EN
登录

显示诱饵抗性IL18突变蛋白的非致病性大肠杆菌增强抗肿瘤和CAR NK细胞反应

Non-pathogenic E. coli displaying decoy-resistant IL18 mutein boosts anti-tumor and CAR NK cell responses

Nature 等信源发布 2024-10-04 17:40

可切换为仅中文


AbstractThe tumor microenvironment can inhibit the efficacy of cancer therapies through mechanisms such as poor trafficking and exhaustion of immune cells. Here, to address this challenge, we exploited the safety, tumor tropism and ease of genetic manipulation of non-pathogenic Escherichia coli (E. coli) to deliver key immune-activating cytokines to tumors via surface display on the outer membrane of E.

摘要肿瘤微环境可以通过诸如不良运输和免疫细胞耗竭等机制抑制癌症治疗的功效。在这里,为了应对这一挑战,我们利用非致病性大肠杆菌(大肠杆菌)的安全性,肿瘤嗜性和易遗传操作性,通过在大肠杆菌外膜上的表面展示向肿瘤递送关键的免疫激活细胞因子。

coli K-12 DH5α. Non-pathogenic E. coli expressing murine decoy-resistant IL18 mutein (DR18) induced robust CD8+ T and natural killer (NK) cell-dependent immune responses and suppressed tumor progression in immune-competent colorectal carcinoma and melanoma mouse models. E. coli K-12 DH5α engineered to display human DR18 potently activated mesothelin-targeting chimeric antigen receptor (CAR) NK cells and enhance their trafficking into tumors, which extended survival in an NK cell treatment-resistant mesothelioma xenograft model by enhancing TNF signaling and upregulating NK activation markers.

大肠杆菌K-12 DH5α。表达鼠诱饵抗性IL18 mutein(DR18)的非致病性大肠杆菌在免疫活性结直肠癌和黑素瘤小鼠模型中诱导强烈的CD8+T和自然杀伤(NK)细胞依赖性免疫应答并抑制肿瘤进展。E、 大肠杆菌K-12 DH5α工程化以显示人DR18有效激活的间皮素靶向嵌合抗原受体(CAR)NK细胞并增强其向肿瘤的运输,其通过增强TNF信号传导和上调NK活化标志物来延长NK细胞治疗抗性间皮瘤异种移植模型中的存活。

Our live bacteria-based immunotherapeutic system safely and effectively induces potent anti-tumor responses in treatment-resistant solid tumors, motivating further evaluation of this approach in the clinic..

我们的基于活细菌的免疫治疗系统安全有效地诱导耐药实体瘤产生有效的抗肿瘤反应,促使临床进一步评估这种方法。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy Now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Murine DR18 displayed by bacterial scaffold Lpp–OmpA induces potent anti-tumor responses in an immune-competent syngeneic mouse model (MC38).Fig. 2: Systemically delivered tumor-homing OmpA–mDR18 E. coli induces an abscopal effect and is safe.Fig. 3: Tumor control by OmpA–mDR18 is mediated by CD8+ T cells and NK cells in the TME.Fig.

图1:细菌支架Lpp-OmpA显示的鼠DR18在具有免疫能力的同基因小鼠模型(MC38)中诱导有效的抗肿瘤反应。图2:全身递送的肿瘤归巢OmpA-mDR18大肠杆菌诱导远隔效应并且是安全的。图3:OmpA-mDR18对肿瘤的控制是由TME中的CD8+T细胞和NK细胞介导的。。

4: Bacteria displaying hDR18 enhance anti-tumor responses of MSLN-CAR NK cells.Fig. 5: Bacteria displaying hDR18 enhance the proliferation, tumor trafficking and efficacy of MSLN-CAR NK cells in vivo, leading to improved tumor control.Fig. 6: Gene expression changes in the MSLN-CAR NK cells induced by priming with E.

4: 显示hDR18的细菌增强MSLN-CAR NK细胞的抗肿瘤反应。图5:显示hDR18的细菌增强体内MSLN-CAR NK细胞的增殖,肿瘤运输和功效,从而改善肿瘤控制。图6:用E引发诱导的MSLN-CAR NK细胞中的基因表达变化。

coli hDR18..

大肠杆菌hDR18。。

Data availability

数据可用性

All data generated during this study are available within the paper. The bulk RNA-seq data were deposited to the Gene Expression Omnibus under accession number GSE275391 (ref. 60). Datasets from the MSigDB were used in this study. Source data are provided with this paper.

