商务合作
动脉网APP
可切换为仅中文
AbstractBiofilm formation by Shewanella oneidensis has been extensively studied under oxic conditions; however, relatively little is known about biofilm formation under anoxic conditions and how biofilm architecture and composition can positively influence current generation in bioelectrochemical systems.
摘要在有氧条件下,已经广泛研究了Shewanella oneidensis的生物膜形成;然而,关于缺氧条件下生物膜的形成以及生物膜的结构和组成如何对生物电化学系统中的电流产生产生积极影响,人们知之甚少。
In this study, we utilized a recently developed microfluidic biofilm analysis setup with automated 3D imaging to investigate the effects of extracellular electron acceptors and synthetic modifications to the extracellular polymeric matrix on biofilm formation. Our results with the wild type strain demonstrate robust biofilm formation even under anoxic conditions when fumarate is used as the electron acceptor.
在这项研究中,我们利用最近开发的具有自动3D成像的微流体生物膜分析装置来研究细胞外电子受体和细胞外聚合物基质的合成修饰对生物膜形成的影响。我们对野生型菌株的研究结果表明,当富马酸盐用作电子受体时,即使在缺氧条件下也能形成强大的生物膜。
However, this pattern shifts when a graphite electrode is employed as the electron acceptor, resulting in biofilm formation falling below the detection limit of the optical coherence tomography imaging system. To manipulate biofilm formation, we aimed to express BpfG with a single amino acid substitution in the catalytic center (C116S) and to overexpress bpfA.
然而,当石墨电极用作电子受体时,这种模式发生变化,导致生物膜形成低于光学相干断层扫描成像系统的检测限。为了操纵生物膜的形成,我们旨在在催化中心(C116S)中用单个氨基酸取代表达BpfG并过表达bpfA。
Our analyses indicate that, under oxic conditions, overarching mechanisms predominantly influence biofilm development, rather than the specific mutations we investigated. Under anoxic conditions, the bpfG mutation led to a quantitative increase in biofilm formation, but both strains exhibited significant qualitative changes in biofilm architecture compared to the controls.
我们的分析表明,在有氧条件下,总体机制主要影响生物膜的发育,而不是我们研究的特定突变。在缺氧条件下,bpfG突变导致生物膜形成的定量增加,但与对照相比,两种菌株的生物膜结构均表现出显着的质变。
When an anode was used as the sole electron acceptor, both the bpfA and bpfG mutations positively impacted mean current density, yielding a 1.8-fold increase for each mutation..
当阳极用作唯一的电子受体时,bpfA和bpfG突变均对平均电流密度产生积极影响,每个突变产生1.8倍的增加。。
IntroductionShewanella oneidensis MR1 is the best understood model organism regarding dissimilatory metal reduction and extracellular electron transfer onto carbon electrodes in bioelectrochemical systems (BES)1. However, strains of S. oneidensis generally exhibit lower rates of dissimilatory iron reduction and lower current densities compared to the other prominent model organism, Geobacter sulfurreducens2.
引言Shewanella oneidensis MR1是生物电化学系统(BES)1中关于异化金属还原和细胞外电子转移到碳电极上的最佳理解模式生物。然而,与其他突出的模式生物Geobacter sulfurreducens2相比,S.oneidensis菌株通常表现出较低的异化铁还原率和较低的电流密度。
The prevailing view is that G. sulfurreducens has evolved as a specialist for anaerobic respiration with insoluble electron acceptors, while S. oneidensis is as a respiration generalist, which is corroborated by its ability of respiring with the widest range of electron acceptors (including oxygen) known to date.
普遍的观点是,G.sulfurreducens已经发展成为具有不溶性电子受体的无氧呼吸专家,而S.oneidensis是呼吸通才,这一点得到了迄今为止已知的最广泛的电子受体(包括氧气)呼吸能力的证实。
A comparison of the biochemical machinery involved in extracellular electron transfer reveals that the overall strategies for transporting electrons to the cell surface are quite similar in both S. oneidensis and G. sulfurreducens3,4,5. Both organisms have developed an electron conduit through the outer membrane, consisting of one c-type cytochrome on the periplasmic side and one or two c-type cytochromes on the extracellular side of the outer membrane.
