EN
登录

用于识别2型糖尿病社会风险增加的公平个体化多社会风险评分

A fair individualized polysocial risk score for identifying increased social risk in type 2 diabetes

Nature 等信源发布 2024-10-05 21:46

可切换为仅中文


AbstractRacial and ethnic minorities bear a disproportionate burden of type 2 diabetes (T2D) and its complications, with social determinants of health (SDoH) recognized as key drivers of these disparities. Implementing efficient and effective social needs management strategies is crucial. We propose a machine learning analytic pipeline to calculate the individualized polysocial risk score (iPsRS), which can identify T2D patients at high social risk for hospitalization, incorporating explainable AI techniques and algorithmic fairness optimization.

摘要种族和少数民族承担着2型糖尿病(T2D)及其并发症的不成比例的负担,社会健康决定因素(SDoH)被认为是这些差异的关键驱动因素。实施高效和有效的社会需求管理战略至关重要。我们提出了一种机器学习分析流程来计算个性化多社会风险评分(iPsRS),该评分可以识别住院社会风险高的T2D患者,并结合可解释的AI技术和算法公平性优化。

We use electronic health records (EHR) data from T2D patients in the University of Florida Health Integrated Data Repository, incorporating both contextual SDoH (e.g., neighborhood deprivation) and person-level SDoH (e.g., housing instability). After fairness optimization across racial and ethnic groups, the iPsRS achieved a C statistic of 0.71 in predicting 1-year hospitalization.

我们使用佛罗里达大学健康综合数据库中T2D患者的电子健康记录(EHR)数据,结合了背景SDoH(例如邻里剥夺)和个人层面SDoH(例如住房不稳定)。在种族和族裔群体的公平性优化后,iPsRS在预测1年住院率方面达到了0.71的C统计量。

Our iPsRS can fairly and accurately screen patients with T2D who are at increased social risk for hospitalization..

我们的IPSR可以公平准确地筛查住院社会风险增加的T2D患者。。

IntroductionDiabetes affects 529 million people worldwide and the number is projected to more than double in the next three decades, reaching 1.3 billion by 20501. Over 90% of diabetes cases are type 2 diabetes (T2D)2. Existing research has shown that social determinants of health (SDoH)—“the conditions in the environments where people are born, live, learn, work, play, worship, and age,”3,4 such as education, income, and access to healthy food, play a critical role affecting a wide range of health outcomes, including the development and prognosis of T2D5,6,7.

引言糖尿病影响全球5.29亿人,预计在未来三十年内这一数字将翻一番以上,到20501年达到13亿。超过90%的糖尿病病例是2型糖尿病(T2D)2。现有研究表明,健康的社会决定因素(SDoH)-“人们出生,生活,学习,工作,玩耍,崇拜和年龄的环境条件”,3,4如教育,收入和获得健康食品,对影响广泛的健康结果起着至关重要的作用,包括T2D5,6,7的发展和预后。

Moreover, health disparities in T2D have been widely documented over the past decades8,9,10. Racial and ethnic minority groups and individuals experiencing social disadvantages—often rooted in their SDoH—bear a disproportionate burden of T2D and its complications11,12,13. As such, diabetes is a public crisis that must be managed with sensitivity to patients’ unmet social needs to improve T2D outcomes and health equity.The US healthcare system has begun embracing the need to address patients’ social needs, including screening for SDoH at the point of care.

。种族和少数民族群体以及经常根植于SDoH的社会弱势群体承担着T2D及其并发症的不成比例的负担11,12,13。因此,糖尿病是一种公共危机,必须对患者未满足的社会需求进行敏感管理,以改善T2D结果和健康公平。美国医疗保健系统已经开始接受满足患者社会需求的需求,包括在护理点筛查SDoH。

For example, the Centers for Medicare & Medicaid Services (CMS) have made proposals to require SDoH screening (e.g., housing stability, food insecurity, and access to transportation) in annual beneficiary health risk assessments. Despite this push, only 16–24% of clinics and hospitals provide SDoH screening14, and the actual utilization rate is very low15.