本研究期间产生的所有数据均可在本文中找到。大量RNA-seq数据以登录号GSE275391(参考文献60)保藏到Gene Expression Omnibus。本研究使用了MSigDB的数据集。本文提供了源数据。

ReferencesBasudan, A. M. The role of immune checkpoint inhibitors in cancer therapy. Clin. Pract. 13, 22–40 (2023).Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).Article

参考文献Basudan,A.M。免疫检查点抑制剂在癌症治疗中的作用。。实践。13,22-40(2023)。Labanieh,L。&Mackall,C.L。CAR免疫细胞:设计原理,抗性和下一代。自然614635-648(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Laskowski, T. J., Biederstädt, A. & Rezvani, K. Natural killer cells in antitumour adoptive cell immunotherapy. Nat. Rev. Cancer 22, 557–575 (2022).Granhøj, J. S. et al. Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Exp.

Laskowski,T.J.,Biederstädt,A。&Rezvani,K。抗肿瘤过继性细胞免疫疗法中的自然杀伤细胞。《国家癌症评论》22557-575(2022)。Granhøj,j.S.等人。过继性细胞治疗的肿瘤浸润淋巴细胞:最新进展,挑战和未来方向。实验。

Opin. Biol. Ther. 22, 627–641 (2022).Edwards, S. C., Hoevenaar, W. H. M. & Coffelt, S. B. Emerging immunotherapies for metastasis. Br. J. Cancer 124, 37–48 (2021).Dahiya, D. S., Kichloo, A., Singh, J., Albosta, M. & Lekkala, M. Current immunotherapy in gastrointestinal malignancies: a review. J. Investig.

奥平。生物疗法。22627-641(2022)。Edwards,S.C.,Hoevenaar,W.H.M。和Coffelt,S.B。新兴的转移免疫疗法。Br.J.Cancer 124,37-48(2021)。Dahiya,D.S.,Kichloo,A.,Singh,J.,Albosta,M。&Lekkala,M。目前胃肠道恶性肿瘤的免疫治疗:综述。J、 调查。

Med. 69, 689–696 (2021).Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).Mowday, A. M. et al. Advancing clostridia to clinical trial: past lessons and recent progress. Cancers 8, 63 (2016).Article .

医学69689-696(2021)。Zhou,S.,Gravekamp,C.,Bermudes,D。&Liu,K。设计用于抗癌的肿瘤靶向细菌。《国家癌症评论》18727-743(2018)。Mowday,A.M.等人,《将梭菌推进临床试验:过去的教训和最新进展》。癌症8,63(2016)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Toso, J. F. et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J. Clin. Oncol. 20, 142–152 (2002).Article

Toso,J.F.等人。对转移性黑色素瘤患者静脉注射减毒鼠伤寒沙门氏菌的I期研究。J、 临床。Oncol公司。20142-152(2002)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Luke, J. J. et al. Phase I study of SYNB1891, an engineered E. coli Nissle strain expressing STING agonist, with and without atezolizumab in advanced malignancies. Clin. Cancer Res. 29, 2435–2444 (2023).Article

Luke,J.J.等人,SYNB1891(一种表达STING激动剂的工程化大肠杆菌Nissle菌株)的I期研究,在晚期恶性肿瘤中有或没有atezolizumab。。癌症研究292435-2444(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tumas, S. et al. Engineered E. coli Nissle 1917 for delivery of bioactive IL-2 for cancer immunotherapy. Sci. Rep. 13, 12506 (2023).Article

Tumas,S。等人设计了大肠杆菌Nissle 1917,用于递送用于癌症免疫疗法的生物活性IL-2。科学。代表1312506(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Badie, F. et al. Use of Salmonella bacteria in cancer therapy: direct, drug delivery and combination approaches. Front. Oncol. 11, 624759 (2021).Chen, H. et al. Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies.

Badie,F.等人。沙门氏菌在癌症治疗中的应用:直接,药物输送和组合方法。正面。Oncol公司。11624759(2021)。Chen,H.等人。大肠杆菌Nissle 1917作为疾病治疗和诊断策略的可定制药物递送系统的进展。

Mater. Today Bio 18, 100543 (2023).Article .

马特。《今日生物》18100543(2023)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aganja, R. P., Sivasankar, C., Senevirathne, A. & Lee, J. H. Salmonella as a promising curative tool against cancer. Pharmaceutics 14, 2100 (2022).Raman, V. et al. Build-a-bug workshop: using microbial–host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 31, 1574–1592 (2023).Zheng, J.

