 controls deubiquitination at the 26S proteasome. Mol. Cell 67, 799–811.e8 (2017).Article
Worden,E.J.,Dong,K.C。和Martin,A。Rpn11中的AAA电机驱动机械开关控制26S蛋白酶体的去泛素化。分子细胞67799-811.e8(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta 1823, 2–14 (2012).Article
Wendler,P.,Ciniawsky,S.,Kock,M。&Kube,S。AAA+核苷酸结合口袋的结构和功能。生物化学。生物物理。Acta 1823,2–14(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Beck, F. et al. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl Acad. Sci. USA 109, 14870–14875 (2012).Article
Beck,F。等人。酵母26S蛋白酶体的近原子分辨率结构模型。程序。国家科学院。科学。美国10914870–14875(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
de la Pena, A. H., Goodall, E. A., Gates, S. N., Lander, G. C. & Martin, A. Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation. Science 362, eaav0725 (2018).Article
de la Pena,A.H.,Goodall,E.A.,Gates,S.N.,Lander,G.C。&Martin,A。底物参与的26S蛋白酶体结构揭示了ATP水解驱动的易位机制。科学362,eaav0725(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, S. et al. USP14-regulated allostery of the human proteasome by time-resolved cryo-EM. Nature 605, 567–574 (2022). This paper provides exciting insights into the various conformational states of the substrate-engaged 26S proteasome and its allosteric regulation by USP14 to coordinate the various steps of substrate processing.Article .
Zhang,S。等人。USP14通过时间分辨的cryo-EM调节人类蛋白酶体的变构。Nature 605567-574(2022)。本文对底物参与的26S蛋白酶体的各种构象状态及其USP14的变构调节提供了令人兴奋的见解,以协调底物加工的各个步骤。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gates, S. N. & Martin, A. Stairway to translocation: AAA+ motor structures reveal the mechanisms of ATP-dependent substrate translocation. Protein Sci. 29, 407–419 (2019).Article
Gates,S.N。和Martin,A。易位的阶梯:AAA+运动结构揭示了ATP依赖性底物易位的机制。蛋白质科学。29407-419(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Puchades, C. et al. Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing. Science 358, eaao0464 (2017).Article
线粒体内膜AAA+蛋白酶YME1的结构为底物加工提供了见识。科学358,eaao0464(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Han, H., Monroe, N., Sundquist, W. I., Shen, P. S. & Hill, C. P. The AAA ATPase Vps4 binds ESCRT-III substrates through a repeating array of dipeptide-binding pockets. eLife 6, e31324 (2017).Article
Han,H.,Monroe,N.,Sundquist,W.I.,Shen,P.S。&Hill,C.P。AAA ATPase Vps4通过重复的二肽结合口袋阵列结合ESCRT-III底物。eLife 6,e31324(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Monroe, N., Han, H., Shen, P. S., Sundquist, W. I. & Hill, C. P. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase. eLife 6, e24487 (2017).Article
Monroe,N.,Han,H.,Shen,P.S.,Sundquist,W.I。&Hill,C.P。Vps4-Vta1 AAA ATPase蛋白质易位的结构基础。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matyskiela, M. E., Lander, G. C. & Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20, 781–788 (2013).Article
Matyskiela,M.E.,Lander,G.C。和Martin,A。26S蛋白酶体的构象转换使底物降解成为可能。自然结构。分子生物学。20781-788(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Greene, E. R. et al. Specific lid-base contacts in the 26s proteasome control the conformational switching required for substrate degradation. eLife 8, e49806 (2019).Article
Greene,E.R。等人。26s蛋白酶体中特定的盖碱基接触控制底物降解所需的构象转换。eLife 8,e49806(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jonsson, E., Htet, Z. M., Bard, J. A. M., Dong, K. C. & Martin, A. Ubiquitin modulates 26S proteasome conformational dynamics and promotes substrate degradation. Sci. Adv. 8, eadd9520 (2022).Article
Jonsson,E.,Htet,Z.M.,Bard,J.A.M.,Dong,K.C。&Martin,A。泛素调节26S蛋白酶体构象动力学并促进底物降解。科学。Adv.8,eadd9520(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heinemeyer, W., Fischer, M., Krimmer, T., Stachon, U. & Wolf, D. H. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J. Biol. Chem. 272, 25200–25209 (1997).Article
Heinemeyer,W.,Fischer,M.,Krimmer,T.,Stachon,U。&Wolf,D.H。真核20 S蛋白酶体的活性位点及其参与亚基前体加工。J、 生物。化学。27225200–25209(1997)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Smith, D. M. et al. Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol. Cell 27, 731–744 (2007).Article
Smith,D.M.等人。蛋白酶体ATP酶羧基末端在20S蛋白酶体α环中的对接为底物进入打开了大门。分子细胞27731-744(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rabl, J. et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30, 360–368 (2008).Article
。分子细胞30360-368(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schweitzer, A. et al. Structure of the human 26S proteasome at a resolution of 3.9 A. Proc. Natl Acad. Sci. USA 113, 7816–7821 (2016).Article
Schweitzer,A。等人。人类26S蛋白酶体的结构,分辨率为3.9 A。Proc。国家科学院。科学。美国1137816–7821(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Huang, X., Luan, B., Wu, J. & Shi, Y. An atomic structure of the human 26S proteasome. Nat. Struct. Mol. Biol. 23, 778–785 (2016).Article
Huang,X.,Luan,B.,Wu,J。&Shi,Y。人类26S蛋白酶体的原子结构。自然结构。分子生物学。23778-785(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, S. et al. Structural basis for dynamic regulation of the human 26S proteasome. Proc. Natl Acad. Sci. USA 113, 12991–12996 (2016).Article
Chen,S.等人。人类26S蛋白酶体动态调节的结构基础。程序。国家科学院。科学。美国11312991–12996(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ding, Z. et al. High-resolution cryo-EM structure of the proteasome in complex with ADP-AlFx. Cell Res. 27, 373–385 (2017).Article
Ding,Z.等人。与ADP-AlFx复合的蛋白酶体的高分辨率低温电磁结构。Cell Res.27373–385(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Eisele, M. R. et al. Expanded coverage of the 26S proteasome conformational landscape reveals mechanisms of peptidase gating. Cell Rep. 24, 1301–1315.e05 (2018).Article
Eisele,M.R.等人,对26S蛋白酶体构象景观的扩展覆盖揭示了肽酶门控的机制。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wehmer, M. et al. Structural insights into the functional cycle of the ATPase module of the 26S proteasome. Proc. Natl Acad. Sci. USA 114, 1305–1310 (2017).Article
Wehmer,M。等人。对26S蛋白酶体ATPase模块功能周期的结构见解。程序。国家科学院。科学。美国1141305-1310(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012).Article
Komander,D。和Rape,M。泛素代码。年。。81203-229(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016).Article
Swatek,K.N。和Komander,D。泛素修饰。Cell Res.26399–422(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Dikic, I. & Schulman, B. A. An expanded lexicon for the ubiquitin code. Nat. Rev. Mol. Cell Biol. 24, 273–287 (2023).Article
Dikic,I。&Schulman,B.A。泛素代码的扩展词典。Nat。Rev。Mol。Cell Biol。24273-287(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).Article
Thrower,J.S.,Hoffman,L.,Rechsteiner,M。&Pickart,C.M。识别多聚泛素蛋白水解信号。EMBO J.19,94–102(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).Article
定量蛋白质组学揭示了非常规泛素链在蛋白酶体降解中的功能。细胞137133-145(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Silva, G. M., Finley, D. & Vogel, C. K63 polyubiquitination is a new modulator of the oxidative stress response. Nat. Struct. Mol. Biol. 22, 116–123 (2015).Article
Silva,G.M.,Finley,D。&Vogel,C。K63多聚泛素化是氧化应激反应的新调节剂。自然结构。分子生物学。22116-123(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Akizuki, Y. et al. cIAP1-based degraders induce degradation via branched ubiquitin architectures. Nat. Chem. Biol. 19, 311–322 (2023).Article
Akizuki,Y。等人。基于cIAP1的降解物通过分支泛素结构诱导降解。自然化学。生物学19311-322(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bard, J. A. M., Bashore, C., Dong, K. C. & Martin, A. The 26S proteasome utilizes a kinetic gateway to prioritize substrate degradation. Cell 177, 286–298.e15 (2019). This work provides the first complete kinetic picture of proteasomal degradation and the role of conformational changes in substrate engagement.Article .
