商务合作
动脉网APP
可切换为仅中文
AbstractHuman immunodeficiency virus type 1 (HIV-1) infection involves a selection bottleneck that leads to transmission of one or a few variants. C–C motif chemokine receptor 5 (CCR5) or C–X–C motif chemokine receptor 4 (CXCR4) can act as coreceptors for HIV-1 viral entry. However, initial infection mostly occurs via CCR5, despite abundant expression of CXCR4 on target cells.
摘要人类免疫缺陷病毒1型(HIV-1)感染涉及一个选择瓶颈,导致一种或几种变体的传播。C–C基序趋化因子受体5(CCR5)或C–X–C基序趋化因子受体4(CXCR4)可以作为HIV-1病毒进入的辅助受体。然而,尽管CXCR4在靶细胞上大量表达,但最初的感染主要通过CCR5发生。
The host factors that influence HIV-1 susceptibility and selection during transmission are unclear. Here we conduct CRISPR–Cas9 screens and identify SLC35A2 (a transporter of UDP–galactose expressed in target cells in blood and mucosa) as a potent and specific CXCR4-tropic restriction factor in primary target CD4+ T cells.
在传播过程中影响HIV-1易感性和选择的宿主因素尚不清楚。在这里,我们进行CRISPR-Cas9筛选,并将SLC35A2(血液和粘膜中靶细胞中表达的UDP-半乳糖的转运蛋白)鉴定为主要靶CD4+T细胞中有效且特异的CXCR4嗜性限制因子。
SLC35A2 inactivation, which resulted in truncated glycans, not only increased CXCR4-tropic infection levels but also decreased those of CCR5-tropic strains consistently. Single-cycle infections demonstrated that the effect is cell-intrinsic. These data support a role for a host protein that influences glycan structure in regulating HIV-1 infection.
导致截短聚糖的SLC35A2失活不仅增加了CXCR4热带感染水平,而且持续降低了CCR5热带菌株的感染水平。。这些数据支持宿主蛋白在调节HIV-1感染中影响聚糖结构的作用。
Host cell glycosylation may, therefore, affect HIV-1 selection during transmission in vivo..
因此,宿主细胞糖基化可能会在体内传播过程中影响HIV-1的选择。。
Access through your institution
通过您的机构访问
Buy or subscribe
购买或订阅
This is a preview of subscription content, access via your institution
这是订阅内容的预览,可通过您的机构访问
Access options
访问选项
Access through your institution
通过您的机构访问
Access through your institution
通过您的机构访问
Change institution
变革机构
Buy or subscribe
购买或订阅
Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 digital issues and online access to articles111,21 € per yearonly 9,27 € per issueLearn moreBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.
Access Nature和54本其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天浏览所有时间更多订阅本期刊每年收到12期数字期刊和在线访问文章111,21欧元每期仅9,27欧元更多了解更多购买本文在SpringerLink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐期间计算的当地税费。
Additional access options:
其他访问选项:
Log in
登录
Learn about institutional subscriptions
了解机构订阅
Read our FAQs
阅读我们的常见问题
Contact customer support
联系客户支持
Fig. 1: SLC35A2 is an X4-specific hit in a CRISPR-KO screen for HIV-1 restriction factors in primary CD4+ T cells.Fig. 2: SLC35A2 KO differentially impacts X4 and CCR5-tropic HIV-1.Fig. 3: SLC35A2 inactivation causes truncated glycans on host cells and impacts HIV-1 entry in a cell-intrinsic manner.Fig.
图1:SLC35A2是CRISPR-KO筛选原代CD4+T细胞中HIV-1限制因子的X4特异性命中。图2:SLC35A2 KO差异影响X4和CCR5热带HIV-1。图3:SLC35A2失活导致宿主细胞上截短的聚糖,并以细胞内在方式影响HIV-1进入。图。
4: SLC35A2 does not impact HIV-1 receptor or coreceptor expression.Fig. 5: Working model of the impact of CD4+ T cell glycosylation on HIV-1 infection..
