商务合作
动脉网APP
可切换为仅中文
AbstractEmbedding precision medicine in paediatric oncology shows promise to have a positive impact on how children with cancer will be treated in the future. While there are a number of studies of precision medicine in childhood cancer, there is limited evidence available on the cost of implementing the related testing.
摘要将精准医学嵌入儿科肿瘤学有望对未来癌症儿童的治疗产生积极影响。虽然有许多关于儿童癌症精准医学的研究,但关于实施相关测试的成本的证据有限。
This is the first Australian study that systematically measures the cost of using precision medicine in the care of high-risk childhood cancers, through the Zero Childhood Cancer Precision Medicine Programme. In 2021 Australian dollars, the estimated costs inclusive of genomic and preclinical testing were: (A) $12,743 per patient for access; (B) $14,262 per identification of molecular cause; and (C) $21,769 per MTB recommendation.
这是澳大利亚第一项通过零儿童癌症精准医学计划系统地衡量使用精准医学治疗高危儿童癌症的成本的研究。在2021澳元中,包括基因组和临床前测试在内的估计费用为:(A)每位患者12743澳元;(B) 每次鉴定分子原因14262美元;(C)每个MTB建议21769美元。
The information gained supports the understanding of the cost of reporting clinically significant outcomes relevant to the biology of the tumour, diagnosis, prognosis and potentially improving clinical management for a child..
获得的信息有助于理解报告与肿瘤生物学,诊断,预后和潜在改善儿童临床管理相关的临床重要结果的成本。。
Similar content being viewed by others
其他人正在查看类似内容
Delivering precision oncology to patients with cancer
为癌症患者提供精准肿瘤学
Article
文章
19 April 2022
2022年4月19日
Feasibility of functional precision medicine for guiding treatment of relapsed or refractory pediatric cancers
功能精准医学指导小儿复发或难治性癌症治疗的可行性
Article
文章
Open access
开放存取
11 April 2024
2024年4月11日
Precision medicine: affording the successes of science
精准医学:提供科学的成功
Article
文章
Open access
开放存取
04 January 2023
2023年1月4日
IntroductionCancer is the leading cause of disease-related death in children in high-income countries, including Australia1. While some higher-incidence cancers have seen dramatic improvements in survival rates, children and young adults (≤21 years of age) with a histologic diagnosis of a high-risk malignancy, defined as expected overall survival of <30%, accounts for ~20–25% of those diagnosed with cancer each year in Australia2.
引言癌症是包括澳大利亚在内的高收入国家儿童疾病相关死亡的主要原因1。虽然一些高发病率的癌症的生存率有了显着提高,但组织学诊断为高风险恶性肿瘤(定义为预期总生存率低于30%)的儿童和年轻人(≤21岁)占澳大利亚每年被诊断患有癌症的人的约20-25%2。
For surviving children, conventional chemotherapies and radiotherapy have non-specific toxicity to both normal and cancer cells, resulting in acute and chronic side effects. Around 75% of childhood cancer survivors will suffer from chronic health conditions, of which 30% will be severe, life-threatening, or disabling, including second cancers, cardiac disease, learning difficulties and growth abnormalities3.
对于存活的儿童,常规化疗和放疗对正常细胞和癌细胞都具有非特异性毒性,导致急性和慢性副作用。大约75%的儿童癌症幸存者将患有慢性健康状况,其中30%将严重,危及生命或致残,包括第二种癌症,心脏病,学习困难和生长异常3。
Acute adverse effects and long-term sequelae contribute significant burden on the health care system. Novel, less toxic therapeutics and models of care, such as precision medicine are thus urgently needed to improve outcomes and reduce the incidence of later adverse effects in childhood cancer survivors.Paediatric precision oncology recognises that every child and every cancer is unique4.
急性不良反应和长期后遗症给医疗保健系统带来了沉重负担。因此,迫切需要新型毒性较小的治疗方法和护理模式,如精准医学,以改善预后并减少儿童癌症幸存者后期不良反应的发生率。儿科精准肿瘤学认识到每个孩子和每个癌症都是独一无二的4。
Precise characterisation of a child’s individual tumour improves the potential for the identification of tailored treatment regiments5,6,7. Further, knowledge that facilitates avoidance of ineffective or unnecessarily harmful treatments can have added health benefits and cost savings4,8. In recent years, a number of paediatric precision oncology research programmes have been established globally that use innovative emerging technologies to generate rich data sets that increasingly allow us to identify new targets that drive a child’s individual cancer, ma.
