EN
登录

聚合物纳米载体通过代谢调节介导癌症免疫疗法的免疫原性细胞死亡

Polymeric nanocarrier via metabolism regulation mediates immunogenic cell death with spatiotemporal orchestration for cancer immunotherapy

Nature 等信源发布 2024-10-04 12:10

可切换为仅中文


AbstractThe limited efficacy of cancer immunotherapy occurs due to the lack of spatiotemporal orchestration of adaptive immune response stimulation and immunosuppressive tumor microenvironment modulation. Herein, we report a nanoplatform fabricated using a pH-sensitive triblock copolymer synthesized by reversible addition-fragmentation chain transfer polymerization enabling in situ tumor vaccination and tumor-associated macrophages (TAMs) polarization.

摘要由于缺乏适应性免疫应答刺激和免疫抑制性肿瘤微环境调节的时空协调,癌症免疫疗法的疗效有限。在此,我们报道了使用通过可逆加成-断裂链转移聚合合成的pH敏感三嵌段共聚物制造的纳米平台,其能够原位肿瘤疫苗接种和肿瘤相关巨噬细胞(TAM)极化。

The nanocarrier itself can induce melanoma immunogenic cell death (ICD) via tertiary amines and thioethers concentrating on mitochondria to regulate metabolism in triggering endoplasmic reticulum stress and upregulating gasdermin D for pyroptosis as well as some features of ferroptosis and apoptosis.

纳米载体本身可以通过集中在线粒体上的叔胺和硫醚诱导黑色素瘤免疫原性细胞死亡(ICD),以调节代谢,触发内质网应激并上调gasdermin D的pyroptosis以及ferroptosis和凋亡的一些特征。

After the addition of ligand cyclic arginine-glycine-aspartic acid (cRGD) and mannose, the mixed nanocarrier with immune adjuvant resiquimod encapsulation can target B16F10 cells for in situ tumor vaccination and TAMs for M1 phenotype polarization. In vivo studies indicate that the mixed targeting nanoplatform elicits tumor ICD, dendritic cell maturation, TAM polarization, and cytotoxic T lymphocyte infiltration and inhibits melanoma volume growth.

在加入配体环精氨酸-甘氨酸-天冬氨酸(cRGD)和甘露糖后,具有免疫佐剂瑞喹莫特包封的混合纳米载体可以靶向B16F10细胞用于原位肿瘤疫苗接种和用于M1表型极化的TAM。体内研究表明,混合靶向纳米平台引发肿瘤ICD,树突状细胞成熟,TAM极化和细胞毒性T淋巴细胞浸润,并抑制黑素瘤体积生长。

In combination with immune checkpoint blockade, the survival time of mice is markedly prolonged. This study provides a strategy for utilizing immunoactive materials in the innate and adaptive immune responses to augment cancer therapy..

结合免疫检查点阻断,小鼠的存活时间显着延长。这项研究提供了一种在先天性和适应性免疫反应中利用免疫活性物质来增强癌症治疗的策略。。

IntroductionCancer immunotherapy is one of the most promising strategies for tumor treatment and has attracted extensive attention. Induction of tumor immunogenic cell death (ICD) is a widely used methodology in which tumor cells, after encountering external stimuli, can change from a non-immunogenic state to an immunogenic state with host immune response provocation1,2,3.

引言癌症免疫治疗是最有前途的肿瘤治疗策略之一,已引起广泛关注。诱导肿瘤免疫原性细胞死亡(ICD)是一种广泛使用的方法,其中肿瘤细胞在遇到外部刺激后,可以通过宿主免疫应答激发从非免疫原性状态变为免疫原性状态1,2,3。

The typical immune features of ICD are damage-associated molecular patterns (DAMPs) (e.g., calreticulin [CRT], high mobility group box 1 [HMGB1], and adenosine triphosphate [ATP]) secretion4,5 and tumor-associated antigen release that can facilitate dendritic cell (DC) maturation, migration, and antigen presentation to T cells for host immunity activation6,7.

ICD的典型免疫特征是损伤相关分子模式(DAMPs)(例如钙网蛋白[CRT],高迁移率族蛋白1[HMGB1]和三磷酸腺苷[ATP])分泌4,5和肿瘤相关抗原释放,可促进树突状细胞(DC)成熟,迁移和抗原呈递给T细胞以激活宿主免疫6,7。

Currently, various strategies, including photodynamic therapy, chemotherapy, and pyroptosis, have been developed for ICD-mediated tumor immunotherapy1,8,9,10,11,12,13,14,15. However, these methodologies generally require additional ICD inducers that may complicate the nanoplatform. Therefore, the development of nanocarriers that can directly induce ICD is imperative to simultaneously simplify nanoformulations to ensure therapeutic efficacy due to their own immunity.Tumor vaccines have emerged as a promising strategy for long-term cancer immunotherapy, and they primarily attack tumors via eliciting an antigen-specific immune response16.

目前,已经为ICD介导的肿瘤免疫治疗开发了各种策略,包括光动力疗法,化疗和pyroptosis[1,8,9,10,11,12,13,14,15]。然而,这些方法通常需要额外的ICD诱导剂,这可能会使纳米平台复杂化。因此,可以直接诱导ICD的纳米载体的开发对于同时简化纳米制剂以确保由于其自身免疫而产生的治疗功效是必不可少的。肿瘤疫苗已成为长期癌症免疫治疗的一种有前途的策略,它们主要通过引发抗原特异性免疫反应来攻击肿瘤16。

Although there are definite antigens in tumor vaccines, the heterogeneity and high cost of mutant antigen identification have restricted their further development17,18. To cope with the above issues, in situ tumor vaccination can be greatly enhanced via combining immune adjuvants with tumor-associated antigens (TAAs) that can be directly released by dying tumor cells in vivo after different treatments (e.g., photod.

尽管肿瘤疫苗中存在明确的抗原,但突变抗原鉴定的异质性和高成本限制了它们的进一步发展17,18。为了解决上述问题,通过将免疫佐剂与肿瘤相关抗原(TAA)组合,可以大大增强原位肿瘤疫苗接种,肿瘤相关抗原可以在不同处理(例如photod)后由体内死亡的肿瘤细胞直接释放。

To target B16F10 cells and TAMs separately, cRGD- and Man-targeting ligands were decorated onto the nanocarrier surface to obtain cRGD-pRNCThioether+DEA and Man-pRNCThioether+DEA, respectively. c(RGDfK) is a cyclic peptide that can target tumor cells (e.g., B16F10 cells, LLC cells) with high expression of αvβ3, and Man is a cyclic monosaccharide that targets TAMs with high mannose receptor expression45,46,47.