对涉及细胞外电子转移的生化机制的比较表明,在S.oneidensis和G.sulfurreducens3,4,5中,将电子传输到细胞表面的总体策略非常相似。两种生物都形成了一个穿过外膜的电子导管,该电子导管由周质侧的一个c型细胞色素和外膜胞外侧的一个或两个c型细胞色素组成。
The primary difference in their electron transfer strategies lies in the extension of the electron transfer chain beyond the cell surface in G. sulfurreducens6,7,8,9. While the mechanisms for electron transfer from the cytoplasmic membrane through the periplasm and the outer membrane are similar, G.
它们的电子转移策略的主要区别在于电子转移链在G.sulfurreducens6,7,8,9中延伸到细胞表面之外。虽然电子从细胞质膜通过周质和外膜转移的机制相似,但G。
sulfurreducens has developed the ability to conductively connect cells with one another and with electrodes using nanowires8,10,11,12,13,14. This capability has led to the hypothesis that the formation of multilayered, thick biofilms under anoxic conditions on solid electron acceptors is directly related to the o.
sulfurreducens已经开发出使用纳米线8,10,11,12,13,14将细胞彼此导电连接并与电极导电连接的能力。这种能力导致了这样的假设,即在缺氧条件下在固体电子受体上形成多层厚生物膜与o直接相关。
(1)
(1)
In order to automate data acquisition and processing as far as possible and to counteract the imperfect repeatability in x-y-positioning of the gantry robot, the OCT images were larger (as seen from above) than the actual cultivation channel. Consequently, parts of the image had to be cropped to be excluded from the calculations.
为了尽可能自动化数据采集和处理,并抵消龙门机器人x-y定位的不完全重复性,OCT图像比实际的栽培通道更大(从上面可以看出)。因此,必须对图像的部分进行裁剪才能从计算中排除。
To automate this step, only 50% of the respective cultivation channel was analyzed. Thus, the lateral walls were not included in the calculation of biovolume, biofilm height, surface coverage and porosity. Only the height maps show the entire channel.Preparation of cells for single-cell force spectroscopyThe S.
为了自动化这一步骤,仅分析了各自培养通道的50%。因此,侧壁不包括在生物体积,生物膜高度,表面覆盖率和孔隙率的计算中。只有高度贴图显示整个通道。单细胞力谱分析细胞的制备。
oneidensis variants were cultured as follows: One bacterial colony of each strain was added to 5 mL of LB medium (LB-Medium (Lennox), Carl Roth, Karlsruhe, Germany) and incubated overnight at 30 °C and 150 rpm for 16 h. To ensure that only bacteria from the exponential phase are used, another 40 µL of the overnight solution were cultivated in 4 mL LB-Medium for 2.5 h at 30 °C and 150 rpm, resulting in an optical density of ~ 0.05 at 600 nm.
如下培养oneidensis变体:将每种菌株的一个细菌菌落加入5 mL LB培养基(LB培养基(Lennox),Carl Roth,Karlsruhe,Germany)中,并在30°C和150 rpm下孵育过夜16小时。为了确保仅使用指数期的细菌,将另外40µL过夜溶液在4 mL LB培养基中于30°C和150 rpm培养2.5小时,在600 nm处的光密度约为0.05。
Afterwards the bacterial solution was washed three times with phosphate-buffered saline (PBS, pH 7.3) (Tablets, Sigma-Aldrich Merck KGaA, Darmstadt, Germany) and centrifuged for 3 min at 17,000 g.Substrate preparationFor the adhesion measurements, hydrophobized silicon wafers were used as test surfaces.
然后,将细菌溶液用磷酸盐缓冲盐水(PBS,pH 7.3)(片剂,Sigma-Aldrich-Merck KGaA,达姆施塔特,德国)洗涤三次,并以17000 g离心3分钟。基板制备为了进行附着力测量,使用疏水化硅片作为测试表面。
To fabricate these surfaces, the wafers were cleaned and coated with a monolayer of OTS (octadecyltrichlorosilane) (CAS 112-04-9, abcr GmbH, Karlsruhe, Germany), following a protocol by Lessel et al.36. Before the surfaces were used in the experiments, they were initially cleaned in ethanol (99,8% VWR International, Radnor, PA, USA) for a period of five minutes, followed by another five.