儿童个体肿瘤的精确表征提高了确定定制治疗方案的潜力5,6,7。此外,有助于避免无效或不必要有害治疗的知识可以增加健康益处和节省成本4,8。近年来,全球已经建立了许多儿科精确肿瘤学研究计划,这些计划使用创新的新兴技术生成丰富的数据集,使我们能够越来越多地确定驱动儿童个体癌症的新目标,ma。
Data availability
数据可用性
Study data are available from the authors upon request for a methodologically sound project approved by an independent review committee.
研究数据可根据独立审查委员会批准的方法合理的项目的要求从作者那里获得。
ReferencesSteliarova-Foucher, E. et al. Changing geographical patterns and trends in cancer incidence in children and adolescents in Europe, 1991-2010 (Automated Childhood Cancer Information System): a population-based study. Lancet Oncol. 19, 1159–1169 (2018).Article
参考文献Teliarova Foucher,E.等人,《1991-2010年欧洲儿童和青少年癌症发病率的地理模式和趋势变化》(儿童癌症自动信息系统):一项基于人群的研究。柳叶刀Oncol。191159-1169(2018)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26, 1742–1753 (2020).Article
Wong,M.等人。全基因组,转录组和甲基化组分析增强了高危儿科癌症中可行的靶标发现。《自然医学》261742-1753(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Phillips, S. M. et al. Survivors of childhood cancer in the United States: prevalence and burden of morbidity. Cancer Epidemiol., Biomark. Prev. 24, 653–663 (2015).Article
Phillips,S.M.等人,《美国儿童癌症幸存者:患病率和发病负担》。癌症流行。,生物标志物。24653-663(2015)。文章
Google Scholar
谷歌学者
Burdach, S. E. G., Westhoff, M.-A., Steinhauser, M. F. & Debatin, K.-M. Precision medicine in pediatric oncology. Mol. Cell. Pediatr. 5, 6–15 (2018).Article
Burdach,S.E.G.,Westhoff,M.A.,Steinhauser,M.F。&Debatin,K.M。儿科肿瘤学中的精准医学。摩尔电池。儿科。5,6-15(2018)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).Article
。自然555321-327(2018)。文章
Google Scholar
谷歌学者
Rehm, H. L. Evolving health care through personal genomics. Nat. Rev. Genet. 18, 259–267 (2017).Article
Rehm,H.L。通过个人基因组学发展医疗保健。Genet自然Rev。18259-267(2017)。文章
CAS
中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Turnbull, C. Introducing whole-genome sequencing into routine cancer care: the Genomics England 100 000 Genomes Project. Ann. Oncol. 29, 784–787 (2018).Article
Turnbull,C。将全基因组测序引入常规癌症护理:英格兰基因组学10万基因组计划。安科。29784-787(2018)。文章
CAS
中科院
Google Scholar
谷歌学者
O’Hanlon, L. H. How next-generation sequencing could change cancer care. J. Natl Cancer Inst. 105, 836–838 (2013).Article
O'Hanlon,L.H。下一代测序如何改变癌症护理。J、 国家癌症研究所105836-838(2013)。文章
Google Scholar
谷歌学者
Forrest, S. J., Geoerger, B. & Janeway, K. A. Precision medicine in pediatric oncology. Curr. Opin. Pediatr. 30, 17–24 (2018).Article
Forrest,S.J.,Geoerger,B。&Janeway,K.A。儿科肿瘤学中的精准医学。货币。。儿科。30,17-24(2018)。文章
Google Scholar
谷歌学者
Mody, R. J., Prensner, J. R., Everett, J., Parsons, D. W. & Chinnaiyan, A. M. Precision medicine in pediatric oncology: lessons learned and next steps. Pediatr. Blood Cancer 64 https://doi.org/10.1002/pbc.26288 (2017).Mody, R. J. et al. Integrative clinical sequencing in the management of refractory or relapsed cancer in youth.
Mody,R.J.,Prensner,J.R.,Everett,J.,Parsons,D.W。&Chinnaiyan,A.M。儿科肿瘤学中的精准医学:经验教训和下一步。儿科。血癌64https://doi.org/10.1002/pbc.26288(2017年)。Mody,R.J.等人。综合临床测序在青少年难治性或复发性癌症管理中的应用。
JAMA 314, 913–925 (2015).Article .