Aganja,R.P.,Sivasankar,C.,Senevirathne,A。&Lee,J.H。沙门氏菌作为一种有前途的抗癌治疗工具。药剂学142100(2022)。。细胞宿主微生物311574-1592(2023)。郑,J。

H. et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci. Transl. Med. 9, eaak9537 (2017).Article .

H、 用分泌异源鞭毛蛋白的工程化鼠伤寒沙门氏菌进行两步增强癌症免疫治疗。科学。翻译。医学杂志9,eaak9537(2017)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Vincent, R. L. et al. Probiotic-guided CAR-T cells for solid tumor targeting. Science 382, 211–218 (2023).Article

Vincent,R.L.等人。益生菌引导的CAR-T细胞用于实体瘤靶向。科学382211-218(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, Y., Du, M., Yuan, Z., Chen, Z. & Yan, F. Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy. Nat. Commun. 13, 4468 (2022).Article

Chen,Y.,Du,M.,Yuan,Z.,Chen,Z。&Yan,F。通过聚焦超声波对工程细菌表达干扰素-γ的时空控制,用于肿瘤免疫治疗。国家公社。134468(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ma, X. et al. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nat. Commun. 14, 1606 (2023).Article

Ma,X。等人通过磁场的时空操作,模块化设计了用于精确肿瘤免疫治疗的工程细菌。国家公社。141606(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wittrup, K. D. Protein engineering by cell-surface display. Curr. Opin. Biotechnol. 12, 395–399 (2001).Lee, S. Y., Choi, J. H. & Xu, Z. Microbial cell-surface display. Trends Biotechnol. 21, 45–52 (2003).Bryant, F. R. Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity.

Wittrup,K.D。通过细胞表面展示进行蛋白质工程。货币。奥平。生物技术。12395-399(2001)。Lee,S.Y.,Choi,J.H。和Xu,Z。微生物细胞表面展示。趋势生物技术。21,45-52(2003)。Bryant,F.R。构建保留单链DNA依赖性ATPase活性的重组酶缺陷型突变recA蛋白。

J. Biol. Chem. 263, 8716–8723 (1988).Article .

J.生物学。化学。263, 8716-8723 (1988).第[UNK]条。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Scudamore, R. A., Beveridge, T. J. & Goldner, M. Outer-membrane penetration barriers as components of intrinsic resistance to beta-lactam and other antibiotics in Escherichia coli K-12. Antimicrob. Agents Chemother. 15, 182–189 (1979).Article

Scudamore,R.A.,Beveridge,T.J。&Goldner,M。外膜渗透屏障是大肠杆菌K-12对β-内酰胺和其他抗生素固有抗性的组成部分。抗菌剂。化学试剂。15182-189(1979)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Waldmann, T. A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 10, 6–15 (2018).Article

Waldmann,T.A。癌症免疫治疗中的细胞因子。冷泉兔。。生物学杂志10,6-15(2018)。文章

Google Scholar

谷歌学者

Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).Article

Zhou,T。等人。IL-18BP是分泌的免疫检查点和IL-18免疫治疗的屏障。自然583609-614(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, M. J. & Lee, S. H. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT. FEMS Microbiol. Lett. 362, 1–7 (2015).Article

Han,M.J.&Lee,S.H。一种基于来自大肠杆菌蛋白质YiaT的新型外膜锚定元件的高效细菌表面显示系统。FEMS微生物。利特。362,1-7(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Glass, D. S. & Riedel-Kruse, I. H. A synthetic bacterial cell–cell adhesion toolbox for programming multicellular morphologies and patterns. Cell 174, 649–658 (2018).Article

Glass,D.S。&RiedelKruse,I.H。一种用于编程多细胞形态和模式的合成细菌细胞间粘附工具箱。细胞174649-658(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hernández-Rollán, C. et al. LyGo: a platform for rapid screening of lytic polysaccharide monooxygenase production. ACS Synth. Biol. 10, 897–906 (2021).Article

Hernández-Rollán,C.等人。LyGo:快速筛选溶解性多糖单加氧酶产生的平台。ACS合成。生物学10897-906(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fidler, I. J. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res. 35, 218–24 (1975).CAS

Fidler,I.J。恶性黑素瘤细胞的生物学行为与其体内存活相关。癌症研究35218-24(1975)。中科院

PubMed

PubMed

Google Scholar

谷歌学者

Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).Article

Canale,F.P.等人。用免疫治疗工程细菌对肿瘤的代谢调节。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Murthy, H., Iqbal, M., Chavez, J. C. & Kharfan-Dabaja, M. A. Cytokine release syndrome: current perspectives. Immunotargets Ther. 8, 43–52 (2019).Shimabukuro-Vornhagen, A. et al. Cytokine release syndrome. J. Immunother. Cancer 6, 56 (2018).Dagher, O. K. & Posey, A. D. Forks in the road for CAR T and CAR NK cell cancer therapies.