。在将表面用于实验之前,首先将它们在乙醇(99.8%VWR International,Radnor,PA,USA)中清洗五分钟,然后再清洗五分钟。
Data availability
数据可用性
The data sets generated and analyzed during this study are shown in the manuscript or can be obtained from the corresponding author on request.
在这项研究中生成和分析的数据集显示在手稿中,或者可以根据要求从通讯作者那里获得。
ReferencesBeblawy, S. et al. Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol. Microbiol. 109, 571–583 (2018).Article
参考文献Beblawy,S。等人。Shewanella oneidensis对固体电子受体的细胞外还原。分子微生物。。文章
CAS
中科院
Google Scholar
谷歌学者
Dolch, K. et al. Characterization of microbial current production as a function of microbe–electrode-interaction. Bioresour Technol. 157, 284–292 (2014).Article
Dolch,K.等人。微生物电流产生作为微生物-电极相互作用函数的表征。生物酸技术。157284-292(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Simonte, F., Sturm, G., Gescher, J. & Sturm-Richter, K. Extracellular electron transfer and biosensors. Adv. Biochem. Eng. Biotechnol. 167, 15–38 (2019).CAS
Simonte,F.,Sturm,G.,Gescher,J。&Sturm-Richter,K。细胞外电子转移和生物传感器。高级生物化学。工程生物技术。167,15-38(2019)。中科院
Google Scholar
谷歌学者
Beegle, J. R. & Borole, A. P. Exoelectrogens for microbial fuel cells. In Progress and Recent Trends in Microbial Fuel Cells 193–230 (2018).Klein, E. M., Knoll, M. T. & Gescher, J. Microbe–anode interactions: Comparing the impact of genetic and material engineering approaches to improve the performance of microbial electrochemical systems (MES).
Beegle,J.R。&Borole,A.P。微生物燃料电池的外电原。微生物燃料电池的进展和最新趋势193-230(2018)。Klein,E.M.,Knoll,M.T。&Gescher,J。微生物-阳极相互作用:比较遗传和材料工程方法对改善微生物电化学系统(MES)性能的影响。
Microb. Biotechnol. 16, 1179–1202 (2023).Article .
微生物。生物技术。161179-1202(2023)。文章。
Google Scholar
谷歌学者
Wang, F. et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell. 177, 361–369e10 (2019).Article
Wang,F。等人。微生物纳米线的结构揭示了堆叠的血红素,其将电子传输到微米以上。细胞。177361-369e10(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Lovley, D. R. & Walker, D. J. F. Geobacter protein nanowires. Front. Microbiol. 10, 474567 (2019).Article
Lovley,D.R。&Walker,D.J.F。Geobacter蛋白质纳米线。正面。微生物。10474567(2019)。文章
Google Scholar
谷歌学者
Filman, D. J. et al. Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Commun. Biol. 2, 1–6 (2019).Article
Filman,D.J.等人,Cryo-EM揭示了基于细胞色素的细菌纳米线中远程电子传输的结构基础。Commun公司。生物学2,1-6(2019)。文章
Google Scholar
谷歌学者
Rollefson, J. B., Stephen, C. S., Tien, M. & Bond, D. R. Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J. Bacteriol. 193, 1023–1033 (2011).Article
Rollefson,J.B.,Stephen,C.S.,Tien,M。和Bond,D.R。鉴定细胞色素锚定和生物膜形成所必需的细胞外多糖网络。J、 细菌。1931023-1033(2011)。文章
CAS
中科院
Google Scholar
谷歌学者
Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature. 435, 1098–1101 (2005).Article
Reguera,G。等人。通过微生物纳米线的细胞外电子转移。自然。4351098-1101(2005)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Malvankar, N. S. & Lovley, D. R. Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol. 27, 88–95 (2014).Article
Malvankar,N.S。和Lovley,D.R。用于生物能源应用的微生物纳米线。货币。。生物技术。27,88-95(2014)。文章
CAS
中科院
Google Scholar
谷歌学者
Malvankar, N. S. et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573–579 (2011).Article
Malvankar,N.S.等人。微生物纳米线网络中的可调类金属电导率。自然纳米技术。6573-579(2011)。文章
ADS
广告
Google Scholar
谷歌学者