为了分别靶向B16F10细胞和TAM,将cRGD和Man靶向配体修饰到纳米载体表面上,分别获得cRGD-PrNC硫醚+DEA和Man-PrNC硫醚+DEA。c(RGDfK)是一种环肽,可以靶向具有高表达αvβ3的肿瘤细胞(例如B16F10细胞,LLC细胞),而Man是一种环状单糖,其靶向具有高甘露糖受体表达的TAM 45,46,47。

The synthesis of cRGD (Man)-PEG-PMMA-PPPMA was similar to that of PEG-PMMA-PPPMA (Supplementary Fig. 29). The ratios of c(RGDfK) and Man were 85% and 87%, respectively, based on peaks of methylene protons in PEG (δ, 3.63 ppm), methylene protons (δ, 1.84 ppm) in cRGD (Supplementary Fig. 30), and methine proton (δ, 2.28 ppm) in Man according to 1H NMR results (Supplementary Fig. 31).cRGD-pRNCThioether+DEA and Man-pRNCThioether+DEA were also fabricated via the solvent-exchange method.

cRGD(Man)-PEG-PMMA-PPPMA的合成类似于PEG-PMMA-PPPMA的合成(补充图29)。基于PEG中亚甲基质子(δ,3.63ppm),cRGD中亚甲基质子(δ,1.84ppm)的峰,c(RGDfK)和Man的比例分别为85%和87%(补充图30),根据1H NMR结果(补充图31),人中的亚甲基质子(δ,2.28ppm)。cRGD-PrNChiothere+DEA和Man-PrNChiothere+DEA也通过溶剂交换法制造。

DLS results indicated that their diameter sizes were 168.0 ± 4.85 nm and 143.5 ± 1.08 nm, respectively, and PDI was 0.16 ± 0.016 and 0.23 ± 0.021 (Fig. 4a, b, Supplementary Table 3). After mixing, cRGD- mix Man-pRNCThioether+DEA was obtained, and no obvious changes were detected (Supplementary Fig. 32 and Supplementary Table 3).

DLS结果表明,它们的直径分别为168.0±4.85 nm和143.5±1.08 nm,PDI为0.16±0.016和0.23±0.021(图4a,b,补充表3)。混合后,获得cRGD-mix-Man-PrNCthiotether+DEA,未检测到明显变化(补充图32和补充表3)。

According to Fig. 2f, the concentration of pRNCThioether+DEA as the ICD inducer was chosen as 100 μg/mL due to the obvious CRT exposure, and this concentration was also suitable for cRGD-pRNCThioether+DEA. According to Fig. 4c, the cell viability of RAW264.7 cells was 88 ± 2.8% when the Man-pRNCThioether+DEA concentration was 50 μg/mL, while the value decreased to 73 ± 2.6% when the concentration was increased to 100 μg/mL.

根据图2f,由于明显的CRT暴露,选择作为ICD诱导剂的PrNChiotheter+DEA的浓度为100μg/mL,并且该浓度也适用于cRGD-PrNChiotheter+DEA。根据图4c,当Man-PRN硫醚+DEA浓度为50μg/mL时,RAW264.7细胞的细胞活力为88±2.8%,而当浓度增加到100μg/mL时,该值降至73±2.6%。

Thus, to reduce macrophage death the concentration of Man-pRNCThioether+DEA was selected as 50 μg/mL. cRGD (Man)-pRNCThioether+DEA with R848 .

因此,为了减少巨噬细胞死亡,选择Man-PrnC硫醚+DEA的浓度为50μg/mL。具有R848的cRGD(Man)-PrnC硫醚+DEA。

R848 was replaced with FITC to better monitor intracellular internalization that was characterized by FCM. As presented in Fig. 4f, a more obvious fluorescence shift and cytotoxicity were observed in B16F10 cells in response to cRGD-pRNCThioether+DEA@FITC treatment than that in response to pRNCThioether+DEA@FITC, thus indicating the good targetability of cRGD (Supplementary Figs. 35, 37).

R848被FITC取代,以更好地监测以FCM为特征的细胞内内化。+DEA@FITC比PRNC硫醚治疗更有效+DEA@FITC,因此表明cRGD具有良好的靶向性(补充图35,37)。

After Man-pRNCThioether+DEA@FITC treatment, a stronger fluorescence shift and cytotoxicity were observed in RAW264.7 cells compared to the pRNCThioether+DEA@FITC group, thus indicating noticeable targetability of Man (Fig. 4g, Supplementary Fig. 36). The CLSM results in Supplementary Fig. 38 indicated that cRGD and Man decoration enhanced the targetability of B16F10 and RAW264.7, respectively.cRGD-pRNCThioether+DEA@R848 mediated DCs maturationTo test if the nanocarrier could activate DCs in vitro, we first examined its ability to induce ICD in B16F10 cells as characterized by FCM.

在Man PRNC硫醚之后+DEA@FITC处理后,与PRNC硫醚相比,RAW264.7细胞的荧光位移和细胞毒性更强+DEA@FITC组,因此表明人类具有明显的靶向性(图4g,补充图36)。补充图38中的CLSM结果表明,cRGD和Man装饰分别增强了B16F10和RAW264.7的靶向性。cRGD-PrNCthiotether+DEA@R848介导的DC成熟测试如果纳米载体可以在体外激活DC,我们首先检查了其在B16F10细胞中诱导ICD的能力,如FCM所表征的。

An elevated CRT+ ratio was observed in cells treated with cRGD-pRNCThioether+DEA or cRGD-pRNCThioether+DEA@R848 compared to that of NCMMA and PBS. Negligible differences were observed among the cRGD-pRNCThioether+DEA, cRGD-pRNCThioether+DEA@R848, and cRGD- mix Man-pRNCThioether+DEA@R848 treated groups, thus indicating that cRGD-pRNCThioether+DEA induced ICD while R848 did not and that the mixing of cRGD- and Man-nanoformulations did not affect the ICD inducibility of cRGD-pRNCThioether+DEA (Supplementary Fig. 39).

在用cRGD-PrNC硫醚+DEA或cRGD-PrNC硫醚处理的细胞中观察到CRT+比率升高+DEA@R848与NCMMA和PBS相比,cRGD-PrNC硫醚+DEA,cRGD-PrNC硫醚之间的差异可忽略不计+DEA@R848,和cRGD-混合Man-PrnC硫醚+DEA@R848治疗组,因此表明cRGD-PrNC硫醚+DEA诱导ICD,而R848不诱导ICD,并且cRGD和Man纳米制剂的混合不影响cRGD-PrNC硫醚+DEA的ICD诱导性(补充图39)。

When B16F10 cell supernatant was added into DCs, it was observed that both cRGD-pRNCThioether+DEA (CD11c+CD80+: 20.30 ± 2.25%; CD11c+CD86+: 23.60 ± 2.95%) and cRGD-pRNCThioether+DEA@R848 (CD11c+CD80+: 19.80 ± 0.20%; CD11c+CD86+: 23.30 ± 0.36%) treated cancer cells displayed a notable DC maturation c.

