EN
登录

选择性抑制HDAC IIA类作为KMT2A重排急性淋巴细胞白血病的治疗干预

Selective inhibition of HDAC class IIA as therapeutic intervention for KMT2A-rearranged acute lymphoblastic leukemia

Nature 等信源发布 2024-10-04 10:14

可切换为仅中文


AbstractKMT2A-rearranged acute lymphoblastic leukemia (ALL) is characterized by deregulation of the epigenome and shows susceptibility towards histone deacetylase (HDAC) inhibition. Most broad-spectrum HDAC inhibitors simultaneously target multiple human HDAC isoforms. Consequently, they often induce toxicity and especially in combination with other therapeutic agents.

摘要KMT2A重排急性淋巴细胞白血病(ALL)的特征是表观基因组失调,并显示出对组蛋白脱乙酰酶(HDAC)抑制的敏感性。大多数广谱HDAC抑制剂同时靶向多种人类HDAC同种型。因此,它们通常会引起毒性,尤其是与其他治疗剂联合使用。

Therefore, more specifically targeting HDAC isoforms may represent a safer therapeutic strategy. Here we show that shRNA-mediated knock-down of the class IIA HDAC isoforms HDAC4, HDAC5, and HDAC7 results in apoptosis induction and cell cycle arrest in KMT2A-rearranged ALL cells. In concordance, the HDAC4/5 selective small molecule inhibitor LMK-235 effectively eradicates KMT2A-rearranged ALL cell lines as well as primary patient samples in vitro.

因此,更具体地靶向HDAC同种型可能代表更安全的治疗策略。在这里,我们显示shRNA介导的II a类HDAC亚型HDAC4,HDAC5和HDAC7的敲低导致KMT2A重排的ALL细胞中的凋亡诱导和细胞周期停滞。一致地,HDAC4/5选择性小分子抑制剂LMK-235在体外有效地根除了KMT2A重排的所有细胞系以及原发性患者样品。

However, using a xenograft mouse model of KMT2A-rearranged ALL we found that the maximum achievable dose of LMK-235 was insufficient to induce anti-leukemic effects in vivo. Similar results were obtained for the specific class IIA HDAC inhibitors MC1568 and TMP195. Finally, LMK-235 appeared to exert minimal anti-leukemic effects in vivo in combination with the BCL-2 inhibitor venetoclax, but not enough to prolong survival in treated mice.

。对于特定的II a类HDAC抑制剂MC1568和TMP195,获得了类似的结果。最后,LMK-235似乎与BCL-2抑制剂venetoclax联合在体内发挥最小的抗白血病作用,但不足以延长治疗小鼠的存活期。

In conclusion, class IIA HDAC isoforms represent attractive therapeutic target in KMT2A-rearranged ALL, although clinical applications require the development of more stable and efficient specific HDAC inhibitors..

总之,II a类HDAC亚型代表了KMT2A重排ALL中有吸引力的治疗靶点,尽管临床应用需要开发更稳定和有效的特异性HDAC抑制剂。。

IntroductionAcute lymphoblastic leukemia (ALL) in infants ( < 1 year of age at diagnosis) is a rare but highly aggressive type of leukemia in which ~80% of cases is driven by chromosomal translocations of the KMT2A gene (encoding Lysine methyltransferase 2 A). Translocations of the KMT2A gene on chromosome 11q23 lead to fusions of the N-terminus of KMT2A to the C-terminus of one of many known fusion partners.

引言婴儿急性淋巴细胞白血病(ALL)(诊断时小于1岁)是一种罕见但高度侵袭性的白血病类型,其中约80%的病例是由KMT2A基因(编码赖氨酸甲基转移酶2A)的染色体易位驱动的。染色体11q23上KMT2A基因的易位导致KMT2A的N端融合到许多已知融合伴侣之一的C端。

In infant ALL, KMT2A is most recurrently fused to either AFF1 (49% of the cases), MLLT1 (22% of the cases) or MLLT3 (16% of the cases)1,2. The event-free survival (EFS) rates for infant ALL patients without KMT2A translocations is 75-80%, whereas the EFS of KMT2A-rearranged infant ALL patients still remains 40%3,4,5, urging the need for more effective treatment strategies.The three most recurring KMT2A fusion proteins (i.e.