4: SLC35A2不影响HIV-1受体或辅助受体的表达。图5:CD4+T细胞糖基化对HIV-1感染影响的工作模型。。
Data availability
数据可用性
Illumina sequencing reads from HIV-CRISPR screens can be accessed via the NCBI Sequence Read Archive (SRA BioProject ID PRJNA1111960). Data for all figures are provided as source data. Source data are provided with this paper.
可以通过NCBI序列读取档案(SRA BioProject ID PRJNA111960)访问来自HIV-CRISPR筛选的Illumina测序读数。所有数字的数据均作为源数据提供。本文提供了源数据。
ReferencesRonen, K., Sharma, A. & Overbaugh, J. HIV transmission biology: translation for HIV prevention. AIDS 29, 2219–2227 (2015).Article
。艾滋病292219-2227(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wolinsky, S. M. et al. Selective transmission of human immunodeficiency virus type-1 variants from mothers to infants. Science 255, 1134–1137 (1992).Article
Wolinsky,S.M.等人。人类免疫缺陷病毒1型变异从母亲到婴儿的选择性传播。科学2551134-1137(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wolfs, T. F., Zwart, G., Bakker, M. & Goudsmit, J. HIV-1 genomic RNA diversification following sexual and parenteral virus transmission. Virology 189, 103–110 (1992).Article
Wolfs,T.F.,Zwart,G.,Bakker,M。&Goudsmit,J。HIV-1基因组RNA在性和肠胃外病毒传播后的多样化。病毒学189103-110(1992)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhu, T. et al. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261, 1179–1181 (1993).Article
Zhu,T.等人。原发感染HIV-1患者的基因型和表型特征。科学2611179-1181(1993)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Zhang, L. Q. et al. Selection for specific sequences in the external envelope protein of human immunodeficiency virus type 1 upon primary infection. J. Virol. 67, 3345–3356 (1993).Article
Zhang,L.Q.等人。初次感染时人类免疫缺陷病毒1型外膜蛋白中特定序列的选择。J、 维罗尔。673345-3356(1993)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Keele, B. F. et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl Acad. Sci. USA 105, 7552–7557 (2008).Article
Keele,B.F.等人。原发性HIV-1感染中传播和早期创始人病毒包膜的鉴定和表征。程序。国家科学院。科学。美国1057552-7557(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shaw, G. M. & Hunter, E. HIV transmission. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a006965 (2012).Carlson, J. M. et al. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 345, 1254031 (2014).Article
Shaw,G.M。和Hunter,E。HIV传播。冷泉兔。透视图。医学。https://doi.org/10.1101/cshperspect.a006965。Carlson,J.M.等人,HIV传播。异性恋HIV-1传播瓶颈的选择偏见。科学3451254031(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sugrue, E. et al. The apparent interferon resistance of transmitted HIV-1 is possibly a consequence of enhanced replicative fitness. PLoS Pathog. 18, e1010973 (2022).Article
Sugrue,E。等人。传播的HIV-1的明显干扰素抗性可能是复制适应性增强的结果。PLoS Pathog。18,e1010973(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fenton-May, A. E. et al. Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology 10, 146 (2013).Article
Fenton May,A.E.等人。HIV-1创始病毒对干扰素α控制的相对抗性。逆转录病毒学10146(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Parrish, N. F. et al. Phenotypic properties of transmitted founder HIV-1. Proc. Natl Acad. Sci. USA 110, 6626–6633 (2013).Article
Parrish,N.F.等人。传播的创始人HIV-1的表型特性。程序。国家科学院。科学。美国1106626–6633(2013)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wilen, C. B., Tilton, J. C. & Doms, R. W. HIV: cell binding and entry. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a006866 (2012).Long, E. M., Rainwater, S. M., Lavreys, L., Mandaliya, K. & Overbaugh, J. HIV type 1 variants transmitted to women in Kenya require the CCR5 coreceptor for entry, regardless of the genetic complexity of the infecting virus.
Wilen,C.B.,Tilton,J.C。和Doms,R.W。HIV:细胞结合和进入。冷泉兔。透视图。医学。https://doi.org/10.1101/cshperspect.a006866。Long,E.M.,Rain,S.M.,Lavreys,L.,Mandaliya,K。&Overbaugh,J。传播给肯尼亚女性的HIV 1型变异需要CCR5辅助受体进入,而不管感染病毒的遗传复杂性如何。
AIDS Res. Hum. Retroviruses 18, 567–576 (2002).Article .