Bard,J.A.M.,Bashore,C.,Dong,K.C。&Martin,A。26S蛋白酶体利用动力学网关优先考虑底物降解。细胞177286-298.e15(2019)。这项工作提供了蛋白酶体降解的第一个完整动力学图片以及构象变化在底物结合中的作用。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Martinez-Fonts, K. et al. The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat. Commun. 11, 477 (2020).Article
Martinez Fonts,K。等人。蛋白酶体19S帽及其泛素受体为底物提供了一个多功能的识别平台。国家公社。11477(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saeki, Y., Isono, E. & Toh, E. A. Preparation of ubiquitinated substrates by the PY motif-insertion method for monitoring 26S proteasome activity. Methods Enzymol. 399, 215–227 (2005).Article
Saeki,Y.,Isono,E。&Toh,E.A。通过PY基序插入法制备泛素化底物以监测26S蛋白酶体活性。方法酶法。399215-227(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Braten, O. et al. Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination. Proc. Natl Acad. Sci. USA 113, E4639–E4647 (2016).Article
Braten,O。等人。单泛素化后,26S蛋白酶体降解了许多具有独特特征的蛋白质。程序。国家科学院。科学。美国113,E4639–E4647(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653–665 (2008).Article
Jin,L.,Williamson,A.,Banerjee,S.,Philipp,I。&Rape,M。人类后期促进复合物泛素链形成的机制。细胞133653-665(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Locke, M., Toth, J. I. & Petroski, M. D. Lys11- and Lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulum-associated degradation. Biochem. J. 459, 205–216 (2014).Article
Locke,M.,Toth,J.I。&Petroski,M.D。Lys11和Lys48连接的泛素链在内质网相关降解过程中与p97相互作用。生物化学。J、 459205-216(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Meyer, H. J. & Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell 157, 910–921 (2014).Article
Meyer,H.J。&Rape,M。通过分支泛素链增强蛋白质降解。细胞157910-921(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, C., Liu, W., Ye, Y. & Li, W. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat. Commun. 8, 14274 (2017).Article
Liu,C.,Liu,W.,Ye,Y。&Li,W。Ufd2p合成分支的泛素链,以促进用非典型链修饰的底物的降解。国家公社。814274(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Du, J. et al. A cryptic K48 ubiquitin chain binding site on UCH37 is required for its role in proteasomal degradation. eLife 11, e76100 (2022).Article
Du,J。等人。UCH37上的一个隐蔽的K48泛素链结合位点是其在蛋白酶体降解中的作用所必需的。eLife 11,e76100(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ohtake, F., Saeki, Y., Ishido, S., Kanno, J. & Tanaka, K. The K48-K63 branched ubiquitin chain regulates NF-κB signaling. Mol. Cell 64, 251–266 (2016).Article
Ohtake,F.,Saeki,Y.,Ishido,S.,Kanno,J。&Tanaka,K。K48-K63分支泛素链调节NF-κB信号传导。分子细胞64251-266(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Inobe, T., Fishbain, S., Prakash, S. & Matouschek, A. Defining the geometry of the two-component proteasome degron. Nat. Chem. Biol. 7, 161–167 (2011).Article
Inobe,T.,Fishbain,S.,Prakash,S。&Matouschek,A。定义双组分蛋白酶体degron的几何形状。自然化学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Prakash, S., Tian, L., Ratliff, K. S., Lehotzky, R. E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 11, 830–837 (2004).Article
Prakash,S.,Tian,L.,Ratliff,K.S.,Lehotzky,R.E。&Matouschek,A。有效的蛋白酶体介导的降解需要非结构化的起始位点。自然结构。分子生物学。11830-837(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, C. W., Corboy, M. J., DeMartino, G. N. & Thomas, P. J. Endoproteolytic activity of the proteasome. Science 299, 408–411 (2003).Article
Liu,C.W.,Corboy,M.J.,DeMartino,G.N。&Thomas,P.J。蛋白酶体的内蛋白水解活性。科学299408-411(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Fishbain, S., Prakash, S., Herrig, A., Elsasser, S. & Matouschek, A. Rad23 escapes degradation because it lacks a proteasome initiation region. Nat. Commun. 2, 192 (2011).Article
Fishbain,S.,Prakash,S.,Herrig,A.,Elsasser,S。&Matouschek,A。Rad23由于缺乏蛋白酶体起始区而逃脱了降解。国家公社。2192(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Piwko, W. & Jentsch, S. Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site. Nat. Struct. Mol. Biol. 13, 691–697 (2006).Article
Piwko,W。&Jentsch,S。蛋白酶体通过从内部位点开始的双向降解介导的蛋白质加工。自然结构。分子生物学。13691-697(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001).Article
Lee,C.,Schwartz,M.P.,Prakash,S.,Iwakura,M。&Matouschek,A。ATP依赖性蛋白酶通过从降解信号中逐渐解开它们来降解它们的底物。分子细胞7627-637(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).Article
Rape,M.等人。通过泛素选择性伴侣CDC48(UFD1/NPL4)动员加工的膜束缚SPT23转录因子。细胞107667-677(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lin, L. & Ghosh, S. A glycine-rich region in NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16, 2248–2254 (1996).Article
Lin,L。&Ghosh,S。NF-κB p105中富含甘氨酸的区域充当产生p50亚基的处理信号。摩尔电池。生物学162248-2254(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kraut, D. A. & Matouschek, A. Proteasomal degradation from internal sites favors partial proteolysis via remote domain stabilization. ACS Chem. Biol. 6, 1087–1095 (2011).Article
。ACS化学。生物学61087-1095(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78, 773–785 (1994).Article
Palombella,V.J.,Rando,O.J.,Goldberg,A.L。和Maniatis,T。泛素-蛋白酶体途径是处理NF-κB1前体蛋白和激活NF-κB所必需的。Cell 78773-785(1994)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Pan, Y., Bai, C. B., Joyner, A. L. & Wang, B. Sonic Hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell. Biol. 26, 3365–3377 (2006).Article
Pan,Y.,Bai,C.B.,Joyner,A.L。&Wang,B。Sonic Hedgehog信号通过抑制其加工和降解来调节Gli2转录活性。摩尔电池。生物学263365-3377(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Johnston, J. A., Johnson, E. S., Waller, P. R. & Varshavsky, A. Methotrexate inhibits proteolysis of dihydrofolate reductase by the N-end rule pathway. J. Biol. Chem. 270, 8172–8178 (1995).Article
Johnston,J.A.,Johnson,E.S.,Waller,P.R。&Varshavsky,A。甲氨蝶呤通过N端规则途径抑制二氢叶酸还原酶的蛋白水解。J、 生物。化学。2708172-8178(1995)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kenniston, J. A., Burton, R. E., Siddiqui, S. M., Baker, T. A. & Sauer, R. T. Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation. J. Struct. Biol. 146, 130–140 (2004).Article
Kenniston,J.A.,Burton,R.E.,Siddiqui,S.M.,Baker,T.A。&Sauer,R.T。局部蛋白质稳定性和底物降解标签的几何位置对ClpXP变性和降解效率的影响。J、 结构。生物学146130-140(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Stanton, D. A., Ellis, E. A., Cruse, M. R., Jedlinski, R. & Kraut, D. A. The importance of proteasome grip depends on substrate stability. Biochem. Biophys. Res. Commun. 677, 162–167 (2023).Article
Stanton,D.A.,Ellis,E.A.,Cruse,M.R.,Jedlinski,R。&Kraut,D.A。蛋白酶体握力的重要性取决于底物稳定性。生物化学。生物物理。公共资源。677162-167(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tomita, T. & Matouschek, A. Substrate selection by the proteasome through initiation regions. Protein Sci. 28, 1222–1232 (2019).Article
Tomita,T。&Matouschek,A。蛋白酶体通过起始区选择底物。蛋白质科学。281222-1232(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Davis, C. et al. A strict requirement in proteasome substrates for spacing between ubiquitin tag and degradation initiation elements. Preprint at bioRxiv https://doi.org/10.1101/2023.08.08.552540 (2023).Singh Gautam, A. K., Yu, H., Yellman, C., Elcock, A. H. & Matouschek, A. Design principles that protect the proteasome from self-destruction.
。bioRxiv预印本https://doi.org/10.1101/2023.08.08.552540(2023年)。Singh-Gautam,A.K.,Yu,H.,Yellman,C.,Elcock,A.H。&Matouschek,A。保护蛋白酶体免受自我破坏的设计原则。
Protein Sci. 31, 556–567 (2022).Article .
蛋白质科学。31556-567(2022)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Carroll, E. C., Greene, E. R., Martin, A. & Marqusee, S. Site-specific ubiquitination affects protein energetics and proteasomal degradation. Nat. Chem. Biol. 16, 866–875 (2020).Article
Carroll,E.C.,Greene,E.R.,Martin,A。&Marksee,S。位点特异性泛素化影响蛋白质能量学和蛋白酶体降解。自然化学。生物学16866-875(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Carroll, E. C. et al. Mechanistic basis for ubiquitin modulation of a protein energy landscape. Proc. Natl Acad. Sci. USA 118, e2025126118 (2021).Article
Carroll,E.C.等人。泛素调节蛋白质能量景观的机制基础。程序。国家科学院。科学。美国118,e2025126118(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hagai, T., Azia, A., Toth-Petroczy, A. & Levy, Y. Intrinsic disorder in ubiquitination substrates. J. Mol. Biol. 412, 319–324 (2011).Article
Hagai,T.,Azia,A.,Toth-Petroczy,A。&Levy,Y。泛素化底物的内在紊乱。J、 分子生物学。412319-324(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
van der Lee, R. et al. Intrinsically disordered segments affect protein half-life in the cell and during evolution. Cell Rep. 8, 1832–1844 (2014).Article
van der Lee,R.等人。内在无序的片段会影响细胞和进化过程中蛋白质的半衰期。Cell Rep.81832–1844(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Shi, Y. et al. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science 351, eaad9421 (2016).Article
Shi,Y。等人,Rpn1为蛋白酶体的底物结合和去泛素化提供了相邻的受体位点。科学351,eaad9421(2016)。文章
Google Scholar
谷歌学者
Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061 (1994).Article
Deveraux,Q.,Ustrell,V.,Pickart,C。&Rechsteiner,M。一种结合泛素缀合物的26 S蛋白酶亚基。J、 生物。化学。2697059-7061(1994)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008).Article
Husnjak,K。等人。蛋白酶体亚基Rpn13是一种新型泛素受体。自然453481-488(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Boughton, A. J., Liu, L., Lavy, T., Kleifeld, O. & Fushman, D. A novel recognition site for polyubiquitin and ubiquitin-like signals in an unexpected region of proteasomal subunit Rpn1. J. Biol. Chem. 297, 101052 (2021).Article
Boughton,A.J.,Liu,L.,Lavy,T.,Kleifeld,O。&Fushman,D。蛋白酶体亚基Rpn1意外区域中多泛素和泛素样信号的新型识别位点。J、 生物。化学。2971052(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, X. et al. Structures of Rpn1 T1:Rad23 and hRpn13:hPLIC2 reveal distinct binding mechanisms between substrate receptors and shuttle factors of the proteasome. Structure 24, 1257–1270 (2016).Article
Chen,X。等人。Rpn1 T1:Rad23和hRpn13:hPLIC2的结构揭示了底物受体与蛋白酶体穿梭因子之间的不同结合机制。结构241257-1270(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, D. et al. Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor. Mol. Cell 36, 1018–1033 (2009).Article
Zhang,D。等人,Rpn10和Dsk2可以一起作为多聚泛素链长传感器。分子细胞361018-1033(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, Q., Young, P. & Walters, K. J. Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J. Mol. Biol. 348, 727–739 (2005).Article
Wang,Q.,Young,P。&Walters,K.J。与单泛素结合的S5a结构提供了多泛素识别的模型。J、 分子生物学。348727-739(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Buel, G. R. et al. Structure of E3 ligase E6AP with a proteasome-binding site provided by substrate receptor hRpn10. Nat. Commun. 11, 1291 (2020).Article
Buel,G.R.等人。具有由底物受体hRpn10提供的蛋白酶体结合位点的E3连接酶E6AP的结构。国家公社。111291(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
VanderLinden, R. T., Hemmis, C. W., Yao, T., Robinson, H. & Hill, C. P. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J. Biol. Chem. 292, 9493–9504 (2017).Article
VanderLinden,R.T.,Hemmis,C.W.,Yao,T.,Robinson,H。&Hill,C.P。蛋白酶体亚基RPN2,RPN13和泛素之间成对相互作用的结构和能量学阐明了底物募集机制。J、 生物。化学。2929493-9504(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schreiner, P. et al. Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453, 548–552 (2008).Article