在婴儿ALL中,KMT2A最常与AFF1(49%的病例),MLLT1(22%的病例)或MLLT3(16%的病例)1,2融合。没有KMT2A易位的婴儿ALL患者的无事件生存率(EFS)为75-80%,而KMT2A重排的婴儿ALL患者的EFS仍然为40%3,4,5,这促使需要更有效的治疗策略。三种最常见的KMT2A融合蛋白(即。

AFF1, MLLT1, MLLT3) hijack the transcriptional elongation machinery, thereby rewriting the transcriptomic and epigenetic landscape of the cell, KMT2A-rearranged ALL cells are often sensitive to epigenetic inhibitors6,7,8. A well-known class of epigenetic-based drugs are histone deacetylase (HDAC) inhibitors, which are able to reverse the acetylation status of histones as well as a variety of non-histone proteins9,10.

AFF1,MLLT1,MLLT3)劫持转录延伸机制,从而重写细胞的转录组和表观遗传景观,KMT2A重排的所有细胞通常对表观遗传抑制剂敏感6,7,8。一类众所周知的基于表观遗传的药物是组蛋白脱乙酰酶(HDAC)抑制剂,它能够逆转组蛋白以及各种非组蛋白的乙酰化状态9,10。

The most commonly used and extensively studied HDAC inhibitors (HDACi) are non-selective compounds targeting a wide variety of HDAC isoforms or complete classes simultaneously11,12,13. Previous pre-clinical work from our laboratory demonstrated pronounced in vivo anti-leukemic activity of the broad-spectrum HDAC inhibitor Panobinostat (LBH589) in patient-derived xenograft (PDX) mouse models of KMT2A-rearranged infant ALL14.

最常用和广泛研究的HDAC抑制剂(HDACi)是同时靶向多种HDAC同种型或完整类别的非选择性化合物11,12,13。我们实验室先前的临床前工作表明,广谱HDAC抑制剂Panobinostat(LBH589)在KMT2A重排婴儿ALL14的患者来源的异种移植(PDX)小鼠模型中具有明显的体内抗白血病活性。

Unfortunately, additional experiments combining Panobinostat with other agents showed high levels of toxicity .

不幸的是,将Panobinostat与其他药物结合的其他实验显示出高水平的毒性。

Data availability

数据可用性

All data associated with this study are present in this paper or the Supplementary Information. All source data behind each graph are shown in Supplementary Data 1. All other data are available from the corresponding author on reasonable request.

与本研究相关的所有数据均存在于本文或补充信息中。每个图表后面的所有源数据都显示在补充数据1中。所有其他数据均可根据合理要求从通讯作者处获得。

ReferencesMeyer, C. et al. The MLL recombinome of acute leukemias in 2017. Leukemia 32, 273–284 (2018).Article

。白血病32273-284(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jansen, M. W. et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 21, 633–641 (2007).Article

Jansen,M.W.等人。婴儿急性淋巴细胞白血病的免疫生物学多样性与MLL基因重排的发生和类型有关。白血病21633-641(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pieters, R. et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370, 240–250 (2007).Article

Pieters,R.等人,《1岁以下急性淋巴细胞白血病婴儿的治疗方案》(Interfant-99):一项观察性研究和一项多中心随机试验。柳叶刀370240-250(2007)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pieters, R. et al. Outcome of Infants Younger Than 1 Year With Acute Lymphoblastic Leukemia Treated With the Interfant-06 Protocol: Results From an International Phase III Randomized Study. J. Clin. Oncol. 37, 2246–2256 (2019).Article

。J、 。Oncol公司。372246-2256(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

van der Sluis, I. M. et al. Blinatumomab Added to Chemotherapy in Infant Lymphoblastic Leukemia. N. Engl. J. Med 388, 1572–1581 (2023).Article

van der Sluis,I.M.等人将Blinatumomab添加到婴儿淋巴细胞白血病的化疗中。N、 英语。J、 Med 3881572–1581(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Cermakova, K., Weydert, C., Christ, F., De Rijck, J. & Debyser, Z. Lessons Learned: HIV Points the Way Towards Precision Treatment of Mixed-Lineage Leukemia. Trends Pharm. Sci. 37, 660–671 (2016).Article

Cermakova,K.,Weydert,C.,Christ,F.,De Rijck,J。&Debyser,Z。经验教训:HIV为精确治疗混合谱系白血病指明了道路。趋势药物科学。37660-671(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Smith, E., Lin, C. & Shilatifard, A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev. 25, 661–672 (2011).Article