AIDS Res.Hum。逆转录病毒18567-576(2002)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Saba, E. et al. HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol. 3, 280–290 (2010).Article
Saba,E.等人,《HIV-1性传播:优化离体模型中人类宫颈阴道组织HIV-1感染的早期事件》。粘膜免疫。3280-290(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Shepherd, J. C. et al. Emergence and persistence of CXCR4-tropic HIV-1 in a population of men from the multicenter AIDS cohort study. J. Infect. Dis. 198, 1104–1112 (2008).Article
Shepherd,J.C.等人。来自多中心艾滋病队列研究的男性人群中CXCR4热带HIV-1的出现和持续存在。J、 感染。。1981104-1112(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Itell, H. L., Humes, D. & Overbaugh, J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4+ T cells. Cell Rep. 42, 112556 (2023).Article
Itell,H.L.,Humes,D。&Overbaugh,J。几种细胞内在效应物驱动I型干扰素介导的原代CD4+T细胞中HIV-1的限制。细胞代表42112556(2023)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Colomer-Lluch, M., Ruiz, A., Moris, A. & Prado, J. G. Restriction factors: from intrinsic viral restriction to shaping cellular immunity Against HIV-1. Front Immunol. 9, 2876 (2018).Article
Colomer Lluch,M.,Ruiz,A.,Moris,A。&Prado,J.G。限制因子:从内在病毒限制到塑造针对HIV-1的细胞免疫。前免疫。92876(2018)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Doyle, T., Goujon, C. & Malim, M. H. HIV-1 and interferons: who’s interfering with whom? Nat. Rev. Microbiol. 13, 403–413 (2015).Article
Doyle,T.,Goujon,C.&Malim,M.H。HIV-1和干扰素:谁在干扰谁?自然修订版微生物学。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Malim, M. H. & Bieniasz, P. D. HIV restriction factors and mechanisms of evasion. Cold Spring Harb. Perspect. Med. 2, a006940 (2012).Article
Malim,M.H。&Bieniasz,P.D。HIV限制因素和逃避机制。冷泉兔。透视图。医学杂志2,a006940(2012)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Altfeld, M. & Gale, M. Jr. Innate immunity against HIV-1 infection. Nat. Immunol. 16, 554–562 (2015).Article
Altfeld,M。&Gale,M。Jr。针对HIV-1感染的先天免疫。自然免疫。16554-562(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gelinas, J. F., Gill, D. R. & Hyde, S. C. Multiple inhibitory factors act in the late phase of HIV-1 replication: a systematic review of the literature. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00051-17 (2018).Peden, K., Emerman, M. & Montagnier, L. Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI.
Gelinas,J.F.,Gill,D.R。&Hyde,S.C。多种抑制因子在HIV-1复制的晚期起作用:文献的系统综述。微生物。分子生物学。。https://doi.org/10.1128/MMBR.00051-17(2018年)。Peden,K.,Emerman,M。&Montagnier,L。来自HIV-1LAI,HIV-1MAL和HIV-1ELI的感染性分子克隆的病毒在组织培养中传代时生长特性的变化。
Virology 185, 661–672 (1991).Article .
病毒学185661-672(1991)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Haddox, H. K., Dingens, A. S., Hilton, S. K., Overbaugh, J. & Bloom, J. D. Mapping mutational effects along the evolutionary landscape of HIV envelope. eLife https://doi.org/10.7554/eLife.34420 (2018).OhAinle, M. et al. A virus-packageable CRISPR screen identifies host factors mediating interferon inhibition of HIV.
Haddox,H.K.,Dingens,A.S.,Hilton,S.K.,Overbaugh,J。&Bloom,J.D。沿着HIV包膜的进化景观绘制突变效应。埃利夫https://doi.org/10.7554/eLife.34420(2018年)。Ohainel,M。等人。可包装病毒的CRISPR筛选可识别介导干扰素抑制HIV的宿主因子。
eLife https://doi.org/10.7554/eLife.39823 (2018).S, P. H., Krumbiegel, M. & Kirchhoff, F. Coreceptor usage of BOB/GPR15 and Bonzo/STRL33 by primary isolates of human immunodeficiency virus type 1. J. Gen. Virol. 80, 1241–1251 (1999).Article .