Wang, F. et al. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers. Cell. 177, 361 (2019).Article
Wang,F。等人。微生物纳米线的结构揭示了堆叠的血红素,其将电子传输到微米以上。细胞。177361(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Wang, Z., Hu, Y., Dong, Y., Shi, L. & Jiang, Y. Enhancing electrical outputs of the fuel cells with Geobacter sulferreducens by overexpressing nanowire proteins. Microb. Biotechnol. 16, 534–545 (2023).Article
Wang,Z.,Hu,Y.,Dong,Y.,Shi,L。&Jiang,Y。通过过表达纳米线蛋白来增强硫地杆菌燃料电池的电输出。微生物。生物技术。16534-545(2023)。文章
CAS
中科院
Google Scholar
谷歌学者
Clarke, T. A. Plugging into bacterial nanowires: A comparison of model electrogenic organisms. Curr. Opin. Microbiol. 66, 56–62 (2022).Article
Clarke,T.A。插入细菌纳米线:模型电生物的比较。货币。。微生物。66,56-62(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. USA. 103, 11358–11363 (2006).Article
Gorby,Y.A.等人。由Shewanella oneidensis菌株MR-1和其他微生物产生的导电细菌纳米线。程序。纳特尔。阿卡德。科学。美国10311358–11363(2006)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Subramanian, P., Pirbadian, S., El-Naggar, M. Y. & Jensen, G. J. Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc. Natl. Acad. Sci. USA. 115, E3246–E3255 (2018).Article
Subramanian,P.,Pirbadian,S.,El Naggar,M.Y。和Jensen,G.J。通过电子冷冻断层扫描揭示的Shewanella oneidensis MR-1纳米线的超微结构。程序。纳特尔。阿卡德。科学。美国115,E3246–E3255(2018)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. USA. 111, 12883–12888 (2014).Article
Pirbadian,S。等人。Shewanella oneidensis MR-1纳米线是细胞外电子传递成分的外膜和周质延伸。程序。纳特尔。阿卡德。科学。美国11112883–12888(2014)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
El-Naggar, M. Y. et al. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. USA. 107, 18127–18131 (2010).Article
El Naggar,M.Y.等人。来自Shewanella oneidensis MR-1的细菌纳米线的电传输。程序。纳特尔。阿卡德。科学。美国10718127–18131(2010)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Lovley, D. R. & Holmes, D. E. Protein nanowires: The electrification of the microbial world and maybe our own. J. Bacteriol. 202, e00331–e00320 (2020).Article
Lovley,D.R。和Holmes,D.E。蛋白质纳米线:微生物世界的电气化,也许还有我们自己的。J、 细菌。202,e00331–e00320(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Thormann, K. M., Saville, R. M., Shukla, S., Pelletier, D. A. & Spormann, A. M. Initial phases of Biofilm formation in Shewanella oneidensis MR-1. J. Bacteriol. 186, 8096 (2004).Article
Thormann,K.M.,Saville,R.M.,Shukla,S.,Pelletier,D.A。和Spormann,A.M。Shewanella oneidensis MR-1中生物膜形成的初始阶段。J、 细菌。1868096(2004)。文章
CAS
中科院
Google Scholar
谷歌学者
Thormann, K. M. et al. Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. J. Bacteriol. 188, 2681–2691 (2006).Article
Thormann,K.M.等人。通过环状双GMP控制Shewanella oneidensis MR-1生物膜的形成和细胞分离。J、 细菌。1882681-2691(2006)。文章
CAS
中科院
Google Scholar
谷歌学者
Teal, T. K., Lies, D. P., Wold, B. J. & Newman, D. K. Spatiometabolic stratification of Shewanella oneidensis biofilms. Appl. Environ. Microbiol. 72, 7324–7330 (2006).Article
Teal,T.K.,Lies,D.P.,Wold,B.J。和Newman,D.K。Shewanella oneidensis生物膜的空间代谢分层。。环境。微生物。727324-7330(2006)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Liang, Y. et al. Pellicle formation in Shewanella oneidensis. BMC Microbiol. 10, 1–11 (2010).Article
。BMC微生物。10,1-11(2010)。文章
Google Scholar
谷歌学者