Smith,E.,Lin,C。&Shilatifard,A。发育和疾病中的超伸长复合物(SEC)和MLL。Genes Dev.25661–672(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ballabio, E. & Milne, T. A. Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins. Mol. Cell Oncol. 1, e955330 (2014).Article

Ballabio,E。&Milne,T.A。白血病发生中基因表达的表观遗传控制:野生型MLL和MLL融合蛋白之间的合作。分子细胞Oncol。1,e955330(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).Article

。Nat。Rev。Mol。Cell Biol。16258-264(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vega-García, N. et al. Paediatric patients with acute leukaemia and KMT2A (MLL) rearrangement show a distinctive expression pattern of histone deacetylases. Br. J. Haematol. 182, 542–553 (2018).Article

Vega-García,N。等人。患有急性白血病和KMT2A(MLL)重排的儿科患者显示出组蛋白脱乙酰酶的独特表达模式。Br.J.血液学。182542-553(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 13, 673–691 (2014).Article

Falkenberg,K.J。&Johnstone,R.W。组蛋白脱乙酰酶及其抑制剂在癌症,神经疾病和免疫疾病中的作用。《药物目录》修订版。13673-691(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Parveen, R., Harihar, D. & Chatterji, B. P. Recent histone deacetylase inhibitors in cancer therapy. Cancer 129, 3372–3380 (2023).Article

Parveen,R.,Harihar,D。&Chatterji,B.P。最近的组蛋白脱乙酰酶抑制剂在癌症治疗中的应用。癌症1293372-3380(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hai, R. et al. The emerging roles of HDACs and their therapeutic implications in cancer. Eur. J. Pharm. 931, 175216 (2022).Article

Hai,R.等人。HDAC的新兴作用及其在癌症中的治疗意义。《欧洲药典》931175216(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Garrido Castro, P. et al. The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia 32, 323–331 (2018).Article

Garrido Castro,P。等人。HDAC抑制剂panobinostat(LBH589)对MLL重排的急性淋巴细胞白血病发挥体内抗白血病活性,并涉及RNF20/RNF40/WAC-H2B泛素化轴。白血病3233-331(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Offidani, M. et al. Updated results of a phase 2 study of panobinostat combined with melphalan, thalidomide and prednisone (MPT) in relapsed/refractory multiple myeloma. Leuk. Lymphoma 59, 1271–1273 (2018).Article

Offidani,M.等人更新了panobinostat联合美法仑、沙利度胺和泼尼松(MPT)治疗复发/难治性多发性骨髓瘤的2期研究结果。白血病。淋巴瘤591271-1273(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Poligone, B., Lin, J. & Chung, C. Romidepsin: evidence for its potential use to manage previously treated cutaneous T cell lymphoma. Core Evid. 6, 1–12 (2011).CAS

Poligone,B.,Lin,J。&Chung,C。Romidepsin:其潜在用于治疗先前治疗的皮肤T细胞淋巴瘤的证据。核心Evid。6,1-12(2011)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shah, M. H. et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin. Cancer Res 12, 3997–4003 (2006).Article

Shah,M.H.等人。组蛋白脱乙酰酶抑制剂depsipeptide对转移性神经内分泌肿瘤患者的心脏毒性。临床。癌症研究123997-4003(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ceccacci, E. & Minucci, S. Inhibition of histone deacetylases in cancer therapy: lessons from leukaemia. Br. J. Cancer 114, 605–611 (2016).Article

Ceccacci,E。&Minucci,S。在癌症治疗中抑制组蛋白脱乙酰酶:白血病的教训。Br.J.Cancer 114605-611(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mathias, R. A., Guise, A. J. & Cristea, I. M. Post-translational modifications regulate class IIa histone deacetylase (HDAC) function in health and disease. Mol. Cell Proteom. 14, 456–470 (2015).Article

Mathias,R.A.,Guise,A.J。&Cristea,I.M。翻译后修饰调节II A类组蛋白脱乙酰酶(HDAC)在健康和疾病中的功能。分子细胞蛋白质组学。14456-470(2015)。文章

CAS

中科院

Google Scholar

谷歌学者

Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet 10, 32–42 (2009).Article

Haberland,M.,Montgomery,R.L。&Olson,E.N。组蛋白脱乙酰酶在发育和生理中的许多作用:对疾病和治疗的影响。《遗传学杂志》第10期第32-42页(2009年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shirakawa, K., Chavez, L., Hakre, S., Calvanese, V. & Verdin, E. Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol 21, 277–285 (2013).Article