例如,医疗保险和医疗补助服务中心(CMS)提出建议,要求在年度受益人健康风险评估中进行SDoH筛查(例如,住房稳定性,粮食不安全和交通便利)。尽管如此,只有16-24%的诊所和医院提供SDoH筛查14,实际利用率非常低15。

In a national network of community health centers, only 2% of patients were screened for SDoH, and most had only one SDoH documented16. The reasons for the low rate of SDoH screening are multiple17. First, existing screening tools are not automated, making them difficult to adapt to clinical workflows18,19.

在全国社区卫生中心网络中,只有2%的患者接受了SDoH筛查,大多数患者只有一个SDoH记录16。SDoH筛查率低的原因是多方面的17。首先,现有的筛查工具不是自动化的,使得它们难以适应临床工作流程18,19。

In .

在。

Development of ML pipeline for iPsRS

Figure 8 shows our overall analytics pipeline. First, we imputed missing data and then adopted balance processing techniques (Step 1. Preprocessing). After that, we trained a set of machine learning models by using grid search cross-validation to identify the best hyperparameters (Step 2. ML Modeling).

图8显示了我们的整体分析流程。首先,我们估算缺失数据,然后采用平衡处理技术(步骤1)。预处理)。之后,我们通过使用网格搜索交叉验证来训练一组机器学习模型,以识别最佳超参数(步骤2)。ML建模)。

Next, we evaluated the model prediction performance (Step 3. Performance Assessment) and utilized XAI and causal structure learning techniques to identify important causal SDoH contributing to the hospitalization outcome (Step 4. Explanation). Finally, we assessed the algorithmic fairness (Step 5. Fairness Assessment) and implemented a range of fairness issue mitigation algorithms to address the identified bias (Step 6.

接下来,我们评估了模型预测性能(步骤3)。性能评估),并利用XAI和因果结构学习技术来确定有助于住院结果的重要因果SDoH(步骤4)。解释)。最后,我们评估了算法的公平性(步骤5)。。

Potential Bias Mitigation).Fig. 8: Data analytics pipeline for iPsRS.This pipeline contains six steps: preprocessing, machine learning modeling, performance assessment, explanation, fairness assessment, and potential bias mitigation. Attribution: the icons for gear, graph, and brain were originally designed by Freepik (www.freepik.com).

潜在的偏见缓解)。图8:IPSR的数据分析管道。该管道包含六个步骤:预处理,机器学习建模,性能评估,解释,公平性评估和潜在的偏见缓解。属性:齿轮、图形和大脑的图标最初是由Freepik(www.Freepik.com)设计的。

The other icons were designed by Vecteezy, including: <a href=https://www.vecteezy.com/free-vector/magnifying-glass>Magnifying Glass Vectors by Vecteezy </a>, <a href = “https://www.vecteezy.com/vector-art/45358325-a-set-of-icons-that-include-books-law-and-other-items”>a set of icons that include books, law, and other items Vectors by Vecteezy </a>, <a href = “https://www.vecteezy.com/vector-art/680841-set-of-health-checkup-thin-line-and-pixel-perfect-icons-for-any-web-and-app-project”>Set of Health Checkup thin line and pixel perfect icons for any web and app project.

其他图标由Vecteezy设计,包括:=https://www.vecteezy.com/free-vector/magnifying-glass>通过Vecteezy放大玻璃向量,a href=“a”https://www.vecteezy.com/vector-art/45358325-a-set-of-icons-that-include-books-law-and-other-items“>一组图标,包括书籍、法律和Vecteezy的其他项目向量,a href=”https://www.vecteezy.com/vector-art/680841-set-of-health-checkup-thin-line-and-pixel-perfect-icons-for-any-web-and-app-project“>一套适用于任何web和应用程序项目的健康检查细线条和像素完美图标。

Vectors by Vecteezy </a>, <a href=https://www.vecteezy.com/free-vector/heart-rate>Heart Rate Vectors by Vecteezy </a>.Full size image.

Vectors by Vecteezy </a>, <a href=https://www.vecteezy.com/free-vector/heart-rate>Heart Rate Vectors by Vecteezy </a>.Full size image.

Data preprocessingWe imputed missing values using the “unknown” label for categorical variables and the mean for continuous variables to ensure the ML models can work smoothly. Next, we proceeded to create dummy variables for the categorical variables for the models to understand and applied min-max normalization to the continuous variables for improving the performance of regularization models (e.g., Lasso).