Edel, M. et al. Extracellular riboflavin induces anaerobic biofilm formation in Shewanella oneidensis. Biotechnol. Biofuels. 14, 130 (2021).Article
细胞外核黄素诱导Shewanella oneidensis厌氧生物膜的形成。生物技术。生物燃料。14130(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Zhou, G., Yuan, J. & Gao, H. Regulation of biofilm formation by BpfA, BpfD, and BpfG in Shewanella oneidensis. Front. Microbiol. 6, 147157 (2015).Article
Zhou,G.,Yuan,J。&Gao,H。BpfA,BpfD和BpfG对Shewanella oneidensis生物膜形成的调节。正面。微生物。。文章
Google Scholar
谷歌学者
Klein, E. M., Wurst, R., Rehnlund, D. & Gescher, J. Elucidating the development of cooperative anode-biofilm‐structures. Biofilm. 7, 100193 (2024).Article
。生物膜。7100193(2024)。文章
Google Scholar
谷歌学者
Lennox, E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1, 190–206 (1955).Article
Lennox,E.S。通过噬菌体P1转导宿主的连锁遗传特征。病毒学。1190-206(1955)。文章
CAS
中科院
Google Scholar
谷歌学者
Arinda, T. et al. Addition of Riboflavin-coupled magnetic beads increases current production in Bioelectrochemical Systems via the increased formation of Anode-Biofilms. Front. Microbiol. 10 (2019).Schuetz, B., Schicklberger, M., Kuermann, J., Spormann, A. M. & Gescher, J. Periplasmic electron transfer via the c-type cytochromes Mtra and Fcca of Shewanella oneidensis MR-1.
Arinda,T。等人。核黄素偶联磁珠的添加通过增加阳极生物膜的形成来增加生物电化学系统中的电流产生。正面。微生物。10(2019)。Schuetz,B.,Schicklberger,M.,Kuermann,J.,Spormann,A.M。&Gescher,J。通过Shewanella oneidensis MR-1的c型细胞色素Mtra和Fcca进行周质电子转移。
Appl. Environ. Microbiol. 75, 7789–7796 (2009).Article .
苹果。大约。微生物。757789–7796(2009)。文章。
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods. 6, 343–345 (2009).Article
吉布森(Gibson,D.G.)等人。酶促组装高达数百千碱基的DNA分子。自然方法。6343-345(2009)。文章
CAS
中科院
Google Scholar
谷歌学者
Saltikov, C. W. & Newman, D. K. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA. 100, 10983 (2003).Article
Saltikov,C.W。和Newman,D.K。呼吸砷酸还原酶的遗传鉴定。程序。纳特尔。阿卡德。科学。美国10010983(2003)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Bauer, A. et al. In-situ monitoring and quantification of fouling development in membrane distillation by means of optical coherence tomography. J. Memb. Sci. 577, 145–152 (2019).Article
。J、 记忆。科学。577145-152(2019)。文章
CAS
中科院
Google Scholar
谷歌学者
Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012).Article
Schindelin,J。等人。斐济:生物图像分析的开源平台。自然方法。9676-682(2012)。文章
CAS
中科院
Google Scholar
谷歌学者
Wagner, M. & Horn, H. Optical coherence tomography in biofilm research: A comprehensive review. Biotechnol. Bioeng. 114, 1386–1402 (2017).Article
Wagner,M。&Horn,H。生物膜研究中的光学相干断层扫描:全面综述。生物技术。生物能源。1141386-1402(2017)。文章
CAS
中科院
Google Scholar
谷歌学者
Lessel, M. et al. Self-assembled silane monolayers: An efficient step-by-step recipe for high-quality, low energy surfaces. Surf. Interface Anal. 47, 557–564 (2015).Article
Lessel,M.等人,《自组装硅烷单层:高质量低能表面的有效逐步配方》。冲浪。接口分析。47557-564(2015)。文章
CAS
中科院
Google Scholar
谷歌学者
Thewes, N. et al. A detailed guideline for the fabrication of single bacterial probes used for atomic force spectroscopy. Eur. Phys. J. E. 38, 1–9 (2015).Article
Thewes,N.等人。用于原子力光谱的单细菌探针制造的详细指南。欧洲物理学会。J、 E.38,1-9(2015)。文章
CAS
中科院
Google Scholar
谷歌学者
Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).Article