Shirakawa,K.,Chavez,L.,Hakre,S.,Calvanese,V。&Verdin,E。通过组蛋白脱乙酰酶抑制剂重新激活潜伏的HIV。趋势微生物学21277-285(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Moreno DA et al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br. J. Haematol. 150, 665–673 (2010).Article

Moreno DA等。HDAC3,HDAC7和HDAC9的差异表达与儿童急性淋巴细胞白血病的预后和生存有关。Br.J.血液学。150665-673(2010)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Stubbs, M. C. et al. Selective Inhibition of HDAC1 and HDAC2 as a Potential Therapeutic Option for B-ALL. Clin. Cancer Res 21, 2348–2358 (2015).Article

Stubbs,M.C.等人。选择性抑制HDAC1和HDAC2作为B-ALL的潜在治疗选择。临床。癌症研究212348-2358(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wachholz, V. et al. Inhibitors of class I HDACs and of FLT3 combine synergistically against leukemia cells with mutant FLT3. Arch. Toxicol. 96, 177–193 (2022).Article

Wachholz,V。等人。I类HDAC和FLT3抑制剂与突变FLT3协同抗白血病细胞。拱门。。96177-193(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Spreafico, M. et al. HDAC8: A Promising Therapeutic Target for Acute Myeloid Leukemia. Front Cell Dev. Biol. 8, 844 (2020).Article

Spreafico,M。等人。HDAC8:急性髓细胞白血病的有希望的治疗靶点。前细胞发育生物学。8844(2020年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ahmad, K. et al. Inhibition of class I HDACs abrogates the dominant effect of MLL-AF4 by activation of wild-type MLL. Oncogenesis 3, e127 (2014).Article

。肿瘤发生3,e127(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ahmad, K. et al. AF4 and AF4-MLL mediate transcriptional elongation of 5-lipoxygenase mRNA by 1, 25-dihydroxyvitamin D3. Oncotarget 6, 25784–25800 (2015).Article

Ahmad,K。等人。AF4和AF4-MLL通过1,25-二羟基维生素D3介导5-脂氧合酶mRNA的转录延伸。Oncotarget625784–25800(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Stumpel, D. J. et al. Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia. Leukemia 26, 682–692 (2012).Article

Stumpel,D.J.等人,《连通性图谱》确定了用于治疗t(4;11)阳性婴儿急性淋巴细胞白血病的HDAC抑制剂。白血病26682-692(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

de Barrios, O. et al. HDAC7 is a major contributor in the pathogenesis of infant t(4;11) proB acute lymphoblastic leukemia. Leukemia 35, 2086–2091 (2021).Article

de Barrios,O。等人,HDAC7是婴儿t(4;11)proB急性淋巴细胞白血病发病机制的主要贡献者。白血病352086-2091(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ge, M. et al. Restoring MLL reactivates latent tumor suppression-mediated vulnerability to proteasome inhibitors. Oncogene 39, 5888–5901 (2020).Article

Ge,M.等人,恢复MLL可重新激活潜在的肿瘤抑制介导的对蛋白酶体抑制剂的脆弱性。癌基因395888-5901(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nebbioso, A. et al. HDACs class II-selective inhibition alters nuclear receptor-dependent differentiation. J. Mol. Endocrinol. 45, 219–228 (2010).Article

。J、 分子内分泌。45219-228(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nebbioso, A. et al. Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Rep. 21, e51028 (2020).Article

Nebbioso,A。等人。选择性II类HDAC抑制剂通过调节HDAC-MEF2复合物的稳定性和活性来损害肌生成。EMBO Rep.21,e51028(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

He, X. et al. Selective Inhibition of Histone Deacetylase Class IIa With MC1568 Ameliorates Podocyte Injury. Front. Med. (Lausanne) 9, 848938 (2022).Article

He,X。等人。用MC1568选择性抑制组蛋白脱乙酰基酶II a类可改善足细胞损伤。正面。医学(洛桑)9848938(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Xiong, C. et al. Selective inhibition of class IIa histone deacetylases alleviates renal fibrosis. FASEB J. 33, 8249–8262 (2019).Article

Xiong,C.等。选择性抑制II a类组蛋白脱乙酰酶可减轻肾纤维化。FASEB J.338249–8262(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ryan, Q. C. et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J. Clin. Oncol. 23, 3912–3922 (2005).Article