数据预处理我们使用分类变量的“未知”标签和连续变量的平均值来估算缺失值,以确保ML模型能够顺利工作。接下来,我们继续为模型的分类变量创建虚拟变量,以理解并将最小-最大归一化应用于连续变量,以提高正则化模型(例如Lasso)的性能。

Then, we employed random over-sampling (ROS), random under-sampling (RUS), and under-sampling by matching on Charlson Comorbidity Index (CCI)57 to address data imbalance before model training. ROS randomly duplicates the minority samples and RUS aims to randomly remove samples in the majority class.

然后,我们采用随机过采样(ROS),随机欠采样(RUS)和通过匹配Charlson合并症指数(CCI)57进行欠采样,以解决模型训练前的数据不平衡问题。。

CCI is a method of classifying the comorbidities of patients and can be a clinical factor for predicting hospitalization and mortality58. We used CCI to match a pair of majority and minority samples and created a balanced dataset for modeling training.Machine learning model development for iPsRSWe developed the iPsRS model for predicting hospitalizations in patients with T2D using three sets of input features: (1) individual-level SDoH only, (2) contextual-level SDoH only, and (3) individual- and contextual-level SDoH combined.

CCI是一种对患者合并症进行分类的方法,可以作为预测住院和死亡率的临床因素58。我们使用CCI匹配一对多数和少数样本,并创建了一个用于建模训练的平衡数据集。iPsRS的机器学习模型开发我们使用三组输入特征开发了iPsRS模型,用于预测T2D患者的住院情况:(1)仅个人层面的SDoH,(2)仅上下文层面的SDoH,以及(3)个人层面和上下文层面的SDoH相结合。

Two classes of commonly used ML approaches, linear and tree-based models, were employed. For the linear models, we included a range of hyperparameters and penalty functions that can be utilized in constructing different models, including logistic regression59, lasso regression60, ridge regression61, and ElasticNet62.

采用了两类常用的ML方法,线性和基于树的模型。对于线性模型,我们包括一系列超参数和惩罚函数,可用于构建不同的模型,包括逻辑回归59,套索回归60,岭回归61和ElasticNet62。

For the tree-based models, we selected Extreme Gradient Boosting (XGBoost), which is widely recognized as one of the best-in-class algorithms for decision-tree-based models and has shown remarkable prediction performance in a wide ra.

对于基于树的模型,我们选择了极端梯度提升(XGBoost),它被广泛认为是基于决策树的模型的同类最佳算法之一,并且在广泛的ra中显示出显着的预测性能。

Data availability

数据可用性

Data from UF Health IDR can be requested through https://idr.ufhealth.org/research-services/data-request-form/. Since the UF Health data is a HIPAA-limited data set, a data use agreement needs to be established with the UF Health IDR research team. The relevant data for each figure is provided in the Source Data file. Source data are provided with this paper..

可以通过以下方式请求UF Health IDR的数据https://idr.ufhealth.org/research-services/data-request-form/.由于UF Health数据是HIPAA有限的数据集,因此需要与UF Health IDR研究团队建立数据使用协议。。本文提供了源数据。。

Code availability

代码可用性

We have created a GitHub repository for the current study (https://github.com/uf-hobi-informatics-lab/iPsRS_Public) where we have uploaded our Python code. The repository is publicly available for access.

我们为当前的研究创建了一个GitHub存储库(https://github.com/uf-hobi-informatics-lab/iPsRS_Public)我们在那里上传了Python代码。该存储库可公开访问。

ReferencesOng, K. L. et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).Article

ReferencesOng,K.L.等人,《1990年至2021年全球、区域和国家糖尿病负担,预测到2050年的患病率:2021年全球疾病负担研究的系统分析》。柳叶刀402203-234(2023)。文章

Google Scholar

谷歌学者

C. D. C. Type 2 Diabetes. Centers for Disease Control and Prevention https://www.cdc.gov/diabetes/basics/type2.html (2022).Social Determinants of Health. https://health.gov/healthypeople/priority-areas/social-determinants-health.Marmot, M. et al. Closing the gap in a generation: health equity through action on the social determinants of health.