埃利夫https://doi.org/10.7554/eLife.39823(2018年)。S、 P.H.,Krumbiegel,M。&Kirchhoff,F。人类免疫缺陷病毒1型初级分离株对BOB/GPR15和Bonzo/STRL33的共同受体使用。J、 维罗尔将军。801241-1251(1999)。文章。
Google Scholar
谷歌学者
Doranz, B. J. et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158 (1996).Article
。细胞851149-1158(1996)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Quelhas, D. et al. SLC35A2-CDG: novel variant and review. Mol. Genet. Metab. Rep. 26, 100717 (2021).Article
Quelhas,D。等人。SLC35A2-CDG:新变体和综述。分子遗传学。代谢。代表26100717(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lefeber, D. J. et al. Congenital disorders of glycosylation. in Essentials of Glycobiology (eds Varki, A. et al.) Chap. 45 (2022).Ng, B. G. et al. SLC35A2-CDG: functional characterization, expanded molecular, clinical, and biochemical phenotypes of 30 unreported Individuals. Hum. Mutat.
Lefeber,D.J.等人,《先天性糖基化疾病》。在《糖生物学概要》(eds Varki,A.等人)第45章(2022年)中。Ng,B.G.等人,SLC35A2-CDG:30个未报告个体的功能表征,扩展的分子,临床和生化表型。嗯。变异。
40, 908–925 (2019).CAS .
40908-925(2019)。CAS。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bojar, D. et al. A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities. ACS Chem. Biol. 17, 2993–3012 (2022).Article
Bojar,D.等人,《凝集素结合的有用指南:机器学习指导的57种独特凝集素特异性注释》。ACS化学。生物学172993-3012(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
O’Doherty, U., Swiggard, W. J. & Malim, M. H. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J. Virol. 74, 10074–10080 (2000).Article
O'Doherty,U.,Swiggard,W.J。&Malim,M.H。人类免疫缺陷病毒1型自旋接种通过病毒结合增强感染。J、 维罗尔。7410074-10080(2000)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Woodward Davis, A. S. et al. The human memory T cell compartment changes across tissues of the female reproductive tract. Mucosal Immunol. 14, 862–872 (2021).Article
Woodward-Davis,A.S。等人。人类记忆T细胞区室在女性生殖道组织中发生变化。粘膜免疫。14862-872(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).Article
Uhlen,M。等人。蛋白质组学。基于组织的人类蛋白质组图谱。科学3471260419(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Ma, T. et al. Single-cell glycomics analysis by CyTOF-Lec reveals glycan features defining cells differentially susceptible to HIV. eLife https://doi.org/10.7554/eLife.78870 (2022).Chabot, D. J., Chen, H., Dimitrov, D. S. & Broder, C. C. N-linked glycosylation of CXCR4 masks coreceptor function for CCR5-dependent human immunodeficiency virus type 1 isolates.
Ma,T。等人。CyTOF-Lec的单细胞糖组学分析揭示了定义对HIV差异敏感的细胞的聚糖特征。埃利夫https://doi.org/10.7554/eLife.78870(2022年)。Chabot,D.J.,Chen,H.,Dimitrov,D.S。&Broder,C.C。CXCR4的N-连接糖基化掩盖了CCR5依赖性人类免疫缺陷病毒1型分离株的共受体功能。