当将B16F10细胞上清液加入DC中时,观察到cRGD-PRNC硫醚+DEA(CD11c+CD80+:20.30±2.25%;CD11c+CD86+:23.60±2.95%)和cRGD-PrNC硫醚+DEA@R848(CD11c+CD80+:19.80±0.20%;CD11c+CD86+:23.30±0.36%)处理的癌细胞显示出显着的DC成熟c。

To avoid fluorescence interference from melanoma, B16F10 cells were replaced with LLC cells to construct a tumor model in C57BL/6 mice for in vivo targeting of cRGD-pRNCThioether+DEA and Man-pRNCThioether+DEA via a near-infrared (NIR) in vivo imaging system (IVIS), FCM, and immunofluorescence staining analysis.

为了避免来自黑素瘤的荧光干扰,将B16F10细胞替换为LLC细胞以在C57BL/6小鼠中构建肿瘤模型,用于通过近红外(NIR)体内成像系统(IVIS),FCM和免疫荧光染色分析体内靶向cRGD-PrNChiotheter+DEA和Man-PrNChiotheter+DEA。

cRGD-pRNCThioether+DEA was loaded with DID to form cRGD-pRNCThioether+DEA/DID, and Man-pRNCThioether+DEA was encapsulated in DIR to form Man-pRNCThioether+DEA/DIR (Fig. 5a).Fig. 5: Investigation of mixed nanoformulations for targeting both tumor cells and TAMs in vivo.a Schematic illustration of mixed nanoformulation preparation, drug administration and analysis.

将cRGD-PrNC硫醚+DEA加载DID以形成cRGD-PrNC硫醚+DEA/DID,并将Man-PrNC硫醚+DEA包封在DIR中以形成Man-PrNC硫醚+DEA/DIR(图5a)。图5:用于体内靶向肿瘤细胞和TAM的混合纳米制剂的研究。混合纳米制剂制备,药物施用和分析的示意图。

b In vivo fluorescence imaging after tail vein injection of different formulations for cRGD targeting investigation. c Quantitative analysis of fluorescence signals at 24 h post-treatment (n = 3 mice per group). d Representative ex vivo images of tumor tissues after treatments at 24 h. e Representative flow cytometric images and quantification of DID+ in PD-L1+ tumor cells in vivo (n = 3 mice per group).

b尾静脉注射不同制剂用于cRGD靶向研究后的体内荧光成像。c治疗后24小时荧光信号的定量分析(每组n=3只小鼠)。d在24小时处理后肿瘤组织的代表性离体图像。代表性流式细胞术图像和体内PD-L1+肿瘤细胞中DID+的定量(每组n=3只小鼠)。

f In vivo fluorescence imaging after tail vein injection of different formulations for Man targeting investigation. g Quantitative analysis of fluorescence signals at 24 h (n = 3 mice per group). h Representative ex vivo images of tumor tissues. i Representative flow cytometric images and semi-quantification analysis of DIR+ in F4/80+ TAMs cells in vivo (n = 3 mice per group).

f尾静脉注射不同制剂后的体内荧光成像用于Man靶向研究。g 24小时荧光信号的定量分析(每组n=3只小鼠)。h肿瘤组织的代表性离体图像。i体内F4/80+TAMs细胞中DIR+的代表性流式细胞术图像和半定量分析(每组n=3只小鼠)。

Data are presented as mean ± SD. Statistical significance was calculated through one-way ANOVA for multiple comparisons using a Tukey post-hoc test.Full size imageFor the cRGD nanoformulations, after intravenous (i.v.) injection the in vivo fluorescence intensity within the 24 h first increased and then decreased, and it reached a .

数据表示为平均值±SD。使用Tukey事后检验通过单因素方差分析计算统计学显着性,用于多重比较。。

Tumor cells death was determined by flow cytometry. First, B16F10 cells (2.0 × 105/well) were seeded into a six-well plate and grown overnight. PBS, NCMMA, pRNCThioether+DEA, pRNCThioether+DEA + Z-VAD-FMK, pRNCThioether+DEA +Nec-1s, and pRNCThioether+DEA + Fer-1 were separately added into each well for 48 h incubation.

通过流式细胞术测定肿瘤细胞死亡。首先,将B16F10细胞(2.0×105/孔)接种到六孔板中并生长过夜。将PBS,NCMMA,pRNCThioether+DEA,pRNCThioether+DEA+ Z-VAD-FMK,pRNCThioether+DEA+Nec-1s和pRNCThioether+DEA+Fer-1分别加入每个孔中孵育48小时。

Cells were digested by trypsin and subsequently washed with PBS (×3). Cell death was assessed by flow cytometry using an Annexin V/PI cell assay kit (Biosharp) via the protocol provided by the manufacturer.Intracellular lipid peroxide detectionFirst, B16F10 cells (2.0 × 105/well) were seeded into a six-well plate and cultured overnight.

用胰蛋白酶消化细胞,然后用PBS(×3)洗涤。使用膜联蛋白V/PI细胞测定试剂盒(Biosharp),通过制造商提供的方案,通过流式细胞术评估细胞死亡。细胞内脂质过氧化物检测首先,将B16F10细胞(2.0×105/孔)接种到六孔板中并培养过夜。

Phosphate-buffered saline (PBS), NCMMA, and pRNCThioether+DEA were added to each well and incubated for 24 h. After incubation for 24 h, the culture medium was removed, cells were washed 3 times with PBS, and C11-BIODPY (1 mL, 10 μM, serum-free 1640 medium was used) was added to each well for 30 min incubation away from light in a cell incubator.

将磷酸盐缓冲盐水(PBS),NCMMA和pRNCThioether+DEA加入每个孔中并孵育24小时。孵育24小时后,除去培养基,用PBS洗涤细胞3次,并将C11-BIODPY(1ml,10μM,使用无血清1640培养基)加入每个孔中,在细胞培养箱中避光孵育30分钟。

The cells were then digested with trypsin and washed three times with PBS. The cells were suspended in PBS (0.5 mL) and detected using flow cytometry.Synthesis of Man (cRGD)-PEG-PMMA-PPPMAMan-PEG-PMMA-PPPMA was obtained by the amidation of COOH-PEG-PMMA-PPPMA and Man-NH2. The synthesis of COOH-PEG-PMMA-PPPMA was similar to that of PEG-PMMA-PPPMA, and the molecular weights was determined by 1H NMR spectroscopy.