Ryan,Q.C.等人。组蛋白脱乙酰酶抑制剂MS-275在晚期难治性实体瘤或淋巴瘤患者中的I期和药代动力学研究。J、 。Oncol公司。233912-3922(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Choi, S. Y. et al. Histone deacetylase inhibitor LMK235 attenuates vascular constriction and aortic remodelling in hypertension. J. Cell Mol. Med 23, 2801–2812 (2019).Article

Choi,S.Y.等人。组蛋白脱乙酰酶抑制剂LMK235可减轻高血压患者的血管收缩和主动脉重塑。J、 细胞分子医学232801-2812(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Trazzi, S. et al. HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Hum. Mol. Genet 25, 3887–3907 (2016).Article

Trazzi,S.等人,《HDAC4:CDKL5疾病大脑发育改变的关键因素》。Hum.Mol.Genet 253887-3907(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Spaety ME, et al. HDAC4 Levels Control Sensibility toward Cisplatin in Gastric Cancer via the p53-p73/BIK Pathway. Cancers (Basel). 11 https://doi.org/10.3390/cancers11111747 (2019).Tu, B., Zhang, M., Liu, T. & Huang, Y. Nanotechnology-Based Histone Deacetylase Inhibitors for Cancer Therapy.

HDAC4水平通过p53-p73/BIK途径控制胃癌对顺铂的敏感性。癌症(巴塞尔)。11https://doi.org/10.3390/cancers11111747(2019年)。Tu,B.,Zhang,M.,Liu,T。&Huang,Y。基于纳米技术的组蛋白脱乙酰酶抑制剂用于癌症治疗。

Front Cell Dev. Biol. 8, 400 (2020).Article .

前细胞发育生物学。。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lindemann, H. et al. Polysaccharide Nanoparticles Bearing HDAC Inhibitor as Nontoxic Nanocarrier for Drug Delivery. Macromol. Biosci. 20, e2000039 (2020).Article

Lindemann,H。等人。含有HDAC抑制剂的多糖纳米颗粒作为药物递送的无毒纳米载体。大分子。生物科学。20,e2000039(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Singleton, W. G. B. et al. The distribution, clearance, and brainstem toxicity of panobinostat administered by convection-enhanced delivery. J. Neurosurg. Pediatr. 22, 288–296 (2018).Article

Singleton,W.G.B.等人。通过对流增强递送施用的panobinostat的分布,清除率和脑干毒性。J、 神经外科。儿科。22288-296(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, D. et al. Stabilized Peptide HDAC Inhibitors Derived from HDAC1 Substrate H3K56 for the Treatment of Cancer Stem-Like Cells. Cancer Res 79, 1769–1783 (2019).Article

Wang,D.等人。衍生自HDAC1底物H3K56的稳定肽HDAC抑制剂,用于治疗癌症干细胞样细胞。癌症研究791769-1783(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Du, L. et al. Development of sulfonium tethered peptides conjugated with HDAC inhibitor to improve selective toxicity for cancer cells. Bioorg. Med Chem. 83, 117213 (2023).Article

。生物组织医学化学。83117213(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Rein, B., Conrow-Graham, M., Frazier, A., Cao, Q. & Yan, Z. Inhibition of histone deacetylase 5 ameliorates abnormalities in 16p11.2 duplication mouse model. Neuropharmacology 204, 108893 (2022).Article

Rein,B.,Conrow-Graham,M.,Frazier,A.,Cao,Q。&Yan,Z。抑制组蛋白脱乙酰酶5可改善16p11.2复制小鼠模型中的异常。神经药理学204108893(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Frishman-Levy, L. & Izraeli, S. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy. Br. J. Haematol. 176, 157–167 (2017).Article

Frishman-Levy,L。&Izraeli,S。了解中枢神经系统急性淋巴细胞白血病发病机制和治疗潜力的进展。Br.J.血液学。176157-167(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Lenk, L., Alsadeq, A. & Schewe, D. M. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data. Cancer Metast. Rev. 39, 173–187 (2020).Article

Lenk,L.,Alsadeq,A。&Schewe,D.M。中枢神经系统参与急性淋巴细胞白血病:基于最近数据的分子机制和临床意义的观点。癌症转移。第39173-187版(2020年)。文章

Google Scholar

谷歌学者

Stam, R. W. et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 106, 2484–2490 (2005).Article