J. Virol. 74, 4404–4413 (2000).Article .
J.Virol。为978-0-4413-0亿美元。第条。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bannert, N. et al. Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. J. Exp. Med. 194, 1661–1673 (2001).Article
Bannert,N。等人。CC趋化因子受体5的NH2末端结构域中的唾液酸化O-聚糖和硫酸化酪氨酸有助于趋化因子的高亲和力结合。J、 实验医学1941661-1673(2001)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Farzan, M. et al. Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry. Cell 96, 667–676 (1999).Article
Farzan,M。等人。CCR5氨基末端的酪氨酸硫酸化促进HIV-1进入。细胞96667-676(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lee, B. et al. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J. Biol. Chem. 274, 9617–9626 (1999).Article
CCR5的表位作图揭示了趋化因子和辅助受体功能中涉及的多种构象状态和不同但重叠的结构。J、 生物。化学。2749617-9626(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Spillings, B. L. et al. Host glycocalyx captures HIV proximal to the cell surface via oligomannose-GlcNAc glycan–glycan interactions to support viral entry. Cell Rep. 38, 110296 (2022).Article
Spillings,B.L。等人。宿主糖萼通过寡甘露糖-GlcNAc-聚糖-聚糖相互作用捕获细胞表面附近的HIV,以支持病毒进入。Cell Rep.38110296(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Mereiter, S., Balmana, M., Campos, D., Gomes, J. & Reis, C. A. Glycosylation in the era of cancer-targeted therapy: where are we heading? Cancer Cell 36, 6–16 (2019).Article
Mereiter,S.,Balmana,M.,Campos,D.,Gomes,J.&Reis,C.A。癌症靶向治疗时代的糖基化:我们将走向何方?。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Ju, T. & Cummings, R. D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl Acad. Sci. USA 99, 16613–16618 (2002).Article
Ju,T。&Cummings,R.D。哺乳动物核心1β3-半乳糖基转移酶活性所需的独特分子伴侣Cosmc。程序。国家科学院。科学。美国9916613-16618(2002)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Matia, A. et al. Identification of beta2 microglobulin, the product of B2M gene, as a host factor for vaccinia virus infection by genome-wide CRISPR genetic screens. PLoS Pathog. 18, e1010800 (2022).Article
Matia,A.等人。通过全基因组CRISPR基因筛选鉴定B2M基因产物β2微球蛋白作为痘苗病毒感染的宿主因子。PLoS Pathog。18,e1010800(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sun, Q. et al. Synaptogyrin-2 promotes replication of a novel tick-borne bunyavirus through interacting with viral nonstructural protein NSs. J. Biol. Chem. 291, 16138–16149 (2016).Article
Sun,Q。等人。Synaptogyrin-2通过与病毒非结构蛋白NSs相互作用促进新型蜱传布尼亚病毒的复制。J、 生物。化学。29116138-16149(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Pickering, S. et al. Preservation of tetherin and CD4 counter-activities in circulating Vpu alleles despite extensive sequence variation within HIV-1 infected individuals. PLoS Pathog. 10, e1003895 (2014).Article
Pickering,S.等人。尽管HIV-1感染者体内存在广泛的序列变异,但在循环Vpu等位基因中保留了tetherin和CD4反活性。PLoS Pathog。10,e1003895(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Poss, M. & Overbaugh, J. Variants from the diverse virus population identified at seroconversion of a clade A human immunodeficiency virus type 1-infected woman have distinct biological properties. J. Virol. 73, 5255–5264 (1999).Article
Poss,M。&Overbaugh,J。在进化枝的血清转化中鉴定出的来自不同病毒群的变体人类免疫缺陷病毒1型感染的女性具有不同的生物学特性。J、 维罗尔。735255-5264(1999)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, X. et al. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J. Virol. 80, 835–844 (2006).Article
Wu,X。等人。人类免疫缺陷病毒1型的中和逃逸变体从母亲传播给婴儿。J、 维罗尔。80835-844(2006)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cheng-Mayer, C., Quiroga, M., Tung, J. W., Dina, D. & Levy, J. A. Viral determinants of human immunodeficiency virus type 1 T-cell or macrophage tropism, cytopathogenicity, and CD4 antigen modulation. J. Virol. 64, 4390–4398 (1990).Article
Cheng Mayer,C.,Quiroga,M.,Tung,J.W.,Dina,D。&Levy,J.A。人类免疫缺陷病毒1型T细胞或巨噬细胞嗜性,细胞致病性和CD4抗原调节的病毒决定因素。J、 维罗尔。644390-4398(1990)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Adachi, A. et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986).Article
Adachi,A。等人。在感染性分子克隆转染的人和非人细胞中产生获得性免疫缺陷综合征相关逆转录病毒。J、 维罗尔。59284-291(1986)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gartner, S. et al. The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233, 215–219 (1986).Article
Gartner,S.等人。单核吞噬细胞在HTLV-III/LAV感染中的作用。科学233215-219(1986)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Collman, R. et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1. J. Virol. 66, 7517–7521 (1992).Article
Collman,R。等人。人类免疫缺陷病毒1型不寻常的巨噬细胞嗜性和高度细胞病变株的感染性分子克隆。J、 维罗尔。667517-7521(1992)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Provine, N. M., Cortez, V., Chohan, V. & Overbaugh, J. The neutralization sensitivity of viruses representing human immunodeficiency virus type 1 variants of diverse subtypes from early in infection is dependent on producer cell, as well as characteristics of the specific antibody and envelope variant.