然后将细胞用胰蛋白酶消化并用PBS洗涤三次。将细胞悬浮于PBS(0.5mL)中并使用流式细胞术检测。Man(cRGD)-PEG-PMMA-PPPMA的合成通过COOH-PEG-PMMA-PPPMA和Man-NH2的酰胺化获得Man-PEG-PMMA-PPPMA。COOH-PEG-PMMA-PPPMA的合成类似于PEG-PMMA-PPPMA的合成,并且通过1H NMR光谱测定分子量。

To obtain Man-PEG-PMMA-PPPMA, NHS (0.489 mg, 0.0043 mmol) and EDC·HCl (0.815 mg, 0.0043 mmol) were first added into the mixture solution of COOH-PEG-PMMA-PPPMA (35 mg, 0.0028 mmol) and triethylamine (TEA) with stirring for 1.5 h under N2 to acquire NHS-PEG-PMMA-PPPMA. In the ice water bath and N2 atmosphere, NHS-PEG-PMMA-PPPMA was added dropwise to a Man-NH2 solution contain.

为了获得Man-PEG-PMMA-PPPMA,首先将NHS(0.489mg,0.0043mmol)和EDC·HCl(0.815mg,0.0043mmol)加入到COOH-PEG-PMMA-PPPMA(35mg,0.0028mmol)和三乙胺(TEA)的混合溶液中,在N2下搅拌1.5h,得到NHS-PEG-PMMA-PPPMA。在冰水浴和N2气氛中,将NHS-PEG-PMMA-PPPMA滴加到含有Man-NH2的溶液中。

(1)

(1)

$${{{\rm{DLE}}}}={{{\rm{mass}}}}\; {{{\rm{of}}}}\; {{{\rm{actual}}}}\; {{{\rm{drug}}}}\; {{{\rm{encapsulation}}}}/{{{\rm{mass}}}}\; \\ {{{\rm{of}}}}\; {{{\rm{theoretical}}}}\; {{{\rm{drug}}}}\; {{{\rm{encapsulation}}}} * 100\%$$

$${{{\rm{DLE}}}={{{\rm{mass}}}};{{{\rm{of}}}\;{{{\rm{实际}}}}\;{{{\rm{药物}}}}\;{{{\rm{封装}}}/{{\rm{质量}}}};\ \{{{\rm{of}}}\;{{{\ rm{理论}}}}\;{{{\rm{药物}}}}\;{{{\rm{封装}}}100%$$

(2)

(2)

In vitro drug release was investigated under specific conditions. Briefly, cRGD (Man)-pRNCThioether+DEA/R848 (each 0.5 mL) in PBS (pH 7.4, 10 mM, 150 mM NaCl) or acetate buffer (pH 5.0, 10 mM, 150 mM NaCl) in a dialysis bag (MWCO = 12000) was placed in 25 mL of media and were then placed in a shaking bed (37 oC, 200 rpm) (n = 3 independent experiments).

在特定条件下研究体外药物释放。简而言之,将PBS(pH 7.4,10mM,150mM NaCl)或乙酸盐缓冲液(pH 5.0,10mM,150mM NaCl)中的cRGD(Man)-PrNChiothere+DEA/R848(每种0.5mL)置于透析袋(MWCO 12000)中,然后置于摇床(37℃,200rpm)中(n=3个独立实验)。(笑声)。

At different time points (1, 2, 4, 6, 9, 12, and 24 h), 5 mL of the medium was removed and replaced with the same volume of fresh medium. Accumulation of R848 was detected using a fluorescence spectrophotometer.Targetability of cRGD-pRNCThioether+DEA in B16F10 cellsThe targetability of cRGD-pRNCThioether+DEA was investigated using flow cytometry and CLSM.

在不同的时间点(1,2,4,6,9,12和24小时),取出5mL培养基并用相同体积的新鲜培养基代替。使用荧光分光光度计检测R848的积累。cRGD-PrNC硫醚+DEA在B16F10细胞中的靶向性使用流式细胞术和CLSM研究cRGD-PrNC硫醚+DEA的靶向性。

For flow cytometry, B16F10 cells (5.0 × 105/well) were seeded into a six-well plate and cultured overnight, and this was followed by the addition of free FITC, cRGD-pRNCThioether+DEA@FITC, and pRNCThioether+DEA@FITC. After incubation for 10 or 30 min or for 1 h, the cells were subjected to trypsin digestion, centrifugation, suspension in PBS, and detection by flow cytometry.For CLSM characterization, B16F10 cells were seeded into 24-well plates containing cell slide cultures for 24 h.

为了进行流式细胞术,将B16F10细胞(5.0×105/孔)接种到六孔板中并培养过夜,然后加入游离FITC,cRGD-PrNC硫醚+DEA@FITC,和PRNC硫醚+DEA@FITC.孵育10或30分钟或1小时后,将细胞进行胰蛋白酶消化,离心,悬浮于PBS中,并通过流式细胞术检测。对于CLSM表征,将B16F10细胞接种到含有细胞载玻片培养物的24孔板中24小时。

Free FITC, cRGD-pRNCThioether+DEA@FITC, and pRNCThioether+DEA@FITC were added separately and incubated for 10 min, 30 min, and 1 h. After PBS washing (×3), cells were fixed for 15 min. After another PBS washing, cells were stained with DAPI (5 μg/mL, 10 min) and then sealed using coverslips onto microslides.

游离FITC,cRGD-PrNC硫醚+DEA@FITC,和PRNC硫醚+DEA@FITC分别加入并孵育10分钟,30分钟和1小时。PBS洗涤(×3)后,将细胞固定15分钟。再次PBS洗涤后,将细胞用DAPI(5μg/mL,10分钟)染色,然后用盖玻片密封在微玻片上。

After sealing with nail polish, images were captured using a CLSM.Targetability of Man-pRNCThioether+DEA in RAW264.7 cellsMan-pRNCThioether+DEA was also fabricated using a solvent-exchange method similar to that of cRGD-pRNCThioether+DEA and was characterized by DLS and.

用指甲油密封后,使用CLSM捕获图像。RAW264.7细胞中Man-PrnC硫醚+DEA的靶向性也使用类似于cRGD-PrnC硫醚+DEA的溶剂交换方法制造,并通过DLS和DLS表征。

B16F10 cells (1 × 106/ mouse) were inoculated subcutaneously into the right side of C57BL/6 mice to establish a melanoma mouse model. When the tumor volume reached approximately 100;mm3 by day 6, the mice were randomly divided into three groups that included PBS (G1), pRNCThioether+DEA@OVA (G2), and pRNCThioether+DEA@mRNA (G3) (n = 3 mice per group) (pRNCThioether+DEA: 5 mg/kg; OVA: 1 mg/kg; mRNA: 0.5 mg/kg).