牙买加314,913-925(2015)。第条。
CAS
中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vis, D. J. et al. Towards a global cancer knowledge network: dissecting the current international cancer genomic sequencing landscape. Ann. Oncol. 28, 1145–1151 (2017).Article
Vis,D.J.等人,《迈向全球癌症知识网络:剖析当前国际癌症基因组测序格局》。安科。281145-1151(2017)。文章
CAS
中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, J., Gillam, L., Visvanathan, K., Hansford, J. R. & McCarthy, M. C. clinical utility of precision medicine in pediatric oncology: a systematic review. JCO Precis. Oncol. 5, 1088–1102 (2021).Allen, C. E. et al. Target and agent prioritization for the Children’s Oncology group-national cancer institute pediatric MATCH Trial.
Lee,J.,Gillam,L.,Visvanathan,K.,Hansford,J.R。&McCarthy,M.C。精准医学在儿科肿瘤学中的临床应用:系统评价。JCO Precis公司。Oncol公司。51088-1102(2021)。Allen,C.E.等人,《儿童肿瘤小组国家癌症研究所儿科MATCH试验的目标和药物优先顺序》。
J. Natl. Cancer Inst. 109, djw274 (2017).Chang, W. et al. MultiDimensional ClinOmics for precision therapy of children and adolescent young adults with relapsed and refractory cancer: a report from the center for cancer research. Clin. Cancer Res. 22, 3810–3820 (2016).Article .
J、 纳特尔。癌症研究所109,djw274(2017)。Chang,W.等人,《多维临床组学用于复发和难治性癌症儿童和青少年年轻人的精确治疗:癌症研究中心的报告》。临床。癌症研究223810-3820(2016)。文章。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Harttrampf, A. C. et al. Molecular Screening for Cancer Treatment Optimization (MOSCATO-01) in pediatric patients: a single-institutional prospective molecular stratification trial. Clin. Cancer Res. 23, 6101–6112 (2017).Article
Harttrampf,A.C.等人,《儿科患者癌症治疗优化的分子筛查(MOSCATO-01):单一机构前瞻性分子分层试验》。临床。癌症研究236101-6112(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Jones, D. T. W. et al. Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nat. Rev. Cancer 19, 420–438 (2019).Article
Jones,D.T.W.等人,《小儿实体瘤的分子特征和治疗脆弱性》。《自然评论》癌症19420-438(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Khater, F. et al. Molecular profiling of hard-to-treat childhood and adolescent cancers. JAMA Netw. Open 2, e192906–e192906 (2019).Article
Khater,F.等人。难治儿童和青少年癌症的分子谱分析。JAMA网络。打开2,e192906–e192906(2019)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Worst, B. C. et al. Next-generation personalised medicine for high-risk paediatric cancer patients—the INFORM pilot study. Eur. J. Cancer 65, 91–101 (2016).Article
最糟糕的是,B.C.等人。针对高危儿科癌症患者的下一代个性化药物INFORM试点研究。《欧洲癌症杂志》65,91-101(2016)。文章
Google Scholar
谷歌学者
Lau, L. M. S. et al. In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer. EMBO Mol. Med. 14, e14608 (2022).Article
Lau,L.M.S.等人。肿瘤细胞的体外和体内药物筛选确定了高风险儿童癌症的新疗法。EMBO分子医学14,e14608(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
ClinicalTrials.gov. PRecISion Medicine for Children with Cancer (PRISM Study) 2019/ETH00701: a multicentre prospective study of the feasibility and clinical value of a diagnostic service for identifying therapeutic targets and recommending personalised treatment for children and adolescents with high-risk cancer, https://clinicaltrials.gov/show/NCT03336931 (2021).Oberg, J.