Provine,N.M.,Cortez,V.,Chohan,V。&Overbaugh,J。代表感染早期不同亚型的人类免疫缺陷病毒1型变体的病毒的中和敏感性取决于产生细胞,以及特定抗体和包膜变体的特征。
Virology 427, 25–33 (2012).Article .
病毒学427,25-33(2012)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Humes, D., Rainwater, S. & Overbaugh, J. The TOP vector: a new high-titer lentiviral construct for delivery of sgRNAs and transgenes to primary T cells. Mol. Ther. Methods Clin. Dev. 20, 30–38 (2021).Article
Humes,D.,Rain,S。&Overbaugh,J。TOP载体:一种新的高滴度慢病毒构建体,用于将sgRNA和转基因递送至原代T细胞。摩尔热。方法临床。第20、30–38页(2021年)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wang, B. et al. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat. Protoc. 14, 756–780 (2019).Article
Wang,B.等人。使用MAGeCKFlute对合并的CRISPR基因筛选进行综合分析。自然协议。14756-780(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vermeire, J. et al. Quantification of reverse transcriptase activity by real-time PCR as a fast and accurate method for titration of HIV, lenti- and retroviral vectors. PLoS ONE 7, e50859 (2012).Article
Vermeire,J。等人。通过实时PCR定量逆转录酶活性,作为滴定HIV,慢病毒和逆转录病毒载体的快速准确方法。PLoS ONE 7,e50859(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mbisa, J. L., Delviks-Frankenberry, K. A., Thomas, J. A., Gorelick, R. J. & Pathak, V. K. Real-time PCR analysis of HIV-1 replication post-entry events. Methods Mol. Biol. 485, 55–72 (2009).Article
Mbisa,J.L.,Delviks Frankenberry,K.A.,Thomas,J.A.,Gorelick,R.J。&Pathak,V.K。HIV-1复制进入后事件的实时PCR分析。方法分子生物学。485,55-72(2009)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Selyutina, A., Persaud, M., Lee, K., KewalRamani, V. & Diaz-Griffero, F. Nuclear import of the HIV-1 core precedes reverse transcription and uncoating. Cell Rep. 32, 108201 (2020).Article
Selyutina,A.,Persaud,M.,Lee,K.,KewalRamani,V。&Diaz Griffero,F。HIV-1核心的核输入先于逆转录和脱壳。Cell Rep.32108201(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).Article
Robinson,M.D.,McCarthy,D.J。&Smyth,G.K.edgeR:用于数字基因表达数据差异表达分析的生物导体软件包。生物信息学26139-140(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hiatt, J. et al. A functional map of HIV-host interactions in primary human T cells. Nat. Commun. 13, 1752 (2022).Article
Hiatt,J。等人。原代人T细胞中HIV-宿主相互作用的功能图。国家公社。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Goujon, C. et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502, 559–562 (2013).Article
Goujon,C。等人。人MX2是干扰素诱导的HIV-1感染进入后抑制剂。《自然》502559-562(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Bosso, M. et al. Nuclear PYHIN proteins target the host transcription factor Sp1 thereby restricting HIV-1 in human macrophages and CD4+ T cells. PLoS Pathog. 16, e1008752 (2020).Article
Bosso,M。等人。核PYHIN蛋白靶向宿主转录因子Sp1,从而限制人类巨噬细胞和CD4+T细胞中的HIV-1。PLoS Pathog。16,e1008752(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Foster, T. L. et al. Resistance of transmitted founder HIV-1 to IFITM-mediated restriction. Cell Host Microbe 20, 429–442 (2016).Article
Foster,T.L.等人。传播的创始人HIV-1对IFITM介导的限制的抗性。细胞宿主微生物20429-442(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank the Fred Hutch Shared Resources Genomics and Bioinformatics Cores, particularly A. Dawson and E. Jensen for performing Illumina and Sanger sequencing, respectively; the Fred Hutch Center for Data Visualization, especially M. Zager, N. Thorpe and S.