Schreiner,P。等人。泛素通过新型pleckstrin同源结构域相互作用与蛋白酶体对接。自然453548-552(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hamazaki, J. et al. A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO J. 25, 4524–4536 (2006).Article
Hamazaki,J。等人。一种新型蛋白酶体相互作用蛋白将去泛素化酶UCH37募集到26S蛋白酶体。EMBO J.254524–4536(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L. & Pickart, C. M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763–767 (2002).Article
Lam,Y.A.,Lawson,T.G.,Velayutham,M.,Zweier,J.L。和Pickart,C.M。蛋白酶体ATPase亚基识别多聚泛素降解信号。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mayor, T., Graumann, J., Bryan, J., MacCoss, M. J. & Deshaies, R. J. Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell. Proteom. 6, 1885–1895 (2007).Article
Mayor,T.,Graumann,J.,Bryan,J.,MacCoss,M.J。&Deshaies,R.J。泛素化蛋白的定量分析揭示了蛋白酶体底物和受Rpn10受体途径影响的底物库。摩尔电池。蛋白质组学。61885-1895(2007)。文章
CAS
中科院
Google Scholar
谷歌学者
Mayor, T., Lipford, J. R., Graumann, J., Smith, G. T. & Deshaies, R. J. Analysis of polyubiquitin conjugates reveals that the Rpn10 substrate receptor contributes to the turnover of multiple proteasome targets. Mol. Cell. Proteom. 4, 741–751 (2005).Article
Mayor,T.,Lipford,J.R.,Graumann,J.,Smith,G.T。&Deshaies,R.J。对多聚泛素缀合物的分析表明,Rpn10底物受体有助于多个蛋白酶体靶标的更新。摩尔电池。蛋白质组学。4741-751(2005)。文章
CAS
中科院
Google Scholar
谷歌学者
Hamazaki, J. et al. Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development. Mol. Cell. Biol. 27, 6629–6638 (2007).Article
Hamazaki,J。等人。Rpn10介导的泛素化蛋白降解对于小鼠发育至关重要。摩尔电池。生物学276629-6638(2007)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Beckwith, R., Estrin, E., Worden, E. J. & Martin, A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol. 20, 1164–1172 (2013).Article
。自然结构。分子生物学。201164-1172(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hamazaki, J., Hirayama, S. & Murata, S. Redundant roles of Rpn10 and Rpn13 in recognition of ubiquitinated proteins and cellular homeostasis. PLoS Genet. 11, e1005401 (2015).Article
Hamazaki,J.,Hirayama,S。&Murata,S。Rpn10和Rpn13在识别泛素化蛋白和细胞稳态中的冗余作用。PLoS Genet。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Chen, X., Htet, Z. M., Lopez-Alfonzo, E., Martin, A. & Walters, K. J. Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. FEBS J. 288, 5231–5251 (2021).Article
Chen,X.,Htet,Z.M.,Lopez-Alfonzo,E.,Martin,A。&Walters,K.J。蛋白酶体与泛素化底物的相互作用:从机制到治疗。FEBS J.2885231–5251(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kandolf, S. et al. Cryo-EM structure of the plant 26S proteasome. Plant Commun. 3, 100310 (2022).Article
Kandolf,S。等人。植物26S蛋白酶体的低温EM结构。。3100310(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Soh, W. T. et al. Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing. Nat. Commun. 15, 1147 (2024).Article
Soh,W.T.等人。人类20S蛋白酶体对蛋白质的降解阐明了肽水解和剪接之间的相互作用。国家公社。151147(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Moir, D., Stewart, S. E., Osmond, B. C. & Botstein, D. Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics 100, 547–563 (1982).Article
Moir,D.,Stewart,S.E.,Osmond,B.C。&Botstein,D。酵母的冷敏感细胞分裂周期突变体:分离,性质和假回复研究。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Koller, K. J. & Brownstein, M. J. Use of a cDNA clone to identify a supposed precursor protein containing valosin. Nature 325, 542–545 (1987).Article
Koller,K.J。和Brownstein,M.J。使用cDNA克隆来鉴定含有valosin的假定前体蛋白。自然325542-545(1987)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Peters, J. M., Walsh, M. J. & Franke, W. W. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J. 9, 1757–1767 (1990).Article
Peters,J.M.,Walsh,M.J。&Franke,W.W。一种与假定的囊泡融合蛋白Sec18p和NSF相关的丰富且普遍存在的同源寡聚环状ATPase颗粒。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Beskow, A. et al. A conserved unfoldase activity for the p97 AAA-ATPase in proteasomal degradation. J. Mol. Biol. 394, 732–746 (2009).Article
。J、 分子生物学。394732-746(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ye, Y., Tang, W. K., Zhang, T. & Xia, D. A mighty “protein extractor” of the cell: structure and function of the p97/CDC48 ATPase. Front. Mol. Biosci. 4, 39 (2017).Article
Ye,Y.,Tang,W.K.,Zhang,T。&Xia,D。细胞的强大“蛋白质提取器”:p97/CDC48 ATPase的结构和功能。正面。摩尔生物科学。4,39(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bodnar, N. O. & Rapoport, T. A. Molecular mechanism of substrate processing by the Cdc48 ATPase complex. Cell 169, 722–735.e9 (2017).Article
Bodnar,N.O。&Rapoport,T.A。Cdc48-ATPase复合物对底物加工的分子机制。细胞169722-735.e9(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bodnar, N. O. et al. Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4. Nat. Struct. Mol. Biol. 25, 616–622 (2018).Article
Bodnar,N.O.等人。Cdc48 ATPase及其泛素结合辅因子Ufd1-Npl4的结构。自然结构。分子生物学。25616-622(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van den Boom, J. & Meyer, H. VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Mol. Cell 69, 182–194 (2018).Article
van den Boom,J。&Meyer,H。VCP/p97介导的去折叠是蛋白质稳态和信号传导的原理。分子细胞69182-194(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Olszewski, M. M., Williams, C., Dong, K. C. & Martin, A. The Cdc48 unfoldase prepares well-folded protein substrates for degradation by the 26S proteasome. Commun. Biol. 2, 29 (2019).Article
Olszewski,M.M.,Williams,C.,Dong,K.C。&Martin,A。Cdc48解折叠酶制备折叠良好的蛋白质底物以供26S蛋白酶体降解。Commun公司。生物学2,29(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Twomey, E. C. et al. Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding. Science 365, eaax1033 (2019). This paper reveals the mechanism for substrate engagement by Cdc48 in complex with its UN cofactor, whereby substrate-attached ubiquitin is used as a universal initiation region, which hence also has key roles for substrate processing upstream of the 26S proteasome.Article .
Twomey,E.C。等人。Cdc48-ATPase复合物的底物加工是由泛素展开引发的。科学365,eaax1033(2019)。本文揭示了Cdc48与其非辅因子复合的底物结合机制,其中底物附着的泛素被用作通用起始区,因此它对于26S蛋白酶体上游的底物加工也具有关键作用。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ji, Z. et al. Translocation of polyubiquitinated protein substrates by the hexameric Cdc48 ATPase. Mol. Cell 82, 570–584.e8 (2022).Article
Ji,Z.等人。六聚体Cdc48 ATPase对多泛素化蛋白质底物的易位。分子细胞82570–584.e8(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Williams, C., Dong, K. C., Arkinson, C. & Martin, A. The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48. Mol. Cell 83, 759–769.e7 (2023).Article
Williams,C.,Dong,K.C.,Arkinson,C。&Martin,A。Ufd1辅因子决定了AAA+ATPase Cdc48参与多聚泛素链的连锁特异性。分子细胞83759-769.e7(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schuberth, C. & Buchberger, A. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat. Cell Biol. 7, 999–1006 (2005).Article
Schuberth,C。&Buchberger,A。膜结合的Ubx2将Cdc48募集到泛素连接酶及其底物上,以确保有效的ER相关蛋白降解。自然细胞生物学。7999-1006(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Alexandru, G. et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1α turnover. Cell 134, 804–816 (2008).Article
Alexandru,G。等人,UBXD7结合多种泛素连接酶,并暗示p97参与HIF1α的更新。细胞134804-816(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Maric, M., Maculins, T., De Piccoli, G. & Labib, K. Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication. Science 346, 1253596 (2014).Article
Maric,M.,Maculins,T.,De Piccoli,G。&Labib,K。Cdc48和泛素连接酶在DNA复制结束时驱动CMG解旋酶的分解。科学3461253596(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Moreno, S. P., Bailey, R., Campion, N., Herron, S. & Gambus, A. Polyubiquitylation drives replisome disassembly at the termination of DNA replication. Science 346, 477–481 (2014).Article
。科学346477-481(2014)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Buchberger, A., Schindelin, H. & Hanzelmann, P. Control of p97 function by cofactor binding. FEBS Lett. 589, 2578–2589 (2015).Article
。FEBS Lett公司。5892578-2589(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sonneville, R. et al. CUL-2(LRR-1) and UBXN-3 drive replisome disassembly during DNA replication termination and mitosis. Nat. Cell Biol. 19, 468–479 (2017).Article
Sonneville,R。等人CUL-2(LRR-1)和UBXN-3在DNA复制终止和有丝分裂过程中驱动复制体分解。自然细胞生物学。19468-479(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Heidelberger, J. B. et al. Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep. 19, e44754 (2018).Article
Heidelberger,J.B。等人。VCP底物的蛋白质组学分析将VCP与K6连接的泛素化和c-Myc功能联系起来。EMBO Rep.19,e44754(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kochenova, O. V., Mukkavalli, S., Raman, M. & Walter, J. C. Cooperative assembly of p97 complexes involved in replication termination. Nat. Commun. 13, 6591 (2022).Article
Kochenova,O.V.,Mukkavalli,S.,Raman,M。&Walter,J.C。参与复制终止的p97复合物的协同组装。国家公社。136591(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kroning, A., van den Boom, J., Kracht, M., Kueck, A. F. & Meyer, H. Ubiquitin-directed AAA+ ATPase p97/VCP unfolds stable proteins crosslinked to DNA for proteolysis by SPRTN. J. Biol. Chem. 298, 101976 (2022).Article
Kroning,A.,van den Boom,J.,Kracht,M.,Kueck,A.F。&Meyer,H。泛素导向的AAA+ATPase p97/VCP展开与DNA交联的稳定蛋白质,以通过SPRTN进行蛋白水解。J、 生物。化学。298101976(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000).Article
Zhang,X。等人。AAA ATPase p97的结构。分子细胞61473-1484(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hanzelmann, P. & Schindelin, H. Characterization of an additional binding surface on the p97 N-terminal domain involved in bipartite cofactor interactions. Structure 24, 140–147 (2016).Article
Hanzelmann,P。&Schindelin,H。表征参与二分辅因子相互作用的p97 N末端结构域上的额外结合表面。结构24140-147(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hanzelmann, P. & Schindelin, H. The interplay of cofactor interactions and post-translational modifications in the regulation of the AAA+ ATPase p97. Front. Mol. Biosci. 4, 21 (2017).Article
Hanzelmann,P。&Schindelin,H。辅因子相互作用和翻译后修饰在调节AAA+ATPase p97中的相互作用。正面。摩尔生物科学。4,21(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aichem, A. et al. The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation. Nat. Commun. 9, 3321 (2018).Article
泛素样修饰剂FAT10的结构揭示了蛋白酶体降解的替代靶向机制。国家公社。93321(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Donovan, K. A. et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183, 1714–1731.e10 (2020).Article
多诺万(Donovan,K.A.)等人绘制可降解激酶组的图谱为加速降解剂的开发提供了资源。细胞1831714-1731.e10(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Guo, Q. et al. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 172, 696–705.e12 (2018).Article
。细胞172696-705.e12(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Higgins, R. et al. The Cdc48 complex alleviates the cytotoxicity of misfolded proteins by regulating ubiquitin homeostasis. Cell Rep. 32, 107898 (2020).Article