ClinicalTrials.gov。癌症儿童精准医学(PRISM研究)2019/ETH00701:一项多中心前瞻性研究,旨在研究诊断服务的可行性和临床价值,以确定治疗目标,并为高危癌症儿童和青少年推荐个性化治疗,https://clinicaltrials.gov/show/NCT03336931(2021年)。奥伯格,J。
A. et al. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med. 8, 133–133 (2016).Article .
A、 在儿科血液肿瘤实践中实施下一代测序:超越可行的改变。基因组医学8133-133(2016)。文章。
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gordon, L. G. et al. Estimating the costs of genomic sequencing in cancer control. BMC Health Serv. Res. 20, 492–492 (2020).Article
Gordon,L.G.等人,《估计癌症控制中基因组测序的成本》。BMC健康服务。第20、492–492号决议(2020年)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hamblin, A. et al. Clinical applicability and cost of a 46-gene panel for genomic analysis of solid tumours: Retrospective validation and prospective audit in the UK National Health Service. PLoS Med. 14, e1002230–e1002230 (2017).Article
Hamblin,A.等人。用于实体瘤基因组分析的46个基因组的临床适用性和成本:英国国家卫生服务局的回顾性验证和前瞻性审计。PLoS Med.14,e1002230–e1002230(2017)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Schwarze, K. et al. The complete costs of genome sequencing: a microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet. Med. 22, 85–94 (2020).Article
Schwarze,K.等人,《基因组测序的全部成本:来自英国一个中心的癌症和罕见疾病的微成本研究》。基因。医学杂志22,85-94(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Schwarze, K., Buchanan, J., Taylor, J. C. & Wordsworth, S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet. Med. 20, 1122–1130 (2018).Article
Schwarze,K.,Buchanan,J.,Taylor,J.C。和Wordsworth,S。全外显子组和全基因组测序方法是否具有成本效益?文献的系统综述。基因。医学201122-1130(2018)。文章
Google Scholar
谷歌学者
van Amerongen, R. A. et al. Next-generation sequencing in NSCLC and melanoma patients: a cost and budget impact analysis. Ecancermedicalscience 10, 684–684 (2016).PubMed Central
van Amerongen,R.A.等人,《非小细胞肺癌和黑色素瘤患者的下一代测序:成本和预算影响分析》。Ecancermedicalscience 10684-684(2016)。公共医学中心
Google Scholar
谷歌学者
Weymann, D. et al. The cost and cost trajectory of whole-genome analysis guiding treatment of patients with advanced cancers. Mol. Genet. Genom. Med. 5, 251–260 (2017).Article
。分子遗传学。基因组。医学杂志5251-260(2017)。文章
Google Scholar
谷歌学者
Rusch, M. et al. Clinical cancer genomic profiling by three-platform sequencing of whole genome, whole exome and transcriptome. Nat. Commun. 9, 3962–3913 (2018).Article
Rusch,M.等人。通过全基因组,全外显子组和转录组的三平台测序进行临床癌症基因组分析。。93962-3913(2018)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lau, L. M. S. et al. Precision-guided treatment in high-risk pediatric cancers. Nat. Med. 30, 1913–1922 (2024).Article
Lau,L.M.S.等人。高危儿科癌症的精确指导治疗。《自然医学》301913-1922(2024)。文章
CAS
中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Langenberg, K. P. S. et al. Implementation of paediatric precision oncology into clinical practice: the individualized therapies for children with cancer program ‘iTHER. Eur. J. Cancer 175, 311–325 (2022).Article
Langenberg,K.P.S.等人,《将儿科精准肿瘤学应用于临床实践:儿童癌症个体化治疗计划》。《欧洲癌症杂志》175311-325(2022)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Berlanga, P. et al. The European MAPPYACTS Trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov. 12, 1266–1281 (2022).Article
Berlanga,P.等人,《欧洲MAPPYACTS试验:儿科和青少年复发性恶性肿瘤患者的精准医学计划》。癌症发现。121266-1281(2022)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
van Tilburg, C. M. et al. The Pediatric Precision Oncology INFORM Registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 11, 2764–2779 (2021).Article
van Tilburg,C.M.等人,《儿科精准肿瘤学信息登记:具有非常高证据目标的患者的临床结果和益处》。癌症发现。112764-2779(2021)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Grover, S. A. et al. Abstract 5413: Terry Fox PRecision Oncology For Young peopLE (PROFYLE): a Canadian precision medicine program for children, adolescents and young adults with hard-to-treat cancer. Cancer Res. 80, 5413–5413 (2020).Article
Grover,S.A.等人摘要5413:Terry Fox青少年精准肿瘤学(PROPHYLE):一项针对儿童,青少年和难以治疗癌症的年轻人的加拿大精准医学计划。癌症研究805413-5413(2020)。文章
Google Scholar
谷歌学者
Hodder, A. et al. Routine whole genome sequencing for all children with hematological malignancies defines a new standard of care - data of the first 152 cases from the NHS England Genomic Medicine Service. Blood 142, 3656–3656 (2023).Article
Hodder,A。等人,针对所有血液系统恶性肿瘤儿童的常规全基因组测序定义了一种新的护理标准-来自NHS英格兰基因组医学服务的前152例病例的数据。血液1423656–3656(2023)。文章
Google Scholar
谷歌学者
Hodder, A. et al. Benefits for children with suspected cancer from routine whole-genome sequencing. Nat. Med. 30, 1905–1912 (2024).Article
Hodder,A.等人通过常规全基因组测序对疑似癌症儿童有益。。文章
CAS
中科院
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Archibald, A. D. et al. The Australian Reproductive Genetic Carrier Screening Project (Mackenzie’s Mission): design and implementation. J. Pers. Med. 12, 1781 https://doi.org/10.3390/jpm12111781 (2022).Australian Genomics Health Alliance Acute Care, F. et al. Feasibility of ultra-rapid exome sequencing in critically ill infants and children with suspected monogenic conditions in the Australian public health care system.