Murthy,H.,Iqbal,M.,Chavez,J.C。&Kharfan-Dabaja,M.A。细胞因子释放综合征:当前观点。免疫靶向治疗。8,43-52(2019)。Shimabukuro-Vornhagen,A。等人。细胞因子释放综合征。J、 免疫疗法。癌症6,56(2018)。Dagher,O.K。和Posey,A.D。在CAR T和CAR NK细胞癌症治疗的道路上分岔。

Nat. Immunol. 24, 1994–2007 (2023).Article .

自然免疫。。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Santomasso, B., Bachier, C., Westin, J., Rezvani, K. & Shpall, E. J. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity and financial burden. American Society of Clinical Oncology Educational Book https://doi.org/10.1200/edbk_238691 (2019).Wang, Z. & Han, W.

Santomasso,B.,Bachier,C.,Westin,J.,Rezvani,K。&Shpall,E.J。CAR T细胞疗法的另一面:细胞因子释放综合征,神经毒性和经济负担。美国临床肿瘤学会教育书籍https://doi.org/10.1200/edbk_238691(2019年)。Wang,Z。和Han,W。

Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark. Res. 6, 4 (2018).Dong, H. et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia. Proc. Natl Acad. Sci. USA 119, e2122379119 (2022).Article .

细胞因子释放综合征的生物标志物和与CAR-T细胞治疗相关的神经毒性。生物标志物第6、4号决议(2018)。Dong,H。等人。携带新表位特异性CAR的记忆样NK细胞对NPM1突变的急性髓细胞白血病具有有效的活性。程序。国家科学院。科学。美国119,e2122379119(2022)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hagerty, B. L. & Takabe, K. Biology of mesothelin and clinical implications: a review of existing literature. World J. Oncol. 14, 340–349 (2023).Hirakawa, H., Haga, T. & Nagamune, T. Artificial protein complexes for biocatalysis. Top. Catal. 55, 1124–1137 (2012).Delisa, M. P. & Conrado, R.

Hagerty,B.L。和Takabe,K。间皮素的生物学和临床意义:现有文献的回顾。世界J.Oncol。14340-349(2023)。。顶部。加泰罗尼亚。551124-1137(2012)。Delisa,M.P。和Conrado,R。

J. Synthetic metabolic pipelines. Nat. Biotechnol. 27, 728–729 (2009).Dueber, J. E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).Article .

J、 合成代谢管道。美国国家生物技术公司。。Dueber,J.E。等人。合成蛋白质支架为代谢通量提供模块化控制。美国国家生物技术公司。27753-759(2009)。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Taylor, R. G., Walker, D. C. & Mclnnes, R. R. E. coli host strains. Nucleic Acids Res. 21, 1677–1678 (1993).Chan, W. T., Verma, C. S., Lane, D. P. & Gan, S. K. E. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci. Rep. 33, e00086 (2013).Article .

Taylor,R.G.,Walker,D.C。和Mclnnes,R.R。大肠杆菌宿主菌株。核酸研究211677-1678(1993)。Chan,W.T.,Verma,C.S.,Lane,D.P。&Gan,S.K.E。影响大肠杆菌转化的方法和因素的比较和优化。生物科学。代表33,e00086(2013)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Browning, D. F., Hobman, J. L. & Busby, S. J. W. Laboratory strains of Escherichia coli K-12: things are seldom what they seem. Micro. Genom. 9, mgen000922 (2023).

Browning,D.F.,Hobman,J.L。&Busby,S.J.W。大肠杆菌K-12的实验室菌株:事情很少像它们看起来的那样。微型。基因组。9,mgen000922(2023)。

Google Scholar

谷歌学者

Liu, A. et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob. Agents Chemother. 54, 1393–1403 (2010).Article

Liu,A.等人。用大肠杆菌基因敲除收集确定的抗生素敏感性谱:产生抗生素条形码。抗菌剂。化学试剂。541393-1403(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Faïs, T., Delmas, J., Barnich, N., Bonnet, R. & Dalmasso, G. Colibactin: more than a new bacterial toxin. Toxins 10, 151 (2018).Jin, Y. & Fu, L. Engineer a double team of short-lived and glucose-sensing bacteria for cancer eradication. Cell Rep. Med. 4, 101043 (2023).Article