Higgins,R。等人。Cdc48复合物通过调节泛素稳态来减轻错误折叠蛋白的细胞毒性。Cell Rep.32107898(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Darwich, N. F. et al. Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Science 370, eaay8826 (2020).Article
常染色体显性VCP亚型突变损害PHF tau的分解。科学370,eaay8826(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tsuchiya, H. et al. In vivo ubiquitin linkage-type analysis reveals that the Cdc48-Rad23/Dsk2 axis contributes to K48-linked chain specificity of the proteasome. Mol. Cell 66, 488–502.e7 (2017).Article
Tsuchiya,H。等人。体内泛素连接类型分析表明,Cdc48-Rad23/Dsk2轴有助于蛋白酶体的K48连接链特异性。分子细胞66488-502.e7(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Yasuda, S. et al. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296–300 (2020).Article
Yasuda,S.等人。蛋白酶体的应激和泛素化依赖性相分离。自然578296-300(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Haakonsen, D. L. & Rape, M. Branching out: improved signaling by heterotypic ubiquitin chains. Trends Cell Biol. 29, 704–716 (2019).Article
Haakonsen,D.L。和Rape,M。分支:通过异型泛素链改善信号传导。趋势细胞生物学。29704-716(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, H., Ji, Z., Paulo, J. A., Gygi, S. P. & Rapoport, T. A. Bidirectional substrate shuttling between the 26S proteasome and the Cdc48 ATPase promotes protein degradation. Mol. Cell 84, 1290–1303.e7 (2024).Article
Li,H.,Ji,Z.,Paulo,J.A.,Gygi,S.P。&Rapoport,T.A。26S蛋白酶体和Cdc48 ATPase之间的双向底物穿梭促进蛋白质降解。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ernst, R., Mueller, B., Ploegh, H. L. & Schlieker, C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell 36, 28–38 (2009).Article
Ernst,R.,Mueller,B.,Ploegh,H.L。和Schlieker,C。otubain YOD1是一种去泛素化酶,与p97结合,促进蛋白质从ER分子细胞中脱位36,28-38(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bohm, S., Lamberti, G., Fernandez-Saiz, V., Stapf, C. & Buchberger, A. Cellular functions of Ufd2 and Ufd3 in proteasomal protein degradation depend on Cdc48 binding. Mol. Cell. Biol. 31, 1528–1539 (2011).Article
Bohm,S.,Lamberti,G.,Fernandez-Saiz,V.,Stapf,C。&Buchberger,A.Ufd2和Ufd3在蛋白酶体蛋白质降解中的细胞功能取决于Cdc48结合。摩尔电池。生物学311528-1539(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hu, X. et al. RNF126-mediated reubiquitination is required for proteasomal degradation of p97-extracted membrane proteins. Mol. Cell 79, 320–331.e9 (2020).Article
Hu,X。等人。RNF126介导的再泛素化是p97提取的膜蛋白的蛋白酶体降解所必需的。分子细胞79320-331.e9(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, X. et al. Structure of hRpn10 bound to UBQLN2 UBL illustrates basis for complementarity between shuttle factors and substrates at the proteasome. J. Mol. Biol. 431, 939–955 (2019).Article
与UBQLN2-UBL结合的hRpn10的结构说明了穿梭因子与蛋白酶体底物之间互补的基础。J、 分子生物学。431939-955(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zientara-Rytter, K. & Subramani, S. The roles of ubiquitin-binding protein shuttles in the degradative fate of ubiquitinated proteins in the ubiquitin-proteasome system and autophagy. Cells 8, 40 (2019).Article
Zientara Rytter,K。&Subramani,S。泛素结合蛋白穿梭在泛素-蛋白酶体系统和自噬中泛素化蛋白降解命运中的作用。细胞8,40(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nowicka, U. et al. DNA-damage-inducible 1 protein (Ddi1) contains an uncharacteristic ubiquitin-like domain that binds ubiquitin. Structure 23, 542–557 (2015).Article
DNA损伤诱导蛋白1(Ddi1)包含一个结合泛素的非特征性泛素样结构域。结构23542-557(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yip, M. C. J., Bodnar, N. O. & Rapoport, T. A. Ddi1 is a ubiquitin-dependent protease. Proc. Natl Acad. Sci. USA 117, 7776–7781 (2020).Article
Yip,M.C.J.,Bodnar,N.O。和Rapoport,T.A。Ddi1是一种泛素依赖性蛋白酶。程序。国家科学院。科学。美国1177776–7781(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dirac-Svejstrup, A. B. et al. DDI2 is a ubiquitin-directed endoprotease responsible for cleavage of transcription factor NRF1. Mol. Cell 79, 332–341.e7 (2020).Article
Dirac Svejsrup,A.B.等人的DDI2是一种泛素导向的内蛋白酶,负责切割转录因子NRF1。分子细胞79332-341.e7(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chen, L. & Madura, K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22, 4902–4913 (2002).Article
Chen,L。&Madura,K。Rad23促进蛋白水解底物靶向蛋白酶体。摩尔电池。生物学杂志224902-4913(2002)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Raasi, S. & Pickart, C. M. Rad23 ubiquitin-associated domains (UBA) inhibit 26 S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem. 278, 8951–8959 (2003).Article
Raasi,S。&Pickart,C。M。Rad23泛素相关结构域(UBA)通过隔离赖氨酸48连接的多聚泛素链来抑制26 S蛋白酶体催化的蛋白水解。J、 生物。化学。2788951-8959(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hartmann-Petersen, R., Seeger, M. & Gordon, C. Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28, 26–31 (2003).Article
Hartmann-Petersen,R.,Seeger,M。&Gordon,C。将底物转移至26S蛋白酶体。趋势生物化学。科学。28,26–31(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hartmann-Petersen, R., Semple, C. A., Ponting, C. P., Hendil, K. B. & Gordon, C. UBA domain containing proteins in fission yeast. Int. J. Biochem. Cell Biol. 35, 629–636 (2003).Article
Hartmann-Petersen,R.,Semple,C.A.,Ponting,C.P.,Hendil,K.B。&Gordon,C。裂变酵母中含有UBA结构域的蛋白质。Int.J.生物化学。细胞生物学。35629-636(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 4, 725–730 (2002).Article
Elsasser,S。等人。蛋白酶体亚基Rpn1结合泛素样蛋白结构域。自然细胞生物学。4725-730(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Matiuhin, Y. et al. Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol. Cell 32, 415–425 (2008).Article
Matiuhin,Y。等人。蛋白酶体外Rpn10限制多聚泛素结合蛋白Dsk2进入蛋白酶体。分子细胞32415-425(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hiyama, H. et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem. 274, 28019–28025 (1999).Article
Hiyama,H。等人。hHR23与S5a的相互作用。hHR23的泛素样结构域介导与26 S蛋白酶体的S5a亚基的相互作用。J、 生物。化学。27428019-28025(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lambertson, D., Chen, L. & Madura, K. Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153, 69–79 (1999).Article
Lambertson,D.,Chen,L。&Madura,K。由酿酒酵母的蛋白酶体相互作用因子Rad23和Rpn10的丧失引起的多效性缺陷。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ryu, K. S. et al. Binding surface mapping of intra- and interdomain interactions among hHR23B, ubiquitin, and polyubiquitin binding site 2 of S5a. J. Biol. Chem. 278, 36621–36627 (2003).Article
Ryu,K.S.等人。S5a的hHR23B,泛素和多聚泛素结合位点2之间的域内和域间相互作用的结合表面作图。J、 生物。化学。27836621–36627(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liang, R. Y. et al. Rad23 interaction with the proteasome is regulated by phosphorylation of its ubiquitin-like (UbL) domain. J. Mol. Biol. 426, 4049–4060 (2014).Article
Liang,R.Y。等人。Rad23与蛋白酶体的相互作用受其泛素样(UbL)结构域磷酸化的调节。J、 分子生物学。4264049–4060(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lowe, E. D. et al. Structures of the Dsk2 UBL and UBA domains and their complex. Acta Crystallogr. D 62, 177–188 (2006).Article
Lowe,E.D.等人。Dsk2 UBL和UBA结构域及其复合物的结构。。D 62177-188(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kim, H. T. & Goldberg, A. L. UBL domain of Usp14 and other proteins stimulates proteasome activities and protein degradation in cells. Proc. Natl Acad. Sci. USA 115, E11642–E11650 (2018).Article
Kim,H.T。&Goldberg,A.L。Usp14的UBL结构域和其他蛋白质刺激细胞中的蛋白酶体活性和蛋白质降解。程序。国家科学院。科学。美国115,E11642–E11650(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Collins, G. A. & Goldberg, A. L. Proteins containing ubiquitin-like (Ubl) domains not only bind to 26S proteasomes but also induce their activation. Proc. Natl Acad. Sci. USA 117, 4664–4674 (2020).Article
Collins,G.A。&Goldberg,A.L。含有泛素样(Ubl)结构域的蛋白质不仅与26S蛋白酶体结合,而且还诱导其活化。程序。国家科学院。科学。美国1174664–4674(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Medicherla, B., Kostova, Z., Schaefer, A. & Wolf, D. H. A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep. 5, 692–697 (2004).Article
Medicherla,B.,Kostova,Z.,Schaefer,A。&Wolf,D.H。基因组筛选将Dsk2p和Rad23p鉴定为ER相关降解的重要成分。EMBO Rep.5692–697(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).Article
Richly,H.等人,一系列泛素结合因子将CDC48/p97连接到底物多泛素化和蛋白酶体靶向。细胞120,73-84(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kim, I., Mi, K. & Rao, H. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15, 3357–3365 (2004).Article
Kim,I.,Mi,K。&Rao,H。rad23的多种相互作用表明泛素化底物递送的机制在蛋白水解中很重要。分子生物学。细胞153357-3365(2004)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, G., Sawai, N., Kotliarova, S., Kanazawa, I. & Nukina, N. Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum. Mol. Genet. 9, 1795–1803 (2000).Article
Wang,G.,Sawai,N.,Kotliarova,S.,Kanazawa,I。&Nukina,N。Ataxin-3是MJD1基因产物,与酵母DNA修复蛋白RAD23,HHR23A和HHR23B的两个人类同源物相互作用。。91795-1803(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Doss-Pepe, E. W., Stenroos, E. S., Johnson, W. G. & Madura, K. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol. Cell. Biol. 23, 6469–6483 (2003).Article .
Doss Pepe,E.W.,Stenroos,E.S.,Johnson,W.G。&Madura,K。Ataxin-3与含rad23和valosin的蛋白质的相互作用及其与泛素链和蛋白酶体的关联与泛素介导的蛋白水解中的作用一致。摩尔电池。生物学236469-6483(2003)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baugh, J. M., Viktorova, E. G. & Pilipenko, E. V. Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J. Mol. Biol. 386, 814–827 (2009).Article
Baugh,J.M.,Viktorova,E.G。&Pilipenko,E.V。蛋白酶体可以降解相当比例的细胞蛋白,而不依赖于泛素化。J、 分子生物学。386814-827(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Makaros, Y. et al. Ubiquitin-independent proteasomal degradation driven by C-degron pathways. Mol. Cell 83, 1921–1935.e7 (2023).Article
Makaros,Y。等人。由C-degron途径驱动的不依赖泛素的蛋白酶体降解。分子细胞831921-1935.e7(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zheng, T., Yang, Y. & Castaneda, C. A. Structure, dynamics and functions of UBQLNs: at the crossroads of protein quality control machinery. Biochem. J. 477, 3471–3497 (2020).Article
Zheng,T.,Yang,Y。和Castaneda,C.A。UBQLNs的结构,动力学和功能:在蛋白质质量控制机制的十字路口。生物化学。J、 4773471–3497(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Itakura, E. et al. Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation. Mol. Cell 63, 21–33 (2016).Article
Itakura,E。等人。泛素伴侣和分类线粒体膜蛋白的降解。分子细胞63,21-33(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gu, X. et al. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 381, eadh5021 (2023). This work identifies an exciting ubiquitin-independent pathway for proteasomal degradation of nuclear proteins with intrinsically unstructured degrons.Article .
Gu,X。等人。midnolin蛋白酶体途径捕获蛋白质进行泛素化非依赖性降解。科学381,eadh5021(2023)。这项工作确定了一种令人兴奋的泛素非依赖性途径,可用于具有内在非结构化degrons的核蛋白的蛋白酶体降解。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Huang, W. et al. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell 184, 5201–5214.e12 (2021). This paper shows that an adaptor protein can bind the proteasome and directly target substrates for degradation, which may represent a more universal mechanism for hijacking the proteasome by pathogens, but also offer new opportunities for therapeutic developments.Article .