。修订版Sci。仪器。703967-3969(1999)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Maikranz, E. et al. Different binding mechanisms of Staphylococcus aureus to hydrophobic and hydrophilic surfaces. Nanoscale. 12, 19267–19275 (2020).Article
Maikranz,E。等人。金黄色葡萄球菌与疏水和亲水表面的不同结合机制。纳米级。1219267-19275(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Thewes, N. et al. Stochastic binding of Staphylococcus aureus to hydrophobic surfaces. Soft Matter. 11, 8913–8919 (2015).Article
Thewes,N.等人。金黄色葡萄球菌与疏水表面的随机结合。软物质。。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Marritt, S. J. et al. The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1. Biochem. Soc. Trans. 40, 1217–1221 (2012).Article
Marritt,S.J.等人。CymA在支持Shewanella oneidensis MR-1呼吸灵活性中的作用。生物化学。社会事务。401217-1221(2012)。文章
CAS
中科院
Google Scholar
谷歌学者
Beliaev, A. S. et al. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol. 187, 7138–7145 (2005).Article
。J、 细菌。1877138-7145(2005)。文章
CAS
中科院
Google Scholar
谷歌学者
Baron, D., LaBelle, E., Coursolle, D., Gralnick, J. A. & Bond, D. R. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J. Biol. Chem. 284, 28865–28873 (2009).Article
Baron,D.,LaBelle,E.,Coursolle,D.,Gralnick,J.A。&Bond,D.R。Shewanella oneidensis MR-1对电子转移动力学的电化学测量。J、 生物。化学。28428865–28873(2009)。文章
CAS
中科院
Google Scholar
谷歌学者
Kitayama, M., Koga, R., Kasai, T., Kouzuma, A. & Watanabe, K. Structures, compositions, and activities of live Shewanella biofilms formed on graphite electrodes in electrochemical flow cells. Appl. Environ. Microbiol. 83, e00903–e00917 (2017).Article
Kitayama,M.,Koga,R.,Kasai,T.,Kouzuma,A。&Watanabe,K。电化学流动池中石墨电极上形成的活Shewanella生物膜的结构,组成和活性。。环境。微生物。83,e00903–e00917(2017)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Rosenbaum, M. A. et al. Transcriptional analysis of Shewanella oneidensis MR-1 with an electrode compared to Fe(III)citrate or oxygen as terminal electron acceptor. PLoS One. 7, e30827 (2012).Article
Rosenbaum,M.A.等人。与柠檬酸铁(III)或氧作为末端电子受体相比,用电极对Shewanella oneidensis MR-1进行转录分析。PLoS One。7,e30827(2012)。文章
ADS
广告
CAS
中科院
Google Scholar
谷歌学者
Lin, Z. et al. Distinct biofilm formation regulated by different culture media: Implications to electricity generation. Bioelectrochemistry. 140, 107826 (2021).Article
Lin,Z.等人。不同培养基调节的不同生物膜形成:对发电的影响。生物电化学。140107826(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
He, H., Lian, J., Chen, C., Xiong, Q. & Zhang, M. Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem. Eng. J. 421, 129786 (2021).Article
He,H.,Lian,J.,Chen,C.,Xiong,Q。&Zhang,M。用于锌离子混合超级电容器的独立和柔性阴极的超亲水碳纤维膜。化学。《工程杂志》421129786(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Li, Y. F., Chen, S. M., Lai, W. H., Sheng, Y. J. & Tsao, H. K. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation. J. Chem. Phys. 139, 064703 (2013).Article
Li,Y.F.,Chen,S.M.,Lai,W.H.,Sheng,Y.J。&Tsao,H.K。通过电化学剥离的超亲水石墨表面和水分散石墨胶体。J、 化学。物理。139064703(2013)。文章
ADS
广告
Google Scholar
谷歌学者
Liu, H. & Li, L. Graphitic materials: Intrinsic hydrophilicity and its implications. Extreme Mech. Lett. 14, 44–50 (2017).Article
Liu,H。&Li,L。石墨材料:内在亲水性及其意义。极端机械。利特。14,44-50(2017)。文章
Google Scholar
谷歌学者