Faïs,T.,Delmas,J.,Barnich,N.,Bonnet,R。&Dalmasso,G。Colibactin:不仅仅是一种新的细菌毒素。毒素10151(2018)。Jin,Y.&Fu,L.设计了一个由短期和葡萄糖敏感细菌组成的双重团队,用于根除癌症。细胞代表医学41043(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shrihari, T. G. Dual role of inflammatory mediators in cancer. Ecancermedicalscience 11, 721 (2017).Knelson, E. H. et al. Activation of tumor-cell STING primes NK-cell therapy. Cancer Immunol. Res. 10, 947–961 (2022).Article

Shrihari,T.G。炎症介质在癌症中的双重作用。癌症医学科学11721(2017)。Knelson,E.H。等人。激活肿瘤细胞STING引发NK细胞治疗。癌症免疫。第10947-961号决议(2022年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).Article

Mirdita,M。等人,ColabFold:使所有人都可以进行蛋白质折叠。自然方法19679-682(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

He, Y. et al. Self-assembled cGAMP-STINGΔTM signaling complex as a bioinspired platform for cGAMP delivery. Sci. Adv. 6, eaba7589 (2020).Article

He,Y。等人。自组装cGAMP-STINGΔTM信号复合物作为cGAMP递送的生物启发平台。科学。广告6,eaba7589(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, X. et al. Engineering the immune adaptor protein STING as a functional carrier. Adv. Ther. https://doi.org/10.1002/adtp.202100066 (2021).Sun, X. et al. Nanobody-functionalized cellulose for capturing SARS-CoV-2. Appl. Environ. Microbiol. 88, e0230321 (2022).Article

Sun,X。等人设计了免疫衔接蛋白STING作为功能载体。高级Ther。https://doi.org/10.1002/adtp.202100066(2021年)。Sun,X。等人。用于捕获SARS-CoV-2的纳米体功能化纤维素。应用。环境。微生物。88,e0230321(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020).Article

Li,Y。等人。多功能溶瘤纳米颗粒提供自我复制的IL-12 RNA,以消除已建立的肿瘤并引发全身免疫。《自然癌症》1882-893(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tomar, S. et al. Development of highly effective anti-mesothelin hYP218 chimeric antigen receptor T cells with increased tumor infiltration and persistence for treating solid tumors. Mol. Cancer Ther. 21, 1195–1206 (2022).Article

Tomar,S.等人开发了高效抗间皮素hYP218嵌合抗原受体T细胞,其具有增加的肿瘤浸润和持久性,可用于治疗实体瘤。分子癌症治疗。211195-1206(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).Article

。生物信息学29,15-21(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Y. et al. Rapid and accurate alignment of nucleotide conversion sequencing reads with HISAT-3N. Genome Res. 31, 1290–1295 (2021).Article

Zhang,Y。等人。用HISAT-3N快速准确地比对核苷酸转换测序读数。基因组研究311290-1295(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article

Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).Article

Liberzon,A。等人。分子签名数据库(MSigDB)3.0。生物信息学271739-1740(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).Article

Subramanian,A。等人。基因集富集分析:一种基于知识的方法,用于解释全基因组表达谱。程序。国家科学院。科学。美国10215545–15550(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, S. et al. Nonpathogenic E. coli Displaying Decoy-Resistant IL18 Mutein Enhance the Efficacy of Cancer Immunotherapies (NCBI, 2024); https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE275391Download referencesAcknowledgementsThis work was supported by National Institutes of Health 1DP2GM154019 (J.L.), a Clinical Investigator Award (R.R.), a NEU-DFCI collaboration grant (to R.R., J.L.

Yang,S。等人。显示诱饵抗性IL18突变蛋白的非致病性大肠杆菌增强了癌症免疫疗法的功效(NCBI,2024);https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE275391Download参考文献致谢这项工作得到了美国国立卫生研究院1DP2GM154019(J.L.),临床研究者奖(R.R.),NEU-DFCI合作基金(R.R.,J.L.)的支持。

and D.B.) and the Dana-Farber Sidney Farber Scholar Program (M.S.). R.R. received funding from the Parker Institute for Cancer Immunotherapy and is a recipient of a Career Development Award from the Leukemia & Lymphoma Society. We would like to express our gratitude to S. Rouhanifard at Northeastern University’s Department of Bioengineering for generously sharing her laboratory’s equipment and space with us; G.

和D.B.)和Dana-Farber-Sidney-Farber学者计划(M.S.)。R、 R.获得了帕克癌症免疫治疗研究所的资助,并且是白血病和淋巴瘤协会职业发展奖的获得者。;G。

Rong at the Institute for Chemical Imaging of Living Systems at Northeastern University for providing the confocal microscope equipment and relevant training; and Y. Li from SunVax mRNA Therapeutics for helpful and substantial suggestions. The cartoons were created using BioRender (https://biorender.com/).