Huang,W.等人。通过不依赖泛素的蛋白质降解对宿主发育的寄生调节。细胞1845201–5214.e12(2021)。本文表明,衔接蛋白可以结合蛋白酶体并直接靶向底物进行降解,这可能代表了病原体劫持蛋白酶体的更普遍机制,但也为治疗发展提供了新的机会。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Q. et al. Bimodular architecture of bacterial effector SAP05 that drives ubiquitin-independent targeted protein degradation. Proc. Natl Acad. Sci. USA 120, e2310664120 (2023).Article
Liu,Q。等人。驱动泛素非依赖性靶向蛋白质降解的细菌效应子SAP05的双模结构。程序。国家科学院。科学。美国120,e2310664120(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, L., Du, Y., Qu, Q. & Zheng, Q. Structure basis for recognition of plant Rpn10 by phytoplasma SAP05 in ubiquitin-independent protein degradation. iScience 27, 108892 (2024).Article
Zhang,L.,Du,Y.,Qu,Q。&Zheng,Q。植原体SAP05在泛素非依赖性蛋白质降解中识别植物Rpn10的结构基础。iScience 27108892(2024)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kamitani, T., Kito, K., Fukuda-Kamitani, T. & Yeh, E. T. Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. J. Biol. Chem. 276, 46655–46660 (2001).Article
Kamitani,T.,Kito,K.,Fukuda-Kamitani,T。&Yeh,E.T。靶向NEDD8及其缀合物以通过NUB1降解蛋白酶体。J、 生物。化学。27646655–46660(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hipp, M. S., Kalveram, B., Raasi, S., Groettrup, M. & Schmidtke, G. FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol. Cell. Biol. 25, 3483–3491 (2005).Article
Hipp,M.S.,Kalveram,B.,Raasi,S.,Groettrup,M。&Schmidtke,G。FAT10,一种蛋白酶体降解的泛素非依赖性信号。摩尔电池。生物学253483-3491(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hipp, M. S., Raasi, S., Groettrup, M. & Schmidtke, G. NEDD8 ultimate buster-1L interacts with the ubiquitin-like protein FAT10 and accelerates its degradation. J. Biol. Chem. 279, 16503–16510 (2004).Article
Hipp,M.S.,Raasi,S.,Groettrup,M。&Schmidtke,G。NEDD8 ultimate buster-1L与泛素样蛋白FAT10相互作用并加速其降解。J、 生物。化学。27916503–16510(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tanji, K. et al. NUB1 suppresses the formation of Lewy body-like inclusions by proteasomal degradation of synphilin-1. Am. J. Pathol. 169, 553–565 (2006).Article
Tanji,K。等人,NUB1通过蛋白酶体降解synphilin-1抑制路易体样内含物的形成。美国J.Pathol。169553-565(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Duda, D. M. et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 995–1006 (2008).Article
Duda,D.M.等人。库林环连接酶NEDD8激活的结构见解:结合的构象控制。细胞134995-1006(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fan, M., Bigsby, R. M. & Nephew, K. P. The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-α and essential for the antiproliferative activity of ICI 182,780 in ERα-positive breast cancer cells. Mol. Endocrinol. 17, 356–365 (2003).Article .
Fan,M.,Bigsby,R.M。&Nephew,K.P。NEDD8途径是蛋白酶体介导的人雌激素受体(ER)-α降解所必需的,并且对于ICI 182780在ERα阳性乳腺癌细胞中的抗增殖活性至关重要。分子内分泌。17356-365(2003)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Xirodimas, D. P. Novel substrates and functions for the ubiquitin-like molecule NEDD8. Biochem. Soc. Trans. 36, 802–806 (2008).Article
Xirodimas,D.P。泛素样分子NEDD8的新型底物和功能。生物化学。。36802-806(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vijayasimha, K., Tran, M. V., Leestemaker-Palmer, A. L. & Dolan, B. P. Direct conjugation of NEDD8 to the N-terminus of a model protein can induce degradation. Cells 10, 854 (2021).Article
Vijayasimha,K.,Tran,M.V.,Leestemaker-Palmer,A.L。&Dolan,B.P。NEDD8与模型蛋白N端的直接缀合可诱导降解。细胞10854(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shu, J. et al. Nedd8 targets ubiquitin ligase Smurf2 for neddylation and promote its degradation. Biochem. Biophys. Res. Commun. 474, 51–56 (2016).Article
Shu,J。等人Nedd8靶向泛素连接酶Smurf2进行neddylation并促进其降解。生物化学。生物物理。公共资源。474,51-56(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, S., Fu, Q. S., Zhao, J. & Hu, H. Y. Structural and mechanistic insights into the arginine/lysine-rich peptide motifs that interact with P97/VCP. Biochim. Biophys. Acta 1834, 2672–2678 (2013).Article
Liu,S.,Fu,Q.S.,Zhao,J。&Hu,H.Y。对与P97/VCP相互作用的富含精氨酸/赖氨酸的肽基序的结构和机理的见解。生物化学。生物物理。Acta 18342672–2678(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Raasi, S., Schmidtke, G. & Groettrup, M. The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J. Biol. Chem. 276, 35334–35343 (2001).Article
Raasi,S.,Schmidtke,G。&Groettrup,M。泛素样蛋白FAT10形成共价缀合物并诱导细胞凋亡。J、 生物。化学。27635334-35343(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aichem, A. & Groettrup, M. Detection and analysis of FAT10 modification. Methods Mol. Biol. 832, 125–132 (2012).Article
Aichem,A。&Groettrup,M。FAT10修饰的检测和分析。方法分子生物学。832125-132(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Buchsbaum, S., Bercovich, B. & Ciechanover, A. FAT10 is a proteasomal degradation signal that is itself regulated by ubiquitination. Mol. Biol. Cell 23, 225–232 (2012).Article
Buchsbaum,S.,Bercovich,B。&Ciechanover,A。FAT10是一种蛋白酶体降解信号,其本身受泛素化调节。分子生物学。细胞23225-232(2012)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, C. G. et al. Expression of the FAT10 gene is highly upregulated in hepatocellular carcinoma and other gastrointestinal and gynecological cancers. Oncogene 22, 2592–2603 (2003).Article
Lee,C.G.等人。FAT10基因的表达在肝细胞癌和其他胃肠道和妇科癌症中高度上调。癌基因222592-2603(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, D. W., Jeang, K. T. & Lee, C. G. p53 negatively regulates the expression of FAT10, a gene upregulated in various cancers. Oncogene 25, 2318–2327 (2006).Article
Zhang,D.W.,Jeang,K.T。&Lee,C.G。p53负调节FAT10的表达,FAT10是一种在各种癌症中上调的基因。癌基因252318-2327(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lim, C. B., Zhang, D. & Lee, C. G. FAT10, a gene up-regulated in various cancers, is cell-cycle regulated. Cell Div. 1, 20 (2006).Article
Lim,C.B.,Zhang,D。&Lee,C.G。FAT10是一种在各种癌症中上调的基因,受细胞周期调控。Cell Div.1,20(2006)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Lukasiak, S. et al. Proinflammatory cytokines cause FAT10 upregulation in cancers of liver and colon. Oncogene 27, 6068–6074 (2008).Article
Lukasiak,S。等人。促炎细胞因子在肝癌和结肠癌中引起FAT10上调。癌基因276068-6074(2008)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mah, M. M., Roverato, N. & Groettrup, M. Regulation of interferon induction by the ubiquitin-like modifier FAT10. Biomolecules 10, 951 (2020).Article
Mah,M.M.,Roverato,N。&Groettrup,M。泛素样修饰剂FAT10对干扰素诱导的调节。生物分子10951(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Aichem, A. & Groettrup, M. The ubiquitin-like modifier FAT10 — much more than a proteasome-targeting signal. J. Cell Sci. 133, jcs246041 (2020).Article
Aichem,A。&Groettrup,M。泛素样修饰剂FAT10-远不止蛋白酶体靶向信号。J、 细胞科学。133,jcs246041(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schelpe, J., Monte, D., Dewitte, F., Sixma, T. K. & Rucktooa, P. Structure of UBE2Z enzyme provides functional insight into specificity in the FAT10 protein conjugation machinery. J. Biol. Chem. 291, 630–639 (2016).Article
Schelpe,J.,Monte,D.,Dewitte,F.,Sixma,T.K。&Rucktooa,P。UBE2Z酶的结构提供了对FAT10蛋白质缀合机制特异性的功能洞察。J、 生物。化学。291630-639(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schmidtke, G., Kalveram, B. & Groettrup, M. Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett. 583, 591–594 (2009).Article
Schmidtke,G.,Kalveram,B。&Groettrup,M。26S蛋白酶体对FAT10的降解与泛素化无关,但依赖于NUB1L。FEBS Lett公司。583591-594(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Rani, N., Aichem, A., Schmidtke, G., Kreft, S. G. & Groettrup, M. FAT10 and NUB1L bind to the VWA domain of Rpn10 and Rpn1 to enable proteasome-mediated proteolysis. Nat. Commun. 3, 749 (2012).Article
Rani,N.,Aichem,A.,Schmidtke,G.,Kreft,S.G。&Groettrup,M。FAT10和NUB1L与Rpn10和Rpn1的VWA结构域结合,以实现蛋白酶体介导的蛋白水解。国家公社。3749(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kito, K., Yeh, E. T. & Kamitani, T. NUB1, a NEDD8-interacting protein, is induced by interferon and down-regulates the NEDD8 expression. J. Biol. Chem. 276, 20603–20609 (2001).Article
Kito,K.,Yeh,E。T。&Kamitani,T。NUB1是一种NEDD8相互作用蛋白,由干扰素诱导并下调NEDD8的表达。J、 生物。化学。27620603–20609(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Brockmann, F. et al. FAT10 and NUB1L cooperate to activate the 26S proteasome. Life Sci. Alliance 6, e202201463 (2023).Article
Brockmann,F。等人FAT10和NUB1L合作激活26S蛋白酶体。生命科学。联盟6,e202201463(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schmidtke, G. et al. The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10. J. Biol. Chem. 281, 20045–20054 (2006).Article
Schmidtke,G。等人。NUB1L的UBA结构域是结合所必需的,但不是泛素样修饰剂FAT10的加速降解所必需的。J、 生物。化学。28120045–20054(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ju, D. & Xie, Y. Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and -independent. J. Biol. Chem. 279, 23851–23854 (2004).Article
Ju,D。&Xie,Y。蛋白酶体通过两种不同的机制降解RPN4,泛素依赖性和非依赖性。J、 生物。化学。27923851-23854(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Asher, G., Tsvetkov, P., Kahana, C. & Shaul, Y. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev. 19, 316–321 (2005).Article
Asher,G.,Tsvetkov,P.,Kahana,C。&Shaul,Y。肿瘤抑制因子p53和p73的泛素非依赖性蛋白酶体降解机制。《基因发展》19316-321(2005)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Erales, J. & Coffino, P. Ubiquitin-independent proteasomal degradation. Biochim. Biophys. Acta Mol. Cell Res. 1843, 216–221 (2014).Article
Erales,J。&Coffino,P。泛素非依赖性蛋白酶体降解。生物化学。生物物理。Acta Mol.Cell Res.1843216–221(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Murakami, Y. et al. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360, 597–599 (1992).Article
。《自然》360597-599(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kern, A. D., Oliveira, M. A., Coffino, P. & Hackert, M. L. Structure of mammalian ornithine decarboxylase at 1.6 A resolution: stereochemical implications of PLP-dependent amino acid decarboxylases. Structure 7, 567–581 (1999).Article
Kern,A.D.,Oliveira,M.A.,Coffino,P。&Hackert,M.L。哺乳动物鸟氨酸脱羧酶在1.6A分辨率下的结构:PLP依赖性氨基酸脱羧酶的立体化学意义。结构7567-581(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Takeuchi, J., Chen, H. & Coffino, P. Proteasome substrate degradation requires association plus extended peptide. EMBO J. 26, 123–131 (2007).Article
Takeuchi,J.,Chen,H。&Coffino,P。蛋白酶体底物降解需要结合加延伸肽。EMBO J.26123–131(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, M., Pickart, C. M. & Coffino, P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 22, 1488–1496 (2003).Article
Zhang,M.,Pickart,C.M。&Coffino,P。蛋白酶体识别鸟氨酸脱羧酶(一种不依赖泛素的底物)的决定因素。EMBO J.221488–1496(2003)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, X. & Coffino, P. Degradation of ornithine decarboxylase: exposure of the C-terminal target by a polyamine-inducible inhibitory protein. Mol. Cell. Biol. 13, 2377–2383 (1993).CAS