澳大利亚生殖遗传携带者筛查项目(麦肯齐的使命):设计和实施。J、 医学博士121781https://doi.org/10.3390/jpm12111781(2022年)。澳大利亚基因组学健康联盟急性护理,F。等人。在澳大利亚公共卫生保健系统中,对疑似单基因疾病的危重婴儿和儿童进行超快速外显子组测序的可行性。
JAMA 323, 2503–2511 (2020).Article .
牙买加3232503-2511(2020)。第条。
Google Scholar
谷歌学者
Best, S. et al. Learning from scaling up ultra-rapid genomic testing for critically ill children to a national level. NPJ Genom. Med. 6, 5 (2021).Article
Best,S.等人,从将危重儿童的超快速基因组检测扩大到国家水平的过程中学习。NPJ基因组。医学杂志6、5(2021)。文章
PubMed Central
公共医学中心
Google Scholar
谷歌学者
NHMRC. National Health and Medical Research Council Corporate Plan 2017–2018. (2017).AHMAC. National Health Genomics Policy Framework 2018—2021. (Australian Health Ministers’ Advisory Council, Commonwealth of Australia as represented by the Department of Health, 2017).Williamson, R. et al.
NHMRC。。(2017年)。艾哈迈克。2018-2021年国家卫生基因组学政策框架。(澳大利亚卫生部长咨询委员会,澳大利亚联邦卫生部代表,2017年)。威廉姆森,R。等人。
The future of precision medicine in Australia. (Australian Council of Learned Academies, 2018).Download referencesAcknowledgementsZero Childhood Cancer Precision Medicine Programme (ZERO) is a joint initiative led by the Children’s Cancer Institute and Kids Cancer Centre, Sydney Children’s Hospital, Randwick.
澳大利亚精准医学的未来。(澳大利亚学术学院理事会,2018年)。Download ReferencesAcknowlementsZero儿童癌症精准医学计划(ZERO)是由兰德威克悉尼儿童医院儿童癌症研究所和儿童癌症中心领导的联合倡议。
The following are acknowledged for providing information and advice on the Zero Childhood Cancer Precision Medicine Programme. Andrijana Padovan, Angela Lin, Angela Xie, Biljana Dumevska, Chelsea Mayoh, Emilio Caspanello, Emmy Dolman, Gabor Tax, Kimberly Dias, Loretta M. S. Lau, Louise Cui, Marie Wong, Mark J.
。安德莉亚娜·帕多瓦(AndrijanaPadovan)、安吉拉·林(AngelaLin)、安吉拉·谢(AngelaXie)、比尔雅娜·杜梅夫斯卡(BiljanaDumevska)、切尔西·梅奥(ChelseaMayoh)、埃米利奥·卡斯帕内罗(EmilioCaspanello)、艾美·多尔曼(EmmyDolman)、加博·塔克斯(Gabor Tax)、金伯利·迪亚斯(Ki。
Cowley, Moiz Bandukwala, Pamela Ajuyah, Patrick A. Strong, Paulette Barahona, Peter Trebilcock and Vishal Bishnoi from Children’s Cancer Institute. Laura Woodrow from the Kids Cancer Centre, Sydney Children’s Hospital. Dong-Anh Khuong-Quang from the Children’s Cancer Centre, Royal Children’s Hospital.