东北大学生命系统化学成像研究所的荣提供了共聚焦显微镜设备和相关培训;和SunVax mRNA Therapeutics的Y.Li提供了有益和实质性的建议。这些卡通是用BioRender创作的(https://biorender.com/)。

Figures were generated by GraphPad Prism (version 10.1.1) and Adobe Illustrator (version 27.5).Author informationAuthor notesThese authors contributed equally: Shaobo Yang, Michal Sheffer.Authors and AffiliationsDepartment of Bioengineering, Northeastern University, Boston, MA, USAShaobo Yang, Ke Zhang, Valeria Márquez-Pellegrin, Shanna Bonanno, Ming Guan, Mengdi Yang, Deng Li & Chiara BelliniDepartment of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USAShaobo Yang, Michal Sheffer, Isabel E.

图形由GraphPad Prism(版本10.1.1)和Adobe Illustrator(版本27.5)生成。作者信息作者注意到这些作者做出了同样的贡献:杨少波,迈克尔·谢弗。作者和附属机构东北大学生物工程系,波士顿,马萨诸塞州,美国杨少波,张科,瓦莱丽亚·马尔克斯·佩莱格林,香娜·博南诺,明关,孟迪·杨,邓丽和奇亚拉·贝利尼医学肿瘤学系,达纳·法伯癌症研究所,波士顿,马萨诸塞州,美国杨少波,Michal Sheffer,Isabel E。

Kaplan, Mubin Tarannum, Khanhlinh Dinh, Yasmin Abdulhamid, Eden Bobilev, Roman Shapiro, Rebecca Porter, Robert Soiffer, Jerome Ritz, John Koreth, Fuguo Li.

卡普兰(Kaplan)、穆宾·塔兰努姆(Mubin Tarannum)、坎林·丁(Khanhlinh Dinh)、亚斯敏·阿卜杜勒哈米德(Yasmin Abdulhamid)、伊登·波比列夫(Eden Bobilev)、罗马·夏皮罗(Roman Shapiro)、丽贝卡·波特(Rebecca Porter)、罗伯特·索弗(Robert Soiffer)、杰。

PubMed Google ScholarMichal ShefferView author publicationsYou can also search for this author in

PubMed Google Scholarmamichal ShefferView作者出版物您也可以在

PubMed Google ScholarIsabel E. KaplanView author publicationsYou can also search for this author in

PubMed Google ScholarIsabel E.KaplanView作者出版物您也可以在

PubMed Google ScholarZongqi WangView author publicationsYou can also search for this author in

PubMed Google ScholarZongqi WangView作者出版物您也可以在

PubMed Google ScholarMubin TarannumView author publicationsYou can also search for this author in

PubMed Google ScholarMubin TarannumView作者出版物您也可以在

PubMed Google ScholarKhanhlinh DinhView author publicationsYou can also search for this author in

PubMed Google ScholarKhanhlinh DinhView作者出版物您也可以在

PubMed Google ScholarYasmin AbdulhamidView author publicationsYou can also search for this author in

PubMed Google ScholarYasmin AbdulhamidView作者出版物您也可以在

PubMed Google ScholarEden BobilevView author publicationsYou can also search for this author in

PubMed Google ScholarEden BobilevView作者出版物您也可以在

PubMed Google ScholarRoman ShapiroView author publicationsYou can also search for this author in

PubMed Google ScholarRoman ShapiroView作者出版物您也可以在

PubMed Google ScholarRebecca PorterView author publicationsYou can also search for this author in

PubMed Google ScholarRebecca PorterView作者出版物您也可以在

PubMed Google ScholarRobert SoifferView author publicationsYou can also search for this author in

PubMed谷歌Scholarrorbert SoifferView作者出版物您也可以在

PubMed Google ScholarJerome RitzView author publicationsYou can also search for this author in

PubMed Google ScholarJerome RitzView作者出版物您也可以在

PubMed Google ScholarJohn KorethView author publicationsYou can also search for this author in

PubMed Google ScholarYun WeiView author publicationsYou can also search for this author in

PubMed Google ScholarYun WeiView作者出版物您也可以在

PubMed Google ScholarPeiru ChenView author publicationsYou can also search for this author in

PubMed Google ScholarPeiru ChenView作者出版物您也可以在

PubMed Google ScholarKe ZhangView author publicationsYou can also search for this author in

PubMed Google ScholarKe ZhangView作者出版物您也可以在

PubMed Google ScholarValeria Márquez-PellegrinView author publicationsYou can also search for this author in