Li,X。&Coffino,P。鸟氨酸脱羧酶的降解:多胺诱导型抑制蛋白暴露C末端靶标。摩尔电池。生物学132377-2383(1993)。中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, D. et al. Structural basis of ornithine decarboxylase inactivation and accelerated degradation by polyamine sensor antizyme1. Sci. Rep. 5, 14738 (2015).Article
Wu,D.等人。鸟氨酸脱羧酶失活和多胺传感器抗酶1加速降解的结构基础。科学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Godderz, D., Schafer, E., Palanimurugan, R. & Dohmen, R. J. The N-terminal unstructured domain of yeast ODC functions as a transplantable and replaceable ubiquitin-independent degron. J. Mol. Biol. 407, 354–367 (2011).Article
Godderz,D.,Schafer,E.,Palanimurugan,R。&Dohmen,R.J。酵母ODC的N端非结构化结构域起着可移植和可替代的泛素非依赖性degron的作用。J、 分子生物学。407354-367(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, F. et al. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem. 282, 22460–22471 (2007).Article
Zhang,F。等人。蛋白酶体功能通过Rpt6的磷酸化受环AMP依赖性蛋白激酶的调节。J、 生物。化学。2822460–22471(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lokireddy, S., Kukushkin, N. V. & Goldberg, A. L. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc. Natl Acad. Sci. USA 112, E7176–7185 (2015).Article
Lokireddy,S.,Kukushkin,N.V。和Goldberg,A.L。cAMP诱导Rpn6/PSMD11上26S蛋白酶体的磷酸化增强了它们的活性和错误折叠蛋白的降解。程序。国家科学院。科学。美国112,E7176–7185(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N. & Patrick, G. N. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284, 26655–26665 (2009).Article
Djakovic,S.N.,Schwarz,L.A.,Barylko,B.,DeMartino,G.N。和Patrick,G.N。通过神经元活性和钙/钙调蛋白依赖性蛋白激酶II调节蛋白酶体。J、 生物。化学。28426655-26665(2009)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Guo, X. et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat. Cell Biol. 18, 202–212 (2016).Article
Guo,X。等人。位点特异性蛋白酶体磷酸化控制细胞增殖和肿瘤发生。自然细胞生物学。18202-212(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
VerPlank, J. J. S., Lokireddy, S., Zhao, J. & Goldberg, A. L. 26S proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proc. Natl Acad. Sci. USA 116, 4228–4237 (2019).Article
VerPlank,J.J.S.,Lokireddy,S.,Zhao,J。&Goldberg,A.L。26S蛋白酶体被多种激素和生理状态迅速激活,这些激素和生理状态会升高cAMP并引起Rpn6磷酸化。程序。国家科学院。科学。美国1164228–4237(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ranek, M. J., Terpstra, E. J., Li, J., Kass, D. A. & Wang, X. Protein kinase G positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128, 365–376 (2013).Article
Ranek,M.J.,Terpstra,E.J.,Li,J.,Kass,D.A。&Wang,X。蛋白激酶G正向调节蛋白酶体介导的错误折叠蛋白的降解。发行量128365–376(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, Q. et al. Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake. Circ. Res. 97, 1018–1026 (2005).Article
Chen,Q。等人。肌浆内淀粉样变性通过损害底物摄取来损害心肌细胞中蛋白酶体的蛋白水解功能。保监会。第971018-1026号决议(2005年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sun, S. et al. Phosphatase UBLCP1 controls proteasome assembly. Open Biol. 7, 170042 (2017).Article
Sun,S。等人。磷酸酶UBLCP1控制蛋白酶体组装。打开Biol。7170042(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, X. et al. Molecular details underlying dynamic structures and regulation of the human 26S proteasome. Mol. Cell. Proteom. 16, 840–854 (2017).Article
Wang,X。等人。人类26S蛋白酶体动态结构和调控的分子细节。摩尔电池。蛋白质组学。16840-854(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Guo, X. et al. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc. Natl Acad. Sci. USA 108, 18649–18654 (2011).Article
Guo,X。等人。UBLCP1是一种26S蛋白酶体磷酸酶,可调节核蛋白酶体活性。程序。国家科学院。科学。美国10818649–18654(2011)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Liu, X. et al. Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function. Proc. Natl Acad. Sci. USA 117, 328–336 (2020).Article
Liu,X。等人。Rpn1的可逆磷酸化调节26S蛋白酶体的组装和功能。程序。国家科学院。科学。美国117328–336(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
He, Y. et al. A potent and selective inhibitor for the UBLCP1 proteasome phosphatase. Bioorg. Med. Chem. 23, 2798–2809 (2015).Article
He,Y。等人。UBLCP1蛋白酶体磷酸酶的有效和选择性抑制剂。生物组织医学化学。232798-2809(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Saez, I. & Vilchez, D. The mechanistic links between proteasome activity, aging and age-related diseases. Curr. Genom. 15, 38–51 (2014).Article
Saez,I。&Vilchez,D。蛋白酶体活性,衰老和年龄相关疾病之间的机制联系。货币。。15,38-51(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Wani, P. S., Suppahia, A., Capalla, X., Ondracek, A. & Roelofs, J. Phosphorylation of the C-terminal tail of proteasome subunit alpha7 is required for binding of the proteasome quality control factor Ecm29. Sci. Rep. 6, 27873 (2016).Article
Wani,P.S.,Suppahia,A.,Capalla,X.,Ondracek,A。&Roelofs,J。蛋白酶体亚基alpha7的C末端尾部的磷酸化是结合蛋白酶体质量控制因子Ecm29所必需的。科学。代表627873(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Choi, W. H. et al. ECPAS/Ecm29-mediated 26S proteasome disassembly is an adaptive response to glucose starvation. Cell Rep. 42, 112701 (2023).Article
Choi,W.H.等人,ECPAS/Ecm29介导的26S蛋白酶体分解是对葡萄糖饥饿的适应性反应。细胞代表42112701(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Crosas, B. et al. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell 127, 1401–1413 (2006).Article
Crosas,B。等人。泛素链通过反对泛素连接酶和去泛素化活性在蛋白酶体上重塑。细胞1271401-1413(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002).Article
Leggett,D.S.等人。多种相关蛋白调节蛋白酶体的结构和功能。分子细胞10495-507(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hanna, J. et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127, 99–111 (2006).Article
Hanna,J。等人。去泛素化酶Ubp6具有非催化作用,可延缓蛋白酶体降解。细胞127,99-111(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bashore, C. et al. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol. 22, 712–719 (2015).Article
Ubp6去泛素化酶控制26S蛋白酶体的构象动力学和底物降解。自然结构。分子生物学。22712-719(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hung, K. Y. S. et al. Allosteric control of Ubp6 and the proteasome via a bidirectional switch. Nat. Commun. 13, 838 (2022).Article
Hung,K.Y.S.等人。通过双向开关对Ubp6和蛋白酶体进行变构控制。国家公社。13838(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aufderheide, A. et al. Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc. Natl Acad. Sci. USA 112, 8626–8631 (2015).Article
Aufderheide,A。等人。Ubp6与26S蛋白酶体相互作用的结构表征。程序。国家科学院。科学。美国1128626–8631(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, M. J., Lee, B. H., Hanna, J., King, R. W. & Finley, D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell. Proteom. 10, R110 003871 (2011).Article
Lee,M.J.,Lee,B.H.,Hanna,J.,King,R.W。&Finley,D。通过蛋白酶体相关的去泛素化酶修剪泛素链。摩尔电池。蛋白质组学。10,R110 003871(2011)。文章
Google Scholar
谷歌学者
Lee, B.-H. et al. USP14 deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 532, 398–401 (2016).Article
Lee,B.-H.等人,USP14使蛋白酶体结合的底物去泛素化,这些底物在多个位点泛素化。自然532398-401(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Nishi, R. et al. Systematic characterization of deubiquitylating enzymes for roles in maintaining genome integrity. Nat. Cell Biol. 16, 1016–1026 (2014).Article
Nishi,R。等人。去泛素化酶在维持基因组完整性中的作用的系统表征。自然细胞生物学。161016–1026(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhou, Z. et al. The deubiquitinase UCHL5/UCH37 positively regulates Hedgehog signaling by deubiquitinating Smoothened. J. Mol. Cell Biol. 10, 243–257 (2018).Article
Zhou,Z。等人。去泛素化酶UCHL5/UCH37通过去泛素化Smoothened正向调节刺猬信号传导。J、 分子细胞生物学。10243-257(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Randles, L., Anchoori, R. K., Roden, R. B. & Walters, K. J. The proteasome ubiquitin receptor hRpn13 and its interacting deubiquitinating enzyme Uch37 are required for proper cell cycle progression. J. Biol. Chem. 291, 8773–8783 (2016).Article
Randles,L.,Anchoori,R.K.,Roden,R.B。&Walters,K.J。蛋白酶体泛素受体hRpn13及其相互作用的去泛素化酶Uch37是正确的细胞周期进程所必需的。J、 生物。化学。2918773-8783(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yao, T. et al. Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nat. Cell Biol. 8, 994–1002 (2006).Article
Yao,T。等人。Adrm1对Uch37去泛素化酶的蛋白酶体募集和激活。自然细胞生物学。8994-1002(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Qiu, X.-B. et al. hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO J. 25, 5742–5753 (2006).Article
Qiu,X.-B.等人hRpn13/ADRM1/GP110是一种新型蛋白酶体亚基,可结合去泛素化酶UCH37。EMBO J.255742–5753(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Deol, K. K. et al. Proteasome-bound UCH37/UCHL5 debranches ubiquitin chains to promote degradation. Mol. Cell 80, 796–809.e9 (2020).Article
Deol,K.K.等人。蛋白酶体结合的UCH37/UCHL5使泛素链支链以促进降解。分子细胞80796-809.e9(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Song, A. et al. Branched ubiquitin chain binding and deubiquitination by UCH37 facilitate proteasome clearance of stress-induced inclusions. eLife 10, e72798 (2021).Article
Song,A。等人。UCH37的分支泛素链结合和去泛素化促进蛋白酶体清除应激诱导的内含物。eLife 10,e72798(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kuo, C. L. & Goldberg, A. L. Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. Proc. Natl Acad. Sci. USA 114, E3404–E3413 (2017).Article
Kuo,C.L。和Goldberg,A.L。泛素化蛋白促进蛋白酶体与去泛素化酶Usp14和泛素连接酶Ube3c的结合。程序。国家科学院。科学。美国114,E3404–E3413(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Reichard, E. L. et al. Substrate ubiquitination controls the unfolding ability of the proteasome. J. Biol. Chem. 291, 18547–18561 (2016).Article
Reichard,E.L。等人。底物泛素化控制蛋白酶体的展开能力。J、 生物。化学。29118547–18561(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dong, Y. et al. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature 565, 49–55 (2019).Article
Dong,Y。等人。低温电磁结构和底物参与的人26S蛋白酶体的动力学。。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, X. et al. Cryo-EM reveals unanchored M1-ubiquitin chain binding at hRpn11 of the 26S proteasome. Structure 28, 1206–1217.e4 (2020).Article
Chen,X。等人Cryo-EM揭示了26S蛋白酶体hRpn11处未锚定的M1泛素链结合。结构281206-1217.e4(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chu-Ping, M., Slaughter, C. A. & DeMartino, G. N. Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim. Biophys. Acta 1119, 303–311 (1992).Article
Chu Ping,M.,Slaughter,C.A。和DeMartino,G.N。20S蛋白酶体(macropain)蛋白质抑制剂的纯化和表征。生物化学。生物物理。Acta 1119303–311(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
McCutchen-Maloney, S. L. et al. cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome. J. Biol. Chem. 275, 18557–18565 (2000).Article
McCutchen-Maloney,S.L.等人。富含脯氨酸的蛋白酶体抑制剂PI31的cDNA克隆,表达和功能表征。J、 生物。化学。27518557-18565(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, X., Thompson, D., Kumar, B. & DeMartino, G. N. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J. Biol. Chem. 289, 17392–17405 (2014).Article
Li,X.,Thompson,D.,Kumar,B。&DeMartino,G.N。PI31(PSMF1)蛋白在调节蛋白酶体功能中的分子和细胞作用。J、 生物。化学。28917392-17405(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bader, M. et al. A conserved F box regulatory complex controls proteasome activity in Drosophila. Cell 145, 371–382 (2011).Article