将B16F10细胞(1×106/小鼠)皮下接种到C57BL/6小鼠的右侧以建立黑素瘤小鼠模型。当肿瘤体积达到约100时;mm3到第6天,将小鼠随机分为三组,包括PBS(G1),PRNC硫醚+DEA@OVA(G2)和PRNC硫醚+DEA@mRNA(G3)(每组n=3只小鼠)(PRNC硫醚+DEA:5mg/kg;OVA:1mg/kg;mRNA:0.5mg/kg)。

On days 7 and 14 after administration, peripheral blood mononuclear cells were extracted from mice for tetrameric analysis. T cells were extracted using a peripheral lymphocyte separation kit, stained with a CD3/CD8/Tetramer antibody, resuspended in PBS, and detected by flow cytometry.In vivo antitumor activity of cRGD- mix Man-pRNPThioether+DEA@R848C57BL/6 mice were injected with B16F10 cells (1 × 106/mouse) in the right flank to construct a melanoma tumor model.

在给药后第7天和第14天,从小鼠中提取外周血单核细胞用于四聚体分析。使用外周淋巴细胞分离试剂盒提取T细胞,用CD3/CD8/四聚体抗体染色,重悬于PBS中,并通过流式细胞术检测。cRGD-mix-Man-PrNP硫醚的体内抗肿瘤活性+DEA@R848C57BL/。

When the tumor grew to ~50 mm3, the mice were randomly divided into seven groups that included PBS (G1), Man-pRNCThioether+DEA (G2), cRGD-pRNCThioether+DEA (G3), cRGD- mix Man-pRNPThioether+DEA (G4), Man-pRNCThioether+DEA@R848 (G5), cRGD-pRNCThioether+DEA@R848 (G6), and cRGD-mix Man-pRNCThioether+DEA@R848 (G7) (cRGD-pRNPThioether+DEA: 1 mg/kg; Man-pRNPThioether+DEA: 0.5 mg/kg; R848: 0.1 mg/kg) (n = 5 mice per group).

当肿瘤生长至〜50 mm3时,将小鼠随机分为七组,包括PBS(G1),Man-PrnChiotheter+DEA(G2),cRGD-PrnChiotheter+DEA(G3),cRGD-mix-Man-PrnPhiotheter+DEA(G4),Man-PrnChiotheter+DEA@R848(G5),cRGD-PrNC硫醚+DEA@R848+DEA@R848(G7)(cRGD-PrNP硫醚+DEA:1mg/kg;Man-PrNP硫醚+DEA:0.5mg/kg;R848:0.1mg/kg)(每组n=5只小鼠)。

Different formulations were intravenously injected into tumor-bearing mice at 6, 9, and 12 days post-inoculation. Tumor length and width were measured using a Vernier caliper every two days, and the tumor volume curve was recorded. Body weight was recorded every two days. The therapeutic end point was when the tumor volume reached 2000 mm3 with normal organ (e.g., the heart, liver, spleen, lung, and kidneys) and tumor tissue extraction.

在接种后6,9和12天,将不同的制剂静脉注射到荷瘤小鼠中。每两天使用游标卡尺测量肿瘤长度和宽度,并记录肿瘤体积曲线。每两天记录一次体重。治疗终点是当肿瘤体积达到2000mm3时,正常器官(例如心脏,肝脏,脾脏,肺和肾脏)和肿瘤组织提取。

Partial tumor tissues were subjected to mechanical obstr.

对部分肿瘤组织进行机械观察。

Data availability

数据可用性

RNA-seq dataset is available in NCBI under accession codes PRJNA1126401. Figures/tables summarizing NMR are included in Supporting Information, and source data of NMR characterization of PEG-CPPA, PEG-PMMA, PEG-PMMA-PDEA, PPMA, PEG-PMMA-PPPMA, PEG-PMMA-P(PPMA-ME), PEG-PMMA-PPPMA, PEG-PMMA-P(PPMA-MPA), PEG-PMMA-P(PPMA-MPA- DEA), cRGD-PEG-PMMA-PPPMA and Man-PEG-PMMA-PPPMA are included in https://doi.org/10.6084/m9.figshare.26728720.

RNA-seq数据集可在NCBI中获得,登录号为PRJNA1126401。支持信息中包含总结NMR的数字/表格,以及PEG-CPPA,PEG-PMMA,PEG-PMMA-PDEA,PPMA,PEG-PMMA-PPPMA,PEG-PMMA-P(PPMA-ME),PEG-PMMA-PPPMA,PEG-PMMA-P(PPMA-MPA),PEG-PMMA-P(PPMA-MPA-DEA),cRGD-PEG-PMMA-PPPMA和Man-PEG-PMMA-PPPMA的NMR表征的源数据https://doi.org/10.6084/m9.figshare.26728720.

Source data for main and other Supplementary Figs. are provided with this paper and are available in the Figshare database at: https://doi.org/10.6084/m9.figshare.26094232. The data supporting the findings of this study are available within the article, Supplementary, or Source data files. Source data are provided with this paper..

本文提供了主要和其他补充图的源数据,可在Figshare数据库中获得:https://doi.org/10.6084/m9.figshare.26094232.支持本研究结果的数据可在文章,补充或源数据文件中找到。本文提供了源数据。。

ReferencesKroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).Article

参考文献Kroemer,G.,Galassi,C.,Zitvogel,L。&Galluzzi,L。免疫原性细胞应激和死亡。自然免疫。23487-500(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Meng, Q., Ding, B., Ma, P. & Lin, J. Interrelation between programmed cell death and immunogenic cell death: take antitumor nanodrug as an example. Small Methods 7, e2201406 (2023).Article

Meng,Q.,Ding,B.,Ma,P。&Lin,J。程序性细胞死亡与免疫原性细胞死亡之间的相互关系:以抗肿瘤纳米药物为例。Small Methods 7,e2201406(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, L., Zhang, P., Wang, H., Wang, D. & Li, Y. Smart nanosized drug delivery systems inducing immunogenic cell death for combination with cancer immunotherapy. Acc. Chem. Res. 53, 1761–1772 (2020).Article

Zhou,L.,Zhang,P.,Wang,H.,Wang,D。&Li,Y。智能纳米药物递送系统诱导免疫原性细胞死亡以与癌症免疫疗法组合。根据化学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Krysko, D. et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012).Article

Krysko,D。等人。癌症治疗中的免疫原性细胞死亡和DAMP。《国家癌症评论》12860-875(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Duan, X., Chan, C. & Lin, W. Nanoparticle‐mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew Chem. Int. Ed. 58, 670–680 (2019).Article