儿童癌症研究所的考利、莫伊斯·班杜瓦拉、帕梅拉·阿朱亚、帕特里克·斯特朗、保莱特·巴拉霍纳、彼得·特雷比尔科克和维沙尔·比什诺伊。来自悉尼儿童医院儿童癌症中心的劳拉·伍德罗。皇家儿童医院儿童癌症中心的Dong Anh Khuong Quang。
Sarah West from the Centre for Economic Impacts of Genomic Medicine, Macquarie University, is acknowledged for providing research support. We thank the Kinghorn Centre for Clinical Genomics (Garvan Institute of Medical Research), Murdoch Children’s Research Institute/Victorian Comprehensive Genetics Service for sequencing services.
麦格理大学基因组医学经济影响中心的SarahWest因提供研究支持而受到认可。我们感谢金霍恩临床基因组学中心(Garvan医学研究所),默多克儿童研究所/维多利亚州综合遗传学服务中心提供的测序服务。
The authors acknowledge the use of the clinical services and facilities of the Australian Genome Research Facility (AGRF). This work was funded by Luminesce Alliance—Innovation for Children’s Health. Luminesce Alliance—Innovation for.
作者承认使用了澳大利亚基因组研究机构(AGRF)的临床服务和设施。这项工作由Luminesce儿童健康创新联盟资助。Luminesce联盟创新。
PubMed Google ScholarOwen TanView author publicationsYou can also search for this author in
PubMed Google ScholarOwen TanView作者出版物您也可以在
PubMed Google ScholarJoice Kuroiwa-TrzmielinaView author publicationsYou can also search for this author in
PubMed Google ScholarJoice Kuroiwa TrzmielinaView作者出版物您也可以在
PubMed Google ScholarRupendra N. ShresthaView author publicationsYou can also search for this author in
PubMed Google ScholarRupendra N.ShresthaView作者出版物您也可以在
PubMed Google ScholarTracey O’BrienView author publicationsYou can also search for this author in
PubMed Google ScholarTracey O'BrienView作者出版物您也可以在
PubMed Google ScholarVanessa TyrrellView author publicationsYou can also search for this author in
PubMed Google ScholarVanessa TyrrellView作者出版物您也可以在
PubMed Google ScholarDeborah J. SchofieldView author publicationsYou can also search for this author in
PubMed Google ScholarDeborah J.Schofieldwiew作者出版物您也可以在
PubMed Google ScholarContributionsC.O., O.T. and R.S. performed statistical analysis and prepared the draft of the manuscript. C.O. and O.T. contributed equally to the manuscript. J.K. collated and prepared the data. T.O., V.T. and D.S. conceived the project. All authors interpreted the results, read and approved the final manuscript.Corresponding authorsCorrespondence to.
PubMed谷歌学术贡献中心。O、 ,O.T.和R.S.进行了统计分析并准备了手稿草稿。C、 O.和O.T.对手稿的贡献相同。J、 K.整理并准备了数据。T、 O.,V.T.和D.S.构思了这个项目。所有作者都解释了结果,阅读并批准了最终稿件。通讯作者通讯。
Rupendra N. Shrestha or Deborah J. Schofield.Ethics declarations
鲁本德拉·什莱斯塔或黛博拉·J·斯科菲尔德。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary TablesRights and permissions
。补充信息补充表权限
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleOwens, C.E.L., Tan, O., Kuroiwa-Trzmielina, J. et al. The economic costs of precision medicine for clinical translational research among children with high-risk cancer.
转载和许可本文引用本文Owens,C.E.L.,Tan,O.,Kuroiwa-Trzmielina,J。等人。精准医学用于高危癌症儿童临床转化研究的经济成本。
npj Precis. Onc. 8, 224 (2024). https://doi.org/10.1038/s41698-024-00711-wDownload citationReceived: 22 January 2024Accepted: 17 September 2024Published: 05 October 2024DOI: https://doi.org/10.1038/s41698-024-00711-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
npj精度。Onc。8224(2024)。https://doi.org/10.1038/s41698-024-00711-wDownload引文接收日期:2024年1月22日接受日期:2024年9月17日发布日期:2024年10月5日OI:https://doi.org/10.1038/s41698-024-00711-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
Subjects
主题
Cancer genomicsGenetic testingHealth care economicsPaediatric cancer
癌症基因组遗传学检测卫生保健经济学儿科癌症