Bader,M。等人。保守的F盒调节复合物控制果蝇中的蛋白酶体活性。细胞145371-382(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zaiss, D. M., Standera, S., Kloetzel, P. M. & Sijts, A. J. PI31 is a modulator of proteasome formation and antigen processing. Proc. Natl Acad. Sci. USA 99, 14344–14349 (2002).Article
Zaiss,D.M.,Standera,S.,Kloetzel,P.M。&Sijts,A.J。PI31是蛋白酶体形成和抗原加工的调节剂。程序。国家科学院。科学。美国9914344–14349(2002)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Rawson, S. et al. Yeast PI31 inhibits the proteasome by a direct multisite mechanism. Nat. Struct. Mol. Biol. 29, 791–800 (2022).Article
Rawson,S。等人。酵母PI31通过直接的多位点机制抑制蛋白酶体。自然结构。分子生物学。29791-800(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jespersen, N. et al. Structure of the reduced microsporidian proteasome bound by PI31-like peptides in dormant spores. Nat. Commun. 13, 6962 (2022).Article
Jespersen,N。等人。休眠孢子中由PI31样肽结合的还原微孢子虫蛋白酶体的结构。国家公社。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hsu, H. C., Wang, J., Kjellgren, A., Li, H. & DeMartino, G. N. High-resolution structure of mammalian PI31-20S proteasome complex reveals mechanism of proteasome inhibition. J. Biol. Chem. 299, 104862 (2023).Article
Hsu,H.C.,Wang,J.,Kjellgren,A.,Li,H。&DeMartino,G.N。哺乳动物PI31-20S蛋白酶体复合物的高分辨率结构揭示了蛋白酶体抑制的机制。J、 生物。化学。299104862(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Velez, B. et al. Rational design of proteasome inhibitors based on the structure of the endogenous inhibitor PI31/Fub1. Proc. Natl Acad. Sci. USA 120, e2308417120 (2023).Article
Velez,B。等人。基于内源性抑制剂PI31/Fub1结构的蛋白酶体抑制剂的合理设计。程序。国家科学院。科学。美国120,e2308417120(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hohn, A. et al. Lipofuscin inhibits the proteasome by binding to surface motifs. Free Radic. Biol. Med. 50, 585–591 (2011).Article
Hohn,A。等人脂褐素通过与表面基序结合来抑制蛋白酶体。自由基。《生物医学》50585-591(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ostman, A., Frijhoff, J., Sandin, A. & Bohmer, F. D. Regulation of protein tyrosine phosphatases by reversible oxidation. J. Biochem. 150, 345–356 (2011).Article
Ostman,A.,Frijhoff,J.,Sandin,A。&Bohmer,F.D。通过可逆氧化调节蛋白酪氨酸磷酸酶。J、 生物化学。150345-356(2011)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Heo, S., Kim, S. & Kang, D. The role of hydrogen peroxide and peroxiredoxins throughout the cell cycle. Antioxidants 9, 280 (2020).Article
Heo,S.,Kim,S。&Kang,D。过氧化氢和过氧化物酶在整个细胞周期中的作用。抗氧化剂9280(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gopalakrishna, R. & Jaken, S. Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med. 28, 1349–1361 (2000).Article
Gopalakrishna,R。&Jaken,S。蛋白激酶C信号传导和氧化应激。自由基。生物医学281349-1361(2000)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, J. G., Baek, K., Soetandyo, N. & Ye, Y. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat. Commun. 4, 1568 (2013).Article
Lee,J.G.,Baek,K.,Soetandyo,N。&Ye,Y。在体外和细胞中活性氧对去泛素化酶的可逆失活。国家公社。41568(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Meng, F. et al. Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol. Neurodegener. 6, 34 (2011).Article
Meng,F。等人。parkin富含半胱氨酸区域的氧化会干扰其E3连接酶活性,并有助于蛋白质聚集。分子神经退行性变。6,34(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aiken, C. T., Kaake, R. M., Wang, X. & Huang, L. Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell. Proteom. 10, R110 006924 (2011).Article
Aiken,C.T.,Kaake,R.M.,Wang,X。&Huang,L。氧化应激介导的蛋白酶体复合物调节。摩尔电池。蛋白质组学。10,R110 006924(2011)。文章
Google Scholar
谷歌学者
Livnat-Levanon, N. et al. Reversible 26S proteasome disassembly upon mitochondrial stress. Cell Rep. 7, 1371–1380 (2014).Article
Livnat-Levanon,N。等人。线粒体应激时可逆的26S蛋白酶体分解。Cell Rep.71371–1380(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sideri, T. C., Koloteva-Levine, N., Tuite, M. F. & Grant, C. M. Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J. Biol. Chem. 286, 38924–38931 (2011).Article
Sideri,T.C.,Koloteva-Levine,N.,Tuite,M.F。&Grant,C.M。Sup35蛋白的蛋氨酸氧化诱导酵母过氧化物酶突变体中[PSI+]朊病毒的形成。J、 生物。化学。28638924–38931(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schepers, J., Carter, Z., Kritsiligkou, P. & Grant, C. M. Methionine sulfoxide reductases suppress the formation of the [PSI+] prion and protein aggregation in yeast. Antioxidants 12, 401 (2023).Article
Schepers,J.,Carter,Z.,Kritsiligkou,P。&Grant,C.M。蛋氨酸亚砜还原酶抑制酵母中[PSI+]朊病毒的形成和蛋白质聚集。抗氧化剂12401(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wang, X., Yen, J., Kaiser, P. & Huang, L. Regulation of the 26S proteasome complex during oxidative stress. Sci. Signal. 3, ra88 (2010).Article
。科学。信号。3,ra88(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grune, T. et al. HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic. Biol. Med. 51, 1355–1364 (2011).Article
Grune,T。等人。HSP70在适应氧化应激期间介导26S蛋白酶体的解离和重新缔合。自由基。生物医学511355-1364(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Reinheckel, T. et al. Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem. J. 335, 637–642 (1998).Article
Reinheckel,T。等人。20S和26S蛋白酶体对氧化应激的比较抗性。生物化学。J、 335637-642(1998)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Davies, K. J. Degradation of oxidized proteins by the 20S proteasome. Biochimie 83, 301–310 (2001).Article
Davies,K.J。20S蛋白酶体降解氧化蛋白。生物化学83301-310(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Shringarpure, R., Grune, T. & Davies, K. J. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell. Mol. Life Sci. 58, 1442–1450 (2001).Article
Shringarpure,R.,Grune,T。&Davies,K.J。哺乳动物细胞中的蛋白质氧化和20S蛋白酶体依赖性蛋白水解。细胞。分子生命科学。581442-1450(2001)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sahu, I. et al. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat. Commun. 12, 6173 (2021).Article
Sahu,I。等人。20S作为细胞中的独立蛋白酶体可以降解泛素标签。国家公社。126173(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sahu, I. & Glickman, M. H. Structural insights into substrate recognition and processing by the 20S proteasome. Biomolecules 11, 148 (2021).Article
Sahu,I。&Glickman,M.H。20S蛋白酶体对底物识别和加工的结构见解。生物分子11148(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zaarur, N. et al. Proteasome failure promotes positioning of lysosomes around the aggresome via local block of microtubule-dependent transport. Mol. Cell. Biol. 34, 1336–1348 (2014).Article
Zaarur,N。等人。蛋白酶体失败通过局部阻断微管依赖性转运促进溶酶体在聚集体周围的定位。摩尔电池。生物学341336-1348(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Manohar, S. et al. Polyubiquitin chains linked by lysine residue 48 (K48) selectively target oxidized proteins in vivo. Antioxid. Redox Signal. 31, 1133–1149 (2019).Article
由赖氨酸残基48(K48)连接的多聚泛素链在体内选择性靶向氧化蛋白。抗氧化剂。氧化还原信号。311133-1149(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Murata, S., Minami, Y., Minami, M., Chiba, T. & Tanaka, K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2, 1133–1138 (2001).Article
Murata,S.,Minami,Y.,Minami,M.,Chiba,T。&Tanaka,K。CHIP是一种伴侣依赖性E3连接酶,可泛素化未折叠的蛋白质。EMBO Rep.21133–1138(2001)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Alberti, S. et al. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J. Biol. Chem. 277, 45920–45927 (2002).Article
Alberti,S。等人。BAG-1的泛素化提示了伴侣底物分选到蛋白酶体过程中的一种新的调节机制。J、 生物。化学。27745920-45927(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, C., Prakash, S. & Matouschek, A. Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel. J. Biol. Chem. 277, 34760–34765 (2002).Article
Lee,C.,Prakash,S。&Matouschek,A。通过蛋白酶体降解通道同时转运多条多肽链。J、 生物。化学。27734760-34765(2002)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wiseman, R. L. et al. Thioredoxin-related protein 32 is an arsenite-regulated thiol reductase of the proteasome 19 S particle. J. Biol. Chem. 284, 15233–15245 (2009).Article
Wiseman,R.L。等人硫氧还蛋白相关蛋白32是蛋白酶体19 S颗粒的亚砷酸盐调节的硫醇还原酶。J、 生物。化学。28415233–15245(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Andersen, K. M. et al. Thioredoxin Txnl1/TRP32 is a redox-active cofactor of the 26 S proteasome. J. Biol. Chem. 284, 15246–15254 (2009).Article
。J、 生物。化学。28415246–15254(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kondo, H. et al. PITHD1 is a proteasome-interacting protein essential for male fertilization. J. Biol. Chem. 295, 1658–1672 (2020).Article
Kondo,H。等人PITHD1是一种蛋白酶体相互作用蛋白,对男性受精至关重要。J、 生物。化学。2951658-1672(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, X. et al. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 302, 1056–1060 (2003).Article
Yu,X。等人。HIV-1 Vif-Cul5-SCF复合物诱导APOBEC3G泛素化和降解。科学3021056-1060(2003)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).Article
Scheffner,M.,Werness,B.A.,Huibregtse,J.M.,Levine,A.J。&Howley,P.M。由人乳头瘤病毒16型和18型编码的E6癌蛋白促进p53的降解。细胞631129-1136(1990)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).Article
Scheffner,M.,Huibregtse,J.M.,Vierstra,R.D。和Howley,P.M。HPV-16 E6和E6-AP复合物在p53的泛素化中起泛素蛋白连接酶的作用。细胞75495-505(1993)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).Article
Bekes,M.,Langley,D.R。&Crews,C.M。PROTAC靶向蛋白质降解物:过去是序幕。《药物目录》修订版。21181-200(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sasso, J. M. et al. Molecular glues: the adhesive connecting targeted protein degradation to the clinic. Biochemistry 62, 601–623 (2023).Article
Sasso,J.M.等人,《分子胶:将靶向蛋白质降解连接到临床的粘合剂》。生物化学62601-623(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Tsai, J. M., Nowak, R. P., Ebert, B. L. & Fischer, E. S. Targeted protein degradation: from mechanisms to clinic. Nat. Rev. Mol. Cell Biol. 25, 740–757 (2024).Article
Tsai,J.M.,Nowak,R.P.,Ebert,B.L。和Fischer,E.S。靶向蛋白质降解:从机制到临床。Nat。Rev。Mol。Cell Biol。25740-757(2024)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane radial ray syndrome. eLife 7, e38430 (2018).Article
多诺万,K.A。等人。沙利度胺促进SALL4的降解,SALL4是一种与杜安射线综合征有关的转录因子。eLife 7,e38430(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ito, T. & Handa, H. Molecular mechanisms of thalidomide and its derivatives. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 96, 189–203 (2020).Article
Ito,T。&Handa,H。沙利度胺及其衍生物的分子机制。程序。Jpn Acad。序列号。B物理。生物科学。96189-203(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535, 252–257 (2016).Article
Matyskiela,M.E.等人。一种新型的小脑调节剂将GSPT1募集到CRL4(CRBN)泛素连接酶上。自然535252-257(2016)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Chen, S.-H. et al. Constitutive protein degradation induces acute cell death via proteolysis products. Preprint at bioRxiv https://doi.org/10.1101/2023.02.06.527237 (2023). This preprint shows that proteasome-generated peptides can function as important second messengers to regulate apoptosis and potentially numerous other cellular processes.Bashore, C.