C、 2型糖尿病。疾病控制和预防中心https://www.cdc.gov/diabetes/basics/type2.html(2022年)。健康的社会决定因素。https://health.gov/healthypeople/priority-areas/social-determinants-health.Marmot,M.等人,《缩小一代人的差距:通过对健康的社会决定因素采取行动来实现健康公平》。

Lancet 372, 1661–1669 (2008).Article .

柳叶刀3721661-1669(2008)。文章。

Google Scholar

谷歌学者

Bryant, T., Daiski, I., Lines, E. & Others. Type 2 diabetes: poverty, priorities and policy: the social determinants of the incidence and management of Type 2 diabetes (Toronto, Ontario, Canada: York University School of Health Policy and Management, 2010).Clark, M. L. & Utz, S. W. Social determinants of type 2 diabetes and health in the United States.

布莱恩特(Bryant,T.),戴斯基(Daiski),莱恩斯(Lines),E。和其他人。2型糖尿病:贫困,优先事项和政策:2型糖尿病发病率和管理的社会决定因素(加拿大安大略省多伦多:约克大学卫生政策与管理学院,2010年)。Clark,M.L.&Utz,S.W。美国2型糖尿病和健康的社会决定因素。

World J. Diabetes 5, 296–304 (2014).Article .

《世界糖尿病杂志》5296-304(2014)。文章。

Google Scholar

谷歌学者

Hill, J., Nielsen, M. & Fox, M. H. Understanding the social factors that contribute to diabetes: a means to informing health care and social policies for the chronically ill. Perm. J. 17, 67–72 (2013).Article

Hill,J.,Nielsen,M。&Fox,M.H。了解导致糖尿病的社会因素:为慢性病患者提供医疗保健和社会政策的手段。Perm。J、 17,67-72(2013)。文章

Google Scholar

谷歌学者

Spanakis, E. K. & Golden, S. H. Race/ethnic difference in diabetes and diabetic complications. Curr. Diab. Rep. 13, 814–823 (2013).Article

Spanakis,E.K。和Golden,S.H。糖尿病和糖尿病并发症的种族/种族差异。货币。迪亚布。。文章

Google Scholar

谷歌学者

Kyrou, I. et al. Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: a narrative review with emphasis on data from Europe. BMC Endocr. Disord. 20, 134 (2020).Article

Kyrou,I.等人,《识别2型糖尿病弱势群体的社会人口统计学和生活方式相关风险因素:以欧洲数据为重点的叙述性评论》。BMC内分泌。混乱。20134(2020)。文章

Google Scholar

谷歌学者

Kelly, S. J. & Ismail, M. Stress and type 2 diabetes: a review of how stress contributes to the development of type 2 diabetes. Annu. Rev. Public Health 36, 441–462 (2015).Article

Kelly,S.J。&Ismail,M。压力与2型糖尿病:回顾压力如何导致2型糖尿病的发展。年。公共卫生修订36441–462(2015)。文章

Google Scholar

谷歌学者

Hill-Briggs, F. et al. Social determinants of health and diabetes: a scientific review. Diabetes Care 44, 258–279 (2020).Article

Hill-Briggs,F.等人,《健康和糖尿病的社会决定因素:科学评论》。糖尿病护理44258-279(2020)。文章

Google Scholar

谷歌学者

Hill-Briggs, F. et al. Social determinants of health, race, and diabetes population health improvement: Black/African Americans as a population exemplar. Curr. Diab. Rep. 22, 117–128 (2022).Article

Hill-Briggs,F.等人,《健康、种族和糖尿病人群健康改善的社会决定因素:黑人/非裔美国人作为人口样本》。货币。迪亚布。代表22117–128(2022)。文章

Google Scholar

谷歌学者

Ogunwole, S. M. & Golden, S. H. Social determinants of health and structural inequities—root causes of diabetes disparities. Diabetes Care 44, 11–13 (2020).Article

Ogunbole,S.M。和Golden,S.H。健康的社会决定因素和结构性不平等是糖尿病差异的根本原因。糖尿病护理44,11-13(2020)。文章

Google Scholar

谷歌学者

Fraze, T. K. et al. Prevalence of screening for food insecurity, housing instability, utility needs, transportation needs, and interpersonal violence by US physician practices and hospitals. JAMA Netw. Open 2, e1911514 (2019).Article