Duan,X.,Chan,C。&Lin,W。纳米粒子介导的免疫原性细胞死亡能够并增强癌症免疫疗法。Angew化学。《国际编辑》第58670-680页(2019年)。文章

CAS

中科院

Google Scholar

谷歌学者

Park, S. J. et al. Cisplatin and oxaliplatin induce similar immunogenic changes in preclinical models of head and neck cancer. Oral Oncol. 95, 127–135 (2019).Article

Park,S.J.等人。顺铂和奥沙利铂在头颈癌的临床前模型中诱导类似的免疫原性变化。口服Oncol。95127-135(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Banstola, A., Poudel, K., Kim, J., Jeong, J. & Yook, S. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. J. Control. Release 337, 505–520 (2021).Article

Banstola,A.,Poudel,K.,Kim,J.,Jeong,J。&Yook,S。用于诱导免疫原性细胞死亡的刺激响应纳米系统的最新进展。J、 控制。发布337505–520(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gao, Z. et al. An activatable near-infrared afterglow theranostic prodrug with self-sustainable magnification effect of immunogenic cell death. Angew. Chem. Int. Ed. 61, e202209793 (2022).Article

Gao,Z.等人。一种可激活的近红外余辉治疗诊断前药,具有免疫原性细胞死亡的自我可持续放大作用。安吉。化学。内联编辑61,e202209793(2022)。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Moon, Y. et al. Anti-PD-L1 peptide-conjugated prodrug nanoparticles. Theranostics 12, 1999–2014 (2022).Article

Moon,Y。等人。抗PD-L1肽缀合的前药纳米颗粒。Theranostics 121999-2014(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Z. et al. BSA-AIE nanoparticles with boosted ROS generation. Adv. Mater. 35, e2208692 (2023).Article

Liu,Z。等人。具有增强的ROS产生的BSA-AIE纳米颗粒。高级材料。35,e2208692(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, S. et al. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 282, 121433 (2022).Article

Zhang,S.等人。新兴的光动力纳米疗法,用于诱导免疫原性细胞死亡和增强癌症免疫疗法。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

He, T. et al. Enhanced immunogenic cell death and antigen presentation via engineered bifidobacterium bifidum to boost chemo-immunotherapy. ACS Nano 17, 9953–9971 (2023).Article

He,T。等人通过工程化双歧杆菌增强免疫原性细胞死亡和抗原呈递,以促进化学免疫疗法。ACS Nano 179953–9971(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, X., Zheng, C., Kong, Y., Wang, H. & Wang, L. An in situ nanoparticle recombinant strategy for the enhancement of photothermal therapy. Chin. Chem. Lett. 33, 328–333 (2022).Article

Liu,X.,Zheng,C.,Kong,Y.,Wang,H。&Wang,L。用于增强光热疗法的原位纳米颗粒重组策略。下巴。化学。利特。33328-333(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Huang, Z. et al. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat. Commun. 12, 145 (2021).Article

。国家公社。12145(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, N. et al. A cooperative nano-CRISPR scaffold potentiates immunotherapy via activation of tumour-intrinsic pyroptosis. Nat. Commun. 14, 779 (2023).Article

Wang,N。等人。一种合作的纳米CRISPR支架通过激活肿瘤内在的pyroptosis来增强免疫治疗。国家公社。14779(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Saxena, M., van der Burg, S. H., Melief, C. J. M. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).Article

Saxena,M.,van der Burg,S.H.,Melief,C.J.M。&Bhardwaj,N。治疗性癌症疫苗。《国家癌症评论》21360-378(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bouzid, R., Peppelenbosch, M. & Buschow, S. I. Opportunities for conventional and in situ cancer vaccine strategies and combination with immunotherapy for gastrointestinal cancers, a review. Cancers 12, 1121 (2020).Article

Bouzid,R.,Peppelenbosch,M。&Buschow,S.I。常规和原位癌症疫苗策略的机会以及与胃肠道癌症免疫疗法的组合,综述。癌症121121(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Meng, J. et al. Generation of whole tumor cell vaccine for on-demand manipulation of immune responses against cancer under near-infrared laser irradiation. Nat. Commun. 14, 4505 (2023).Article

Meng,J.等人。用于在近红外激光照射下按需操纵针对癌症的免疫应答的全肿瘤细胞疫苗的产生。国家公社。144505(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fu, L., Ma, X., Liu, Y., Xu, Z. & Sun, Z. Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death. Chin. Chem. Lett. 33, 1718–1728 (2022).Article

Fu,L.,Ma,X.,Liu,Y.,Xu,Z。&Sun,Z。应用纳米技术通过促进免疫原性细胞死亡来促进癌症免疫疗法。下巴。化学。利特。331718-1728(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Lu, Y. et al. Cancer immunogenic cell death via photo-pyroptosi with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate. Biomaterials 278, 121167 (2021).Article

Lu,Y。等人。通过光敏吲哚胺2,3-双加氧酶抑制剂缀合物的光致pyroptosi进行癌症免疫原性细胞死亡。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, Y. et al. Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/ chemodynamic/immune therapy via enhanced ferroptosis-mediated immunogenic cell death. ACS Nano 16, 984–996 (2022).Article

Xu,Y。等人。纤连蛋白包被的金属-酚网络,用于通过增强的ferroptosis介导的免疫原性细胞死亡进行协同肿瘤化学/化学动力学/免疫治疗。ACS Nano 16984–996(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, Z. et al. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv. Sci. 9, 2201734 (2022).Article

Li,Z。等人。免疫原性细胞死亡激活肿瘤免疫微环境以提高免疫治疗效率。高级科学。92201734(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Zhang, J. et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection. Nat. Nanotechnol. 16, 538–548 (2021).Article

Zhang,J。等人。免疫刺激水凝胶用于抑制切除后恶性胶质瘤复发。自然纳米技术。16538-548(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hu, Y. et al. In situ vaccination and gene-medeiated PD-L1 blockade for enhanced tumor immunotherapy. Chin. Chem. Lett. 32, 1770–1774 (2021).Article

Hu,Y.等人。原位疫苗接种和基因介导的PD-L1阻断增强肿瘤免疫治疗。下巴。化学。利特。321770-1774(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Qiu, X. et al. Micellar paclitaxel boosts ICD and chemo-immunotherapy of metastatic triple negative breast cancer. J. Control. Release 341, 491–580 (2022).Article

邱,X。等。胶束紫杉醇促进转移性三阴性乳腺癌的ICD和化学免疫治疗。J、 控制。版本341491–580(2022)。文章

Google Scholar

谷歌学者

Jiang, N. et al. Tumor microenvironment triggered local oxygen generation and photosensitizer release from manganese dioxide mineralized albumin-ICG nanocomplex to amplify photodynamic immunotherapy efficacy. Chin. Chem. Lett. 32, 3948–3953 (2021).Article