下载参考文献致谢我们感谢Fred Hutch共享资源基因组学和生物信息学核心,特别是A.Dawson和E.Jensen分别进行了Illumina和Sanger测序;弗雷德·哈奇数据可视化中心,特别是M.Zager、N.Thorpe和S。
Minot, for their support with MAGeCK analysis; M. Emerman, M. Ohainle, C. Stoddard and A. Willcox for helpful discussions and technical assistance. We also thank M. Emerman (Division of Human Biology, Fred Hutchinson Cancer Center) for sharing LAI and VSV-G envelope plasmids with us. Figures 1a, 3a and 5 were generated with BioRender.
Minot,感谢他们对MAGeCK分析的支持;M、 Emerman,M.Ohainel,C.Stoddard和A.Willcox感谢他们的有益讨论和技术援助。我们还感谢M.Emerman(弗雷德·哈钦森癌症中心人类生物学系)与我们共享LAI和VSV-G包膜质粒。图1a,3a和5是用BioRender生成的。
This work was supported by the following NIH grants: NICHD R01 HD103571 to J.O. and NIGMS T32 GM007270 and NIAID F31 AI165168 to H.L.I. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Author informationAuthor notesDaryl HumesPresent address: Tr1X Inc, La Jolla, CA, USAAuthors and AffiliationsMolecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USAHannah L.
这项工作得到了以下NIH资助的支持:NICHD R01 HD103571授予J.O.,NIGMS T32 GM007270和NIAID F31 AI165168授予H.L.I。资助者在研究设计,数据收集和分析,决定出版或准备手稿方面没有任何作用。作者信息作者注释Daryl HumesPresent地址:Tr1X Inc,美国加利福尼亚州拉霍亚作者和附属机构华盛顿大学分子与细胞生物学博士项目,华盛顿州西雅图,USAHannah L。
ItellDivision of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USAHannah L. Itell, Jamie Guenthoer, Daryl Humes, Nell E. Baumgarten & Julie OverbaughAuthorsHannah L. ItellView author publicationsYou can also search for this author in.
华盛顿州西雅图弗雷德·哈钦森癌症中心人类生物学系,USAHannah L.Itell,杰米·根索,达里尔·休姆斯,内尔·E·鲍姆加滕和朱莉·奥弗鲍豪索申纳L.ItellView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarJamie GuenthoerView author publicationsYou can also search for this author in
PubMed谷歌学者Jamie GuenthoerView作者出版物您也可以在
PubMed Google ScholarDaryl HumesView author publicationsYou can also search for this author in
PubMed Google ScholarDaryl HumesView作者出版物您也可以在
PubMed Google ScholarNell E. BaumgartenView author publicationsYou can also search for this author in
PubMed Google ScholarNell E.BaumgartenView作者出版物您也可以在
PubMed Google ScholarJulie OverbaughView author publicationsYou can also search for this author in
PubMed谷歌学者Julie OverbaughView作者出版物您也可以在
PubMed Google ScholarContributionsJ.O. conceived the project and J.O., H.L.I., J.G. and D.H. designed the methodology of the study. H.L.I., J.G., D.H. and N.E.B. performed experiments. H.L.I., J.G. and D.H. conducted the data analysis, with the supervision of J.O. H.L.I. generated data visualizations.
PubMed谷歌学术贡献。O、 构思了该项目,J.O.,H.L.I.,J.G.和D.H.设计了研究方法。H、 L.I.,J.G.,D.H.和N.E.B.进行了实验。H、 在J.O.H.L.I.生成的数据可视化的监督下,L.I.,J.G.和D.H.进行了数据分析。
J.O. and H.L.I. wrote the paper with input from J.G., D.H. and N.E.B.Corresponding authorCorrespondence to.