Stam,R.W.等人靶向原发性MLL基因重排的婴儿急性淋巴细胞白血病中的FLT3。血液1062484-2490(2005)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Johnson, S. M. et al. Acute lymphoblastic leukaemia cells produce large extracellular vesicles containing organelles and an active cytoskeleton. J. Extracell. Vesicles 6, 1294339 (2017).Article

Johnson,S.M.等人。急性淋巴细胞白血病细胞产生含有细胞器和活性细胞骨架的大细胞外囊泡。J、 细胞外。囊泡61294339(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gessner, A. et al. Leukemic fusion genes MLL/AF4 and AML1/MTG8 support leukemic self-renewal by controlling expression of the telomerase subunit TERT. Leukemia 24, 1751–1759 (2010).Article

Gessner,A。等人。白血病融合基因MLL/AF4和AML1/MTG8通过控制端粒酶亚基TERT的表达来支持白血病的自我更新。白血病241751-1759(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001).Article

Livak,K.J。&Schmittgen,T.D。使用实时定量PCR和2(-Delta Delta C(T))方法分析相对基因表达数据。方法25402-408(2001)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pieters, R. et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 76, 2327–2336 (1990).Article

Pieters,R。等人。使用改进培养条件的MTT测定法对白血病儿童细胞的体外药物敏感性。血液762327-2336(1990)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

van Eenige, R. et al. RandoMice, a novel, user-friendly randomization tool in animal research. PLoS One 15, e0237096 (2020).Article

van Eenige,R。等人。RandoMice,动物研究中一种新颖的,用户友好的随机化工具。PLoS One 15,e0237096(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ianevski, A., He, L., Aittokallio, T. & Tang, J. SynergyFinder: a web application for analyzing drug combination dose-response matrix data. Bioinformatics 36, 2645 (2020).Article

Ianevski,A.,He,L.,Aittokallio,T。&Tang,J。SynergyFinder:用于分析药物组合剂量反应矩阵数据的web应用程序。生物信息学362645(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank the members of the Stam group at the Princess Máxima Center for advice and discussions. We would like to thank the people from the Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing (MCCA) at the Netherlands Cancer Institute for performing the PK/PD study.

下载参考文献致谢我们感谢Máxima公主中心Stam小组成员的建议和讨论。我们要感谢荷兰癌症研究所癌症与衰老小鼠诊所(MCCA)临床前干预部门的人员进行PK/PD研究。

We would like to thank the people from the Preclinical Imaging Center (PRIME) unit from the Animal Research Facility at the Radboud UMC Nijmegen for biotechnical support of the in vivo studies. This work was financially supported by Stichting Kinderen Kankervrij (KiKa-236), Dutch Cancer Society (KWF-11863) and a Princess Máxima Center PhD grant.Author informationAuthors and AffiliationsPrincess Máxima Center, Utrecht, The NetherlandsTamara C.

我们要感谢Radboud UMC奈梅亨动物研究机构的临床前成像中心(PRIME)部门的人员对体内研究的生物技术支持。这项工作得到了Stichting Kinderen Kankervrij(KiKa-236),荷兰癌症协会(KWF-11863)和公主Máxima中心博士学位授予的财政支持。作者信息作者和附属机构荷兰乌得勒支Máxima中心。

A. I. Verbeek, Kirsten S. Vrenken, Susan T. C. J. M. Arentsen-Peters, Patricia Garrido Castro, Rob Pieters & Ronald W. StamNetherlands Cancer Institute, Amsterdam, The NetherlandsMarieke van de Ven & Olaf van TellingenAuthorsTamara C. A. I. VerbeekView author publicationsYou can also search for this author in.

A、 I.Verbeek,Kirsten S.Vrenken,Susan T.C.J.M.Arentsen Peters,Patricia Garrido Castro,Rob Pieters&Ronald W.StamNetherlands癌症研究所,阿姆斯特丹,NetherlandsMarieke van de Ven&Olaf van Tellingauthors Tamara C.A.I.VerbeekView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarKirsten S. VrenkenView author publicationsYou can also search for this author in

PubMed Google ScholarKirsten S.VrenkenView作者出版物您也可以在

PubMed Google ScholarSusan T. C. J. M. Arentsen-PetersView author publicationsYou can also search for this author in

PubMed Google ScholarSusan T.C.J.M.Arentsen PetersView作者出版物您也可以在

PubMed Google ScholarPatricia Garrido CastroView author publicationsYou can also search for this author in