Boyd, C. D. et al. Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization. J. Bacteriol. 196, 2775 (2014).Article
Boyd,C.D.等人。荧光假单胞菌生物膜粘附素LapA的结构特征,需要LapG依赖性切割,生物膜形成和细胞表面定位。J、 细菌。1962775(2014)。文章
Google Scholar
谷歌学者
Zhao, F. et al. Light-Induced patterning of Electroactive bacterial biofilms. ACS Synth. Biol. 11, 2327–2338 (2022).Article
赵,F。等。电活性细菌生物膜的光诱导模式。ACS合成。生物学112327-2338(2022)。文章
CAS
中科院
Google Scholar
谷歌学者
Stewart, P. S. Diffusion in biofilms. J. Bacteriol. 185, 1485–1491 (2003).Article
Stewart,P.S。生物膜中的扩散。J、 细菌。1851485-1491(2003)。文章
CAS
中科院
Google Scholar
谷歌学者
Hibiya, K., Nagai, J., Tsuneda, S. & Hirata, A. Simple prediction of oxygen penetration depth in biofilms for wastewater treatment. Biochem. Eng. J. 19, 61–68 (2004).Article
Hibiya,K.,Nagai,J.,Tsuneda,S。&Hirata,A。简单预测废水处理生物膜中的氧渗透深度。生物化学。《工程杂志》19,61–68(2004)。文章
CAS
中科院
Google Scholar
谷歌学者
Wille, J. & Coenye, T. Biofilm dispersion: The key to biofilm eradication or opening Pandora’s box? Biofilm. 2, 100027 (2020).Article
Wille,J。&Coenye,T。生物膜分散:生物膜根除或打开潘多拉盒子的关键?生物膜。2100027(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Rumbaugh, K. P. & Sauer, K. Biofilm dispersion. Nat. Rev. Microbiol. 18, 571–586 (2020).Article
Rumbaugh,K.P。和Sauer,K。生物膜分散。自然修订版微生物学。18571-586(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Petrova, O. E. & Sauer, K. Escaping the biofilm in more than one way: Desorption, detachment or dispersion. Curr. Opin. Microbiol. 30, 67–78 (2016).Article
Petrova,O.E.&Sauer,K。以多种方式逃离生物膜:解吸,分离或分散。货币。。微生物。30,67-78(2016)。文章
CAS
中科院
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis work was financially supported from the projects “Continuous Bioproduction Using a Tailored Biocatalyst for Electrode Assisted Fermentation” (grant no: 031B0847C) of the Federal Ministry of Education and Research (BMBF) and “Synthetic engineering of conductive biofilm development in the γ-proteobacterium Shewanella oneidensis“ of the German Research Foundation (DFG).
下载参考文献致谢这项工作得到了联邦教育和研究部(BMBF)的项目“使用定制的生物催化剂进行电极辅助发酵的连续生物生产”(批准号:031B0847C)和德国研究基金会(DFG)的“γ-变形杆菌Shewanella oneidensis中导电生物膜开发的合成工程”的资助。
The authors H.H., H.H. and K.J. thank the German Research Foundation (DFG) for funding within the Collaborative Research Center SFB 1027. This research was also supported by DFG large instrument funding under grant number INST 256/542-1 FUGG (project number 449375068). K.J. would like to thank the German Federal Ministry of Education and Research (BMBF) for their support of the Max Planck School Matter to Life in collaboration with the Max Planck society.FundingOpen Access funding enabled and organized by Projekt DEAL.Author informationAuthors and AffiliationsInstitute of Technical Microbiology, University of Technology Hamburg, 21073, Hamburg, GermanyEdina Marlen Klein, René Wurst, Simon Schuldt & Johannes GescherExperimental Physics, Center for Biophysics, Saarland University, 66123, Saarbrücken, GermanyHannah Heintz, Hendrik Hähl & Karin JacobsMax Planck School Matter to Life, 69120, Heidelberg, GermanyKarin JacobsAuthorsEdina Marlen KleinView author publicationsYou can also search for this author in.