Chen,S.-H.等人。组成型蛋白质降解通过蛋白水解产物诱导急性细胞死亡。bioRxiv预印本https://doi.org/10.1101/2023.02.06.527237(2023年)。该预印本显示蛋白酶体产生的肽可以作为重要的第二信使来调节细胞凋亡和潜在的许多其他细胞过程。巴索尔,C。
et al. Targeted degradation via direct 26S proteasome recruitment. Nat. Chem. Biol. 19, 55–63 (2023).Article .
等人。通过直接26S蛋白酶体募集靶向降解。自然化学。生物学杂志19,55-63(2023)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Sledz, P. et al. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl Acad. Sci. USA 110, 7264–7269 (2013).Article
Sledz,P。等人。结合ATP-γS的26S蛋白酶体的结构提供了对核苷酸依赖性底物易位机制的见解。程序。国家科学院。科学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Richardson, P. G. et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N. Engl. J. Med. 352, 2487–2498 (2005).Article
Richardson,P.G.等人,硼替佐米或大剂量地塞米松治疗复发性多发性骨髓瘤。N、 英语。J、 医学3522487-2498(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kisselev, A. F. & Goldberg, A. L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 8, 739–758 (2001).Article
Kisselev,A.F。&Goldberg,A.L。蛋白酶体抑制剂:从研究工具到候选药物。化学。生物学8739-758(2001)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Thibaudeau, T. A. & Smith, D. M. A practical review of proteasome pharmacology. Pharmacol. Rev. 71, 170–197 (2019).Article
。药理学。第71170-197版(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Groll, M., Berkers, C. R., Ploegh, H. L. & Ovaa, H. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14, 451–456 (2006).Article
Groll,M.,Berkers,C.R.,Ploegh,H.L。&Ovaa,H。硼酸基蛋白酶体抑制剂硼替佐米与酵母20S蛋白酶体复合物的晶体结构。结构14451-456(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Groll, M. & Huber, R. Inhibitors of the eukaryotic 20S proteasome core particle: a structural approach. Biochim. Biophys. Acta 1695, 33–44 (2004).Article
Groll,M。&Huber,R。真核20S蛋白酶体核心颗粒的抑制剂:结构方法。生物化学。生物物理。Acta 1695,33–44(2004)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Haselbach, D. et al. Long-range allosteric regulation of the human 26S proteasome by 20S proteasome-targeting cancer drugs. Nat. Commun. 8, 15578 (2017).Article
Haselbach,D。等人。靶向20S蛋白酶体的抗癌药物对人26S蛋白酶体的远程变构调节。国家公社。815578(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chondrogianni, N., Georgila, K., Kourtis, N., Tavernarakis, N. & Gonos, E. S. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J. 29, 611–622 (2015).Article
Chondrogianni,N.,Georgila,K.,Kourtis,N.,Tavernarakis,N。&Gonos,E.S。20S蛋白酶体激活促进秀丽隐杆线虫的寿命延长和对蛋白毒性的抗性。FASEB J.29611–622(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Njomen, E. & Tepe, J. J. Proteasome activation as a new therapeutic approach to target proteotoxic disorders. J. Med. Chem. 62, 6469–6481 (2019).Article
。J、 医学化学。626469-6481(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
George, D. E. & Tepe, J. J. Advances in proteasome enhancement by small molecules. Biomolecules 11, 1789 (2021).Article
George,D.E。&Tepe,J.J。小分子增强蛋白酶体的进展。生物分子111789(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Leestemaker, Y. et al. Proteasome activation by small molecules. Cell Chem. Biol. 24, 725–736.e7 (2017).Article
Leestemaker,Y。等人。小分子激活蛋白酶体。细胞化学。生物学24725-736.e7(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, J., Powell, S. R. & Wang, X. Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB J. 25, 883–893 (2011).Article
Li,J.,Powell,S.R。&Wang,X。通过PA28α过表达增强蛋白酶体功能可防止氧化应激。FASEB J.25883–893(2011)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Opoku-Nsiah, K. A. et al. The YΦ motif defines the structure-activity relationships of human 20S proteasome activators. Nat. Commun. 13, 1226 (2022).Article
Opoku Nsiah,K.A。等人。YΦ基序定义了人20S蛋白酶体激活剂的结构-活性关系。国家公社。131226(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Osmulski, P. A. et al. New peptide-based pharmacophore activates 20S proteasome. Molecules 25, 1439 (2020).Article
Osmulski,P.A。等人。新的基于肽的药效团激活20S蛋白酶体。分子251439(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Song, Y. et al. Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene 36, 5631–5638 (2017).Article
Song,Y。等人。阻断去泛素化酶Rpn11可触发多发性骨髓瘤细胞凋亡并克服硼替佐米耐药性。癌基因365631-5638(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, J. et al. Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat. Chem. Biol. 13, 486–493 (2017).Article
Li,J。等人。Capzimin是一种有效且特异的蛋白酶体异肽酶Rpn11抑制剂。自然化学。生物学13486-493(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, J. et al. Epidithiodiketopiperazines inhibit protein degradation by targeting proteasome deubiquitinase Rpn11. Cell Chem. Biol. 25, 1350–1358.e9 (2018).Article
Li,J。等人。Epidithiodiketopiperazines通过靶向蛋白酶体去泛素化酶Rpn11来抑制蛋白质降解。细胞化学。生物学251350-1358.e9(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lauinger, L. et al. Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases. Nat. Chem. Biol. 13, 709–714 (2017).Article
Lauinger,L。等人。Thiolutin是一种锌螯合剂,可抑制Rpn11和其他JAMM金属蛋白酶。自然化学。生物学13709-714(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Perez, C. et al. Discovery of an inhibitor of the proteasome subunit Rpn11. J. Med. Chem. 60, 1343–1361 (2017).Article
Perez,C。等人。蛋白酶体亚基Rpn11抑制剂的发现。J、 医学化学。601343-1361(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, B. H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).Article
Lee,B.H.等人。USP14小分子抑制剂增强蛋白酶体活性。《自然》467179-184(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Boselli, M. et al. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J. Biol. Chem. 292, 19209–19225 (2017).Article
。J、 生物。化学。29219209–19225(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThe authors thank all members of the Martin laboratory for the discussion and support. This research was funded by the Howard Hughes Medical Institute (C.A., K.C.D., C.L.G. and A.M.) and by the US National Institutes of Health (R01-GM094497 to A.M.).Author informationAuthors and AffiliationsCalifornia Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USAConnor Arkinson, Christine L.
下载参考文献致谢作者感谢Martin实验室的所有成员的讨论和支持。这项研究由霍华德·休斯医学研究所(C.A.,K.C.D.,C.L.G.和A.M.)和美国国立卫生研究院(R01-GM094497至A.M.)资助。作者信息作者和附属机构加利福尼亚大学伯克利分校定量生物科学研究所,加利福尼亚州伯克利,USAConnor Arkinson,Christine L。
Gee & Andreas MartinDepartment of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USAConnor Arkinson, Christine L. Gee & Andreas MartinHoward Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USAConnor Arkinson, Ken C. Dong, Christine L. Gee & Andreas MartinAuthorsConnor ArkinsonView author publicationsYou can also search for this author in.
Gee&Andreas Martin加利福尼亚大学伯克利分校分子与细胞生物学系,加利福尼亚州伯克利,USAConnor Arkinson,Christine L.Gee&Andreas MartinHoward Hughes医学研究所,加利福尼亚大学伯克利分校,加利福尼亚州伯克利,USAConnor Arkinson,Ken C.Dong,Christine L.Gee&Andreas MartinAuthorsConnor ArkinsonView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarKen C. DongView author publicationsYou can also search for this author in
PubMed Google ScholarKen C.DongView作者出版物您也可以在
PubMed Google ScholarChristine L. GeeView author publicationsYou can also search for this author in
PubMed Google ScholarChristine L.GeeView作者出版物您也可以在
PubMed Google ScholarAndreas MartinView author publicationsYou can also search for this author in
PubMed谷歌学术评论MartinView作者出版物您也可以在
PubMed Google ScholarContributionsC.A., K.C.D. and A.M. contributed equally to all aspects of the article. C.L.G. prepared figures and edited the manuscript.Corresponding authorCorrespondence to
PubMed谷歌学术贡献中心。A、 ,K.C.D.和A.M.对文章的各个方面都做出了同样的贡献。C。五十、 G.准备数字并编辑手稿。对应作者对应
Andreas Martin.Ethics declarations
安德烈亚斯·马丁。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Reviews Molecular Cell Biology thanks Andreas Matouschek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
《自然评论》分子细胞生物学感谢Andreas Matouschek和另一位匿名审稿人对这项工作的同行评审做出的贡献。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleArkinson, C., Dong, K.C., Gee, C.L.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Arkinson,C.,Dong,K.C.,Gee,C.L。
et al. Mechanisms and regulation of substrate degradation by the 26S proteasome..
26S蛋白酶体对底物降解的机制和调控。。
Nat Rev Mol Cell Biol (2024). https://doi.org/10.1038/s41580-024-00778-0Download citationAccepted: 23 August 2024Published: 03 October 2024DOI: https://doi.org/10.1038/s41580-024-00778-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Rev Mol Cell Biol(2024)。https://doi.org/10.1038/s41580-024-00778-0Download引文接受日期:2024年8月23日发布日期:2024年10月3日OI:https://doi.org/10.1038/s41580-024-00778-0Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供