PubMed Google ScholarValeria Márquez PellegrinView作者出版物您也可以在

PubMed Google ScholarShanna BonannoView author publicationsYou can also search for this author in

PubMed Google ScholarShanna BonannoView作者出版物您也可以在

PubMed Google ScholarNeel JoshiView author publicationsYou can also search for this author in

PubMed Google Scholarnel JoshiView作者出版物您也可以在

PubMed Google ScholarMing GuanView author publicationsYou can also search for this author in

PubMed Google ScholarMing GuanView作者出版物您也可以在

PubMed Google ScholarMengdi YangView author publicationsYou can also search for this author in

PubMed Google Scholarmangendi YangView作者出版物您也可以在

PubMed Google ScholarDeng LiView author publicationsYou can also search for this author in

PubMed Google Scholarden LiView作者出版物您也可以在

PubMed Google ScholarChiara BelliniView author publicationsYou can also search for this author in

PubMed Google ScholarChiara BelliniView作者出版物您也可以在

PubMed Google ScholarFuguo LiuView author publicationsYou can also search for this author in

PubMed Google ScholarFuguo LiuView作者出版物您也可以在

PubMed Google ScholarJianzhu ChenView author publicationsYou can also search for this author in

PubMed谷歌学者陈建柱查看作者出版物您也可以在

PubMed Google ScholarCatherine J. WuView author publicationsYou can also search for this author in

PubMed Google ScholarCatherine J.WuView作者出版物您也可以在

PubMed Google ScholarDavid BarbieView author publicationsYou can also search for this author in

PubMed Google ScholarJiahe LiView author publicationsYou can also search for this author in

PubMed Google ScholarJiahe LiView作者出版物您也可以在

PubMed Google ScholarRizwan RomeeView author publicationsYou can also search for this author in

PubMed Google ScholarRizwan RomeeView作者出版物您也可以在

PubMed Google ScholarContributionsJ.L., R.R, S.Y. and M.S. conceptualized the study. S.Y., M.S., R.R. and J.L. wrote the paper. S.Y., M.S. and Z.W. designed the experiments and performed analysis and data interpretation. S.Y., M.S., I.E.K., Z.W., M.T., K.D., Y.A., E.B., Y.W., P.C., V.M.-P., S.B., F.L., M.G.

PubMed谷歌学术贡献。五十、 ,R.R,S.Y.和M.S.对这项研究进行了概念化。S、 Y.,M.S.,R.R.和J.L.写了这篇论文。S、 Y.,M.S.和Z.W.设计了实验并进行了分析和数据解释。S、 Y.,M.S.,I.E.K.,Z.W.,M.T.,K.D.,Y.A.,E.B.,Y.W.,P.C.,V.M.-P.,S.B.,F.L.,M.G。

and M.Y. performed the experiments. S.Y. and D.L. predicted and analyzed the protein structure. M.S., I.E.K., E.B. and Y.A. prepared NK cells. J.L., R.R., N.J., K.Z. and C.B. guided during the optimization and assisted during the experimental procedures and analysis. R. Shapiro., R.P., R. Soiffer, J.R., J.K., J.C., C.J.W.

和M.Y.进行了实验。S、 Y.和D.L.预测并分析了蛋白质结构。M、 美国,即英国,E.B.和Y.A.制备的NK细胞。J、 L.,R.R.,N.J.,K.Z.和C.B.在优化过程中进行了指导,并在实验程序和分析过程中提供了帮助。R、 夏皮罗。,R、 P.,R.Soiffer,J.R.,J.K.,J.C.,C.J.W。

and D.B. substantively revised the final version of the paper.Corresponding authorsCorrespondence to.

D.B.对论文的最终版本进行了实质性修改。通讯作者通讯。

Jiahe Li or Rizwan Romee.Ethics declarations

李嘉禾或里兹万·罗米。道德宣言

Competing interests

相互竞争的利益

R.R., J.L., S.Y. and M.S. are named inventors on a patent application that describes the surface display of engineered bacteria. R.R. has sponsored research agreements with CRISPR Therapeutics and Skyline Therapeutics and serves on the scientific advisory board of Glycostem Therapeutics. R.R. and J.C.

R、 R.,J.L.,S.Y.和M.S.是一项描述工程细菌表面展示的专利申请的发明人。R.R.赞助了与CRISPR Therapeutics和Skyline Therapeutics的研究协议,并担任Glycostem Therapeutics科学咨询委员会的成员。R、 R.和J.C。

are co-founders of InnDura Therapeutics. J.R. received research funding from Kite/Gilead, Novartis and Oncternal Therapeutics and serves on advisory boards for Akron Biotech, Clade Therapeutics, Garuda Therapeutics, LifeVault Bio, Novartis and Smart Immune. The other authors declare no competing interests..