Jiang,N。等人。肿瘤微环境引发二氧化锰矿化白蛋白-ICG纳米复合物的局部氧气产生和光敏剂释放,以放大光动力免疫治疗功效。下巴。化学。利特。323948–3953(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).Article

Quail,D.F。&Joyce,J.A。肿瘤进展和转移的微环境调节。《自然医学杂志》191423-1437(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Z. et al. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat. Commun. 13, 1845 (2022).Article

Li,Z。等人。肿瘤相关巨噬细胞的消耗增强了局部和全身血小板介导的抗PD-1递送,用于术后肿瘤复发治疗。国家公社。131845(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ostuni, R., Kratochvill, F., Murray, P. & Natoli, G. Macrophages and cancer from mechanisms to therapeutic implications. Trends Immunol. 36, 229–239 (2015).Article

Ostuni,R.,Kratochvill,F.,Murray,P。&Natoli,G。巨噬细胞和癌症从机制到治疗意义。趋势免疫。36229-239(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, M. et al. Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy. Nat. Commun. 14, 3593 (2023).Article

Zhou,M.等人。载有TGF-β受体1抑制剂的纳米囊泡克服了免疫抵抗,从而增强了癌症免疫疗法。国家公社。143593(2023)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheng, Y. et al. Tumor associated macrophages and TAMs-based anti-tumor nanomedicines. Adv. Healthc. Mater. 10, 2100590 (2021).Article

Cheng,Y。等人。肿瘤相关巨噬细胞和基于TAM的抗肿瘤纳米药物。健康顾问。马特。102100590(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Liu, X., Xu, Y., Yin, L., Hou, Y. & Zhao, S. Chitosan-poly(acrylic acid) nanoparticles loaded with R848 and MnCl(2) inhibit melanoma via regulating macrophage polarization and dendritic cell maturation. Int J Nanomedicine 16, 5675–5692 (2021).Article

Liu,X.,Xu,Y.,Yin,L.,Hou,Y。&Zhao,S。负载R848和MnCl(2)的壳聚糖-聚(丙烯酸)纳米颗粒通过调节巨噬细胞极化和树突状细胞成熟来抑制黑素瘤。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lei, X. et al. Immune cells within the tumor microenvironment: biological functions and roles in cancer immunotherapy. Cancer Lett. 470, 126–133 (2020).Article

Lei,X。等。肿瘤微环境中的免疫细胞:生物学功能和在癌症免疫治疗中的作用。癌症Lett。470126-133(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, D., Zhang, X., Li, Z. & Zhu, B. Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics 11, 1016–1030 (2021).Article

Chen,D.,Zhang,X.,Li,Z。&Zhu,B。肿瘤微环境与肿瘤相关巨噬细胞之间的代谢调节串扰。Theranostics 111016-1030(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiang, X., Wang, J., Lu, D. & Xu, X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct. Target. Ther. 6, 75 (2021).Article

Xiang,X.,Wang,J.,Lu,D。&Xu,X。靶向肿瘤相关巨噬细胞以协同肿瘤免疫疗法。信号传输管。目标。他们。6,75(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, Y. et al. Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nat. Commun. 12, 4310 (2021).Article

Huang,Y.等人设计巨噬细胞作为近红外光激活的药物载体,用于原发性和骨转移性乳腺癌的化学光动力治疗。国家公社。124310(2021)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sylvestre, M., Crane, C. & Pun, S. Progress on modulating tumor associated macrophages with biomaterials. Adv. Mater. 32, e1902007 (2020).Article

Sylvestre,M.,Crane,C。&Pun,S。用生物材料调节肿瘤相关巨噬细胞的进展。高级材料。32,e1902007(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Zhao, Y. et al. Reprogramming hypoxic tumor-associated macrophages by nanoglycoclusters for boosted cancer. Adv. Mater. 35, e2211332 (2023).Article

Zhao,Y.等人。通过纳米糖簇重编程缺氧肿瘤相关巨噬细胞以促进癌症。高级材料。35,e2211332(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).Article

Rodell,C.B。等人。负载TLR7/8激动剂的纳米颗粒促进肿瘤相关巨噬细胞的极化以增强癌症免疫疗法。自然生物医学。工程2578-588(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2018).Article

Chen,Q。等人。用于术后癌症治疗的原位喷雾生物反应性免疫治疗凝胶。自然纳米技术。14,89-97(2018)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Jeong, S. et al. Immunogenic cell death inducing fluorinated mitochondria-disrupting helical polypeptide synergizes with pd-l1 immune checkpoint blockade. Adv. Sci. 8, 2001308 (2021).Article

Jeong,S。等人。免疫原性细胞死亡诱导氟化线粒体破坏螺旋多肽与pd-l1免疫检查点阻断协同作用。高级科学。82001308(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Feng, X. et al. Mitochondria-associated ER stress evokes immunogenic cell death through the ROS-PERK-eIF2 α pathway under PTT/CDT combined therapy. Acta Biomater. 160, 211–224 (2023).Article

。生物计量学报。160211-224(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Oresta, B. et al. Mitochondrial metabolic reprogramming controls the induction of immunogenic cell death and efficacy of chemotherapy in bladder cancer. Sci. Transl. Med. 13, eaba6110 (2021).Article

线粒体代谢重编程控制免疫原性细胞死亡的诱导和膀胱癌化疗的疗效。科学。翻译。医学杂志13,eaba6110(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wan, J. et al. Oxidative stress amplifiers as immunogenic cell death nanoinducers disrupting mitochondrial redox homeostasis for cancer immunotherapy. Adv. Healthc. Mater. 12, e2202710 (2023).Article

Wan,J。等人。氧化应激放大器作为免疫原性细胞死亡纳米诱导剂,破坏线粒体氧化还原稳态,用于癌症免疫治疗。健康顾问。马特。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Liu, Z. et al. 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol. Pharm. 9, 1409–1417 (2012).Article

Liu,Z。等人99mTc标记的RGD-BBN肽用于肺癌的小动物SPECT/CT。Mol.Pharm.91409-1417(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xia, Y. et al. Systemic administration of polymersomal oncolytic peptide LTX-315 combining with CpG adjuvant and anti-PD-1 antibody boosts immunotherapy of melanoma. J. Control. Release 336, 262–273 (2021).Article

Xia,Y.等。全身给予聚合物溶瘤肽LTX-315联合CpG佐剂和抗PD-1抗体可增强黑色素瘤的免疫治疗。J、 控制。版本336262-273(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hou, L. et al. Hybrid-membrane-decorated prussian blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Adv Mater 34, e2200389 (2022).Article