作者H.H.,H.H.和K.J.感谢德国研究基金会(DFG)在合作研究中心SFB 1027内提供资金。这项研究也得到了DFG大型仪器基金的支持,资助号为INST 256/542-1 FUGG(项目号449375068)。K、 J.要感谢德国联邦教育和研究部(BMBF)与马克斯·普朗克学会合作,支持马克斯·普朗克学校的生命问题。。作者信息作者和附属机构汉堡理工大学技术微生物学研究所,21073,汉堡,GermanyEdina Marlen Klein,RenéWurst,Simon Schuldt&Johannes Gescher Saarland大学生物物理中心实验物理,66123,Saarbrücken,GermanyHannah Heintz,Hendrik Hähl&Karin JacobsMax Planck School Matter to Life,69120,Heidelberg,GermanyKarin JacobsAuthorsEdina Marlen KleinView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarHannah HeintzView author publicationsYou can also search for this author in
PubMed Google ScholarHannah HeintzView作者出版物您也可以在
PubMed Google ScholarRené WurstView author publicationsYou can also search for this author in
PubMed Google ScholarRenéWurstView作者出版物您也可以在
PubMed Google ScholarSimon SchuldtView author publicationsYou can also search for this author in
PubMed Google ScholarSimon SchuldtView作者出版物您也可以在
PubMed Google ScholarHendrik HählView author publicationsYou can also search for this author in
PubMed Google ScholarHendrik HählView作者出版物您也可以在
PubMed Google ScholarKarin JacobsView author publicationsYou can also search for this author in
PubMed Google ScholarKarin JacobsView作者出版物您也可以在
PubMed Google ScholarJohannes GescherView author publicationsYou can also search for this author in
PubMed Google ScholarJohannes GescherView作者出版物您也可以在
PubMed Google ScholarContributionsE.K.: Writing – original draft, Writing – review & editing, Supervision, Visualization, Validation, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Ha.H.: Formal analysis, Investigation, Methodology, Visualization, Writing – review & editing.
PubMed谷歌学术贡献。K、 :写作-原稿,写作-评论和编辑,监督,可视化,验证,方法论,调查,正式分析,数据管理,概念化。哈。H、 :形式分析、调查、方法论、可视化、写作-评论和编辑。
R.W.: Writing – review & editing, Validation, Supervision, Investigation. S.S.: Investigation. He.H.: Formal analysis, Methodology, Supervision, Visualization, Writing – review & editing. K.J.: Conceptualization, Data Curation, Funding acquisition, Project administration, Resources, Supervision, Writing – review & editing.
R、 W.:写作-审查和编辑,验证,监督,调查。S、 美国:调查。他。H、 :形式分析,方法论,监督,可视化,写作-评论和编辑。K、 J.:概念化,数据管理,资金获取,项目管理,资源,监督,写作-审查和编辑。
J.G.: Writing – original draft, Writing – review & editing, Validation, Supervision, Resources, Project administration, Methodology, Funding acquisition, Conceptualization.Corresponding authorCorrespondence to.
J、 。对应作者对应。
Johannes Gescher.Ethics declarations
Johannes Gescher。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary InformationSupplementary Material 1Rights and permissions
Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充材料1权利和许可
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleKlein, E.M., Heintz, H., Wurst, R. et al. Comparative analysis of the influence of BpfA and BpfG on biofilm development and current density in Shewanella oneidensis under oxic, fumarate- and anode-respiring conditions.
转载和许可本文引用本文Klein,E.M.,Heintz,H.,Wurst,R。等人在有氧,富马酸盐和阳极呼吸条件下比较分析BpfA和BpfG对Shewanella oneidensis生物膜发育和电流密度的影响。
Sci Rep 14, 23174 (2024). https://doi.org/10.1038/s41598-024-73474-wDownload citationReceived: 18 July 2024Accepted: 17 September 2024Published: 05 October 2024DOI: https://doi.org/10.1038/s41598-024-73474-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
Sci Rep 1423174(2024)。https://doi.org/10.1038/s41598-024-73474-wDownload引文接收日期:2024年7月18日接受日期:2024年9月17日发布日期:2024年10月5日OI:https://doi.org/10.1038/s41598-024-73474-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。