J、 O.和H.L.I.根据J.G.,D.H.和N.E.B.的输入撰写了这篇论文。相应的作者回复。
Julie Overbaugh.Ethics declarations
Julie Overbaugh。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Microbiology thanks Nuria Izquierdo-Useros and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Nature Microbiology感谢Nuria Izquierdo Useros和其他匿名审稿人对这项工作的同行评审做出的贡献。同行评审报告可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 SLC35A2 KO has opposite effects on two HIV-1 strains that utilize different coreceptors, related to Figures 2b, 2c, and 3e.a.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1 SLC35A2 KO对利用不同辅助受体的两种HIV-1菌株具有相反的作用,与图2b,2c和3e.a相关。
Independent experimental replicates for data depicted in Fig. 2b. Reverse transcriptase (RT) activity, relative (rel) to CD19 KO for each independent primary CD4+ T cell experiment, at 2 dpi (MOI=0.02). Knockouts were performed in five donors across independent knockout and infection experiments as indicated.
图2b所示数据的独立实验重复。对于每个独立的原代CD4+T细胞实验,逆转录酶(RT)活性相对于CD19 KO,在2 dpi(MOI=0.02)。如所示,在独立的敲除和感染实验中,在五个供体中进行了敲除。
b. Independent experimental replicates for data depicted in Fig. 2c. Percentage of CD4+ T cells staining positive for HIV-Gag at 3 dpi (MOI=1). Donor letters correspond with those in Panel A. c. Independent experimental replicates for data depicted in Fig. 3e. Percentage of GFP+ CD4+ T cells, relative to CD19 KO, after 2 days of infection with GFP-expressing HIV-1 pseudoviruses (MOI=1).
b、 图2c所示数据的独立实验重复。在3 dpi(MOI=1)时,HIV Gag染色阳性的CD4+T细胞百分比。供体字母与A.c组中的字母相对应。图3e所示数据的独立实验重复。在用表达GFP的HIV-1假病毒(MOI=1)感染2天后,相对于CD19 KO,GFP+CD4+T细胞的百分比。
Infection data from all panels are shown as the mean of 2-3 technical replicates, as indicated by individual data points.Source dataExtended Data Fig. 2 SLC35A2 KO differentially impacts CXCR4-tropic and CCR5-tropic HIV-1, related to Figure 2e.a. Percentage of CD4+ T cells staining positive for HIV-Gag, relative (rel) to CD19 KO, at 6 dpi (MOI=0.02, same infections as depicted in Fig.
如各个数据点所示,来自所有小组的感染数据显示为2-3个技术重复的平均值。来源数据扩展数据图2 SLC35A2 KO差异性地影响CXCR4热带和CCR5热带HIV-1,与图2e相关。a.在6 dpi(MOI=0.02,与图1所示相同的感染)时,HIV Gag染色阳性的CD4+T细胞相对于CD19 KO的百分比。
2e, different measurement of HIV-1 infection). b. RT activity over time from spreading infections (MOI=0.02) in primary CD4+ T cells from two donors to determine coreceptor tropism. Results are separated by expected coreceptor tropism. Donor numbering is consistent within this figure and with Fig. 2e.
2e,HIV-1感染的不同测量)。b、 随着时间的推移,RT活性从两个供体的原代CD4+T细胞中传播感染(MOI=0.02),以确定共受体的趋向性。结果由预期的共受体趋向性分开。供体编号在该图和图2e中是一致的。
Additional information on the strains used for infections is presented in Extended Data Tab.
扩展数据选项卡中提供了有关用于感染的菌株的其他信息。
Nat Microbiol (2024). https://doi.org/10.1038/s41564-024-01806-7Download citationReceived: 21 October 2023Accepted: 06 August 2024Published: 03 October 2024DOI: https://doi.org/10.1038/s41564-024-01806-7Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Nat Microbiol(2024)。https://doi.org/10.1038/s41564-024-01806-7Download引文接收日期:2023年10月21日接收日期:2024年8月6日发布日期:2024年10月3日OI:https://doi.org/10.1038/s41564-024-01806-7Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供