是InnDura Therapeutics的联合创始人。J、 R.获得了Kite/Gilead,Novartis和Oncentral Therapeutics的研究资金,并担任Akron Biotech,Clade Therapeutics,Garuda Therapeutics,LifeVault Bio,Novartis和Smart Immune的咨询委员会成员。其他作者声明没有利益冲突。。

Peer review

同行评审

Peer review information

同行评审信息

Nature Biotechnology thanks Laurence Zitvogel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

《自然生物技术》感谢劳伦斯·齐特沃格尔(LaurenceZitvogel)和另一位匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Extended dataExtended Data Fig. 1 Treatment with the engineered bacteria induces immunological memory leading to enhanced recall responses (MC38).a, b, C57BL/6 mice (n = 5) cured from MC38 upon treatment with OmpA-mDR18 and naïve C57BL/6 (gender and age-matched with the cured mice) were subcutaneously (s.c.) engrafted with 0.5 x 106 MC38 cells and then monitored for tumor growth and survival.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。扩展数据扩展数据图1用工程菌处理诱导免疫记忆,导致增强的回忆反应(MC38)。a,b,用OmpA-mDR18和幼稚C57BL/6(性别和年龄与治愈的小鼠匹配)治疗后从MC38治愈的C57BL/6小鼠(n=5)皮下(s.c.)移植0.5×106 MC38细胞,然后监测肿瘤生长和存活。

Mean tumor growth (a) and Kaplan– Meier survival curves (b) for mice injected with 0.5 x 106 MC38 cells on Day 0. Two-way ANOVA test for tumor growth curve (a) and Mantel-Cox test for survival curve (b). Data are representative of one independent experiment, with n = 5 mice per group (a, b). Data represent means ± SD (a).Source dataExtended Data Fig.

在第0天注射0.5 x 106 MC38细胞的小鼠的平均肿瘤生长(a)和Kaplan-Meier生存曲线(b)。。数据代表一个独立实验,每组n=5只小鼠(a,b)。数据代表平均值±SD(a)。源数据扩展数据图。

2 Treatment with the engineered bacteria induces immunological memory leading to enhanced recall responses (B16F10).a, b, C57BL/6 mice (n = 3) cured from B16F10 upon treatment with OmpA-mDR18 and naïve C57BL/6 (gender and age-matched with the cured mice) were subcutaneously (s.c.) engrafted with 0.5 x 106 B16F10 cells and then monitored for tumor growth and survival.

2用工程菌处理诱导免疫记忆,导致回忆反应增强(B16F10)。a,b,用OmpA-mDR18和幼稚C57BL/6(性别和年龄)治疗后从B16F10治愈的C57BL/6小鼠(n=3)与治愈的小鼠相匹配)皮下(s.c.)移植0.5×106 B16F10细胞,然后监测肿瘤生长和存活。

Mean tumor growth (a) and Kaplan–Meier survival curves (b) for mice injected with 0.5 x 106 B16F10 cells on Day 0. Two-way ANOVA test for tumor growth curve (a) and Mantel-Cox test for survival curve (b). Data are representative of one independent experiment, with n = 3 mice per group (a, b). Data represent means ± SD (a).Source dataExtended Data Fig.

在第0天注射0.5×106 B16F10细胞的小鼠的平均肿瘤生长(a)和Kaplan-Meier存活曲线(b)。。数据代表一个独立实验,每组n=3只小鼠(a,b)。数据代表平均值±SD(a)。源数据扩展数据图。

3 Co-administration of OmpA-mDR18 and anti-PD-1 increases anti-tumor responses in an immune-competent syngeneic mouse model (MC38).a, C57BL/6 mice were subcutaneously (s..

3 OmpA-mDR18和抗PD-1的共同给药增加了免疫活性同系小鼠模型(MC38)中的抗肿瘤反应。a,C57BL/6小鼠皮下(s。。

Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02418-6Download citationReceived: 12 March 2024Accepted: 29 August 2024Published: 04 October 2024DOI: https://doi.org/10.1038/s41587-024-02418-6Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Biotechnol(2024)。https://doi.org/10.1038/s41587-024-02418-6Download引文接收日期:2024年3月12日接受日期:2024年8月29日发布日期:2024年10月4日OI:https://doi.org/10.1038/s41587-024-02418-6Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供