PubMed Google ScholarPatricia Garrido CastroView作者出版物您也可以在

PubMed Google ScholarMarieke van de VenView author publicationsYou can also search for this author in

PubMed Google ScholarMarieke van de VenView作者出版物您也可以在

PubMed Google ScholarOlaf van TellingenView author publicationsYou can also search for this author in

PubMed Google ScholarOlaf van TellingenView作者出版物您也可以在

PubMed Google ScholarRob PietersView author publicationsYou can also search for this author in

PubMed Google ScholarRob PietersView作者出版物您也可以在

PubMed Google ScholarRonald W. StamView author publicationsYou can also search for this author in

PubMed Google ScholarRonald W.StamView作者出版物您也可以在

PubMed Google ScholarContributionsT.V. designed and performed research, analysed data and wrote the manuscript. K.V. designed and performed research, contributed to the pLNT vector and reviewed the manuscript. S.A.P., P.G.C. designed and performed research and analysed data. M.V., O.T.

PubMed谷歌学术贡献者。五、 设计并进行研究,分析数据并撰写手稿。K、 V.设计并进行了研究,为pLNT载体做出了贡献,并审阅了手稿。S、 A.P.,P.G.C.设计并进行了研究和分析数据。M、 V.,O.T。

designed and performed PK/PD study for LMK-235. R.S., R.P. supervised the project, designed and interpreted the research and wrote the manuscript. All authors critically reviewed the manuscript and approved the final version.Corresponding authorCorrespondence to.

设计并进行了LMK-235的PK/PD研究。R、 S.,R.P.监督该项目,设计和解释研究并撰写手稿。所有作者都严格审查了稿件并批准了最终版本。对应作者对应。

Ronald W. Stam.Ethics declarations

罗纳德·W·斯塔姆。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Ethical approval

道德认可

All animal experiments, if not stated differently, were carried out according to Dutch legislation and approved by the Animal Ethics Committee (Approval Number: AVD3990020173066 & AVD39900202216167) at the Princess Máxima Center, Utrecht, The Netherlands. The pharmacokinetics study for LMK-235 was approved by the Animal Ethics Committee (Approval Number: AVD301002016407) at the Netherlands Cancer Institute, Amsterdam, The Netherlands..

所有动物实验,如果没有不同的说明,都是根据荷兰法律进行的,并得到了荷兰乌得勒支公主Máxima中心动物伦理委员会(批准号:AVD3990020173066和AVD399002216167)的批准。LMK-235的药代动力学研究得到了荷兰阿姆斯特丹荷兰癌症研究所动物伦理委员会(批准号:AVD301002016407)的批准。。

Peer review

同行评审

Peer review information

同行评审信息

Communications Biology thanks Cristina Pina, Naroa Gimenez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Toril Holien and Mengtan Xing. A peer review file is available.

《传播生物学》感谢克里斯蒂娜·皮纳(CristinaPina)、纳罗亚·吉梅内兹(NaroaGimenez)和另一位匿名审稿人对这项工作的同行评议做出的贡献。主要负责编辑:托利·霍利恩(TorilHolien)和孟坦兴(MengtanXing)。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationPeer Review FileSupplementary InformationDescription of Additional Supplementary MaterialsSupplementary Data 1Rights and permissions.

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息同行评审文件补充信息其他补充材料的描述补充数据1权利和权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleVerbeek, T.C.A.I., Vrenken, K.S., Arentsen-Peters, S.T.C.J.M. et al. Selective inhibition of HDAC class IIA as therapeutic intervention for KMT2A-rearranged acute lymphoblastic leukemia.

转载和许可本文引用本文Verbeek,T.C.A.I.,Vrenken,K.S.,Arentsen-Peters,S.T.C.J.M.等人选择性抑制HDAC II A类作为KMT2A重排急性淋巴细胞白血病的治疗干预。

Commun Biol 7, 1257 (2024). https://doi.org/10.1038/s42003-024-06916-wDownload citationReceived: 12 March 2024Accepted: 17 September 2024Published: 04 October 2024DOI: https://doi.org/10.1038/s42003-024-06916-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Commun Biol 71257(2024)。https://doi.org/10.1038/s42003-024-06916-wDownload引文收到日期:2024年3月12日接受日期:2024年9月17日发布日期:2024年10月4日OI:https://doi.org/10.1038/s42003-024-06916-wShare。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。