Hou,L.等人。杂合膜修饰普鲁士蓝通过肿瘤相关巨噬细胞极化和缺氧缓解进行有效的癌症免疫治疗。Adv Mater 34,e2200389(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Yang, W. et al. In situ dendritic cell vaccine for effective cancer immunotherapy. ACS Nano 13, 3083–3094 (2019).Article

Yang,W。等人。用于有效癌症免疫疗法的原位树突状细胞疫苗。ACS Nano 133083-3094(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis research was supported by National Natural Science Foundation of China (52103191, 52103190 and 82073787), Start-up Grant (32340452 and 32340311) from Zhengzhou University, the NUS School of Medicine Dean’s Office (NUHSRO/2020/133/Startup/08, NUHSRO/2023/008/NUSMed/TCE/LOA, NUHSRO/2021/034/TRP/09/Nanomedicine, NUHSRO/2021/044/Kickstart/09/LOA, 23-0173-A0001), National Medical Research Council (MOH-001388-00, CG21APR1005, OFIRG23jul-0047), Singapore Ministry of Education (MOE-000387-00), and National Research Foundation (NRF-000352-00).Author informationAuthor notesThese authors contributed equally: Yichen Guo, Yongjuan Li.Authors and AffiliationsSchool of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, ChinaYichen Guo, Mengzhe Zhang, Rong Ma, Yayun Wang, Xiao Weng, Jinjie Zhang, Zhenzhong Zhang & Weijing YangHenan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou University, Zhengzhou, Henan Province, ChinaYichen Guo, Mengzhe Zhang, Rong Ma, Yayun Wang, Xiao Weng, Jinjie Zhang, Zhenzhong Zhang & Weijing YangThe Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, ChinaYongjuan LiDepartments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, SingaporeXiaoyuan ChenClinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SingaporeXiaoyuan ChenNanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SingaporeXiaoyua.

下载参考文献致谢本研究得到了国家自然科学基金(5210319152103190和82073787),郑州大学创业资助(32340452和32340311),国立大学医学院院长办公室(NUHSRO/2020/133/Startup/08,NUHSRO/2023/008/NUSMed/TCE/LOA,NUHSRO/2021/034/TRP/09/Nanomedicine,NUHSRO/2021/044/Kickstart/09/LOA,23-0173-A0001),国家医学研究委员会(MOH-001388-00,CG21APR1005,OFIRG23jul-0047),新加坡教育部(MOE-000387-00)和国家研究基金会(NRF-000352-00)。作者信息作者注意到,这些作者做出了同样的贡献:郭一晨,李永娟。作者和附属机构郑州大学药学院,郑州,郭一晨,张梦哲,马荣,王亚云,肖翁,张金杰,张振中和杨维京河南省郑州大学纳米医学靶向诊断与治疗重点实验室,郑州,河南省郑州,郭一晨,张梦哲,马荣,王亚云,王小翁,张金杰,张振中和杨维京郑州大学医学科学院感染与免疫中心,河南郑州,中国永娟新加坡国立大学林永禄医学院和设计与工程学院化学与生物分子工程与生物医学工程,新加坡陈晓源临床影像研究中心,林永禄医学院转化医学中心,新加坡国立大学新加坡国立大学陈晓元纳米医学转化研究项目,新加坡国立大学永禄林医学院,新加坡,新加坡小玉。

PubMed Google ScholarYongjuan LiView author publicationsYou can also search for this author in

PubMed Google ScholarYongjuan LiView作者出版物您也可以在

PubMed Google ScholarMengzhe ZhangView author publicationsYou can also search for this author in

PubMed Google Scholarmangezhe ZhangView作者出版物您也可以在

PubMed Google ScholarRong MaView author publicationsYou can also search for this author in

PubMed Google ScholarRong MaView作者出版物您也可以在

PubMed Google ScholarYayun WangView author publicationsYou can also search for this author in

PubMed Google ScholarYayun WangView作者出版物您也可以在

PubMed Google ScholarXiao WengView author publicationsYou can also search for this author in

PubMed Google ScholarXiao WengView作者出版物您也可以在

PubMed Google ScholarJinjie ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张金杰查看作者出版物您也可以在

PubMed Google ScholarZhenzhong ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张振中查看作者出版物您也可以在

PubMed Google ScholarXiaoyuan ChenView author publicationsYou can also search for this author in

PubMed谷歌学者陈晓元查看作者出版物您也可以在

PubMed Google ScholarWeijing YangView author publicationsYou can also search for this author in

PubMed Google ScholarWeijing YangView作者出版物您也可以在

PubMed Google ScholarContributionsW.Y., Z.Z., X.C., Y.G., and Y.L. conceived and designed the study. Y.G. and Y.L. performed the in vivo experiments. M. Z., R.M., Y.W., and X.W. performed the in vitro experiments. W.Y., Z.Z., X.C., Y.G. Y.L., and J.Z. contributed to the analysis and interpretation of the results and the writing of the manuscript.Corresponding authorsCorrespondence to.

PubMed谷歌学术贡献软件。Y、 。Y、 G.和Y.L.进行了体内实验。M、 Z.,R.M.,Y.W。和X.W.进行了体外实验。W、 Y.,Z.Z.,X.C.,Y.G.Y.L。和J.Z.为结果的分析和解释以及手稿的撰写做出了贡献。通讯作者通讯。

Zhenzhong Zhang, Xiaoyuan Chen or Weijing Yang.Ethics declarations

张振中、陈晓元或杨伟静。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Genevieve Boland, Guangjun Nie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Genevieve Boland,Guangjun Nie和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary informationPeer Review FileReporting SummarySource dataSource DataRights and permissions

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件报告摘要源数据源数据权限

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleGuo, Y., Li, Y., Zhang, M. et al. Polymeric nanocarrier via metabolism regulation mediates immunogenic cell death with spatiotemporal orchestration for cancer immunotherapy.

转载和许可本文引用本文Guo,Y.,Li,Y.,Zhang,M。等人。通过代谢调节的聚合物纳米载体通过癌症免疫疗法的时空协调介导免疫原性细胞死亡。

Nat Commun 15, 8586 (2024). https://doi.org/10.1038/s41467-024-53010-0Download citationReceived: 24 October 2023Accepted: 22 September 2024Published: 04 October 2024DOI: https://doi.org/10.1038/s41467-024-53010-0Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》158586(2024)。https://doi.org/10.1038/s41467-024-53010-0Download引文接收日期:2023年10月24日接收日期:2024年9月22日发布日期:2024年10月4日OI:https://doi.org/10.1038/s41467-024-53010-0Share。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。