Fraze,T.K.等人。美国医生和医院筛查食品不安全、住房不稳定、公用事业需求、交通需求和人际暴力的流行率。JAMA网络。开放2,e1911514(2019)。文章

Google Scholar

谷歌学者

LaForge, K. et al. How 6 organizations developed tools and processes for social determinants of health screening in primary care: An overview. J. Ambul. Care Manag. 41, 2–14 (2018).Article

LaForge,K.等人,《6个组织如何为初级保健健康筛查的社会决定因素开发工具和流程:概述》。J、 安布尔。护理管理。41,2-14(2018)。文章

Google Scholar

谷歌学者

Cottrell, E. K. et al. Variation in electronic health record documentation of social determinants of health across a national network of community health centers. Am. J. Prev. Med. 57, S65–S73 (2019).Article

Cottrell,E.K.等人,《全国社区卫生中心网络中健康社会决定因素电子健康记录文件的变化》。Am.J.前。医学57,S65-S73(2019)。文章

ADS

广告

Google Scholar

谷歌学者

Henrikson, N. B. et al. Psychometric and pragmatic properties of social risk screening tools: a systematic review. Am. J. Prev. Med. 57, S13–S24 (2019).Article

Henrikson,N.B.等人,《社会风险筛查工具的心理测量和语用特性:系统综述》。Am.J.前。医学57,S13-S24(2019)。文章

Google Scholar

谷歌学者

Billioux, A. et al. Standardized screening for health-related social needs in clinical settings: the accountable health communities screening tool. NAM Perspect. https://nam.edu/standardized-screening-for-health-related-social-needs-in-clinical-settings-the-accountablehealth-communities-screening-tool/ (2017).Tong, S.

Billioux,A.等人,《临床环境中与健康相关的社会需求的标准化筛查:负责任的健康社区筛查工具》。NAM透视图。https://nam.edu/standardized-screening-for-health-related-social-needs-in-clinical-settings-the-accountablehealth-communities-screening-tool/(2017年)。唐,S。

T. et al. Clinician experiences with screening for social needs in primary care. J. Am. Board Fam. Med. 31, 351–363 (2018).Article .

T、 临床医生在初级保健中筛查社会需求的经验。J、 董事会成员。医学31351-363(2018)。文章。

Google Scholar

谷歌学者

Cantor, M. N. & Thorpe, L. Integrating data on social determinants of health into electronic health records. Health Aff. 37, 585–590 (2018).Article

Cantor,M.N。和Thorpe,L。将健康的社会决定因素的数据整合到电子健康记录中。健康Aff。37585-590(2018)。文章

Google Scholar

谷歌学者

Eder, M. et al. Screening and interventions for social risk factors: technical brief to support the US Preventive Services Task Force. JAMA 326, 1416–1428 (2021).Article

Eder,M.等人,《社会风险因素的筛查和干预:支持美国预防服务工作组的技术简介》。JAMA 3261416-1428(2021)。文章

Google Scholar

谷歌学者

Theis, R. P. et al. Implementation context for addressing social needs in a learning health system: a qualitative study. J. Clin. Transl. Sci. 5, e201 (2021).Article

Theis,R.P.等人,《在学习健康系统中解决社会需求的实施背景:定性研究》。J、 临床。翻译。科学。5,e201(2021)。文章

Google Scholar

谷歌学者

Guo, J. et al. Interplay of contextual- and personal-level social determinants of health and real-world adoption of novel treatments for improving cardiovascular outcomes in type 2 diabetes. Circulation 145, A003 (2022).Article

郭,J。等人。健康的背景和个人层面的社会决定因素与现实世界中采用新疗法改善2型糖尿病心血管结局的相互作用。发行量145,A003(2022)。文章

Google Scholar

谷歌学者

Mayne, S. L. et al. Neighbourhood racial/ethnic residential segregation and cardiometabolic risk: the multiethnic study of atherosclerosis. J. Epidemiol. Community Health 73, 26–33 (2019).Article

Mayne,S.L.等人,《邻里种族/民族居住隔离和心脏代谢风险:动脉粥样硬化的多民族研究》。J、 流行病。社区卫生73,26-33(2019)。文章

Google Scholar

谷歌学者

Singh, G. K. Area deprivation and widening inequalities in US mortality, 1969-1998. Am. J. Public Health 93, 1137–1143 (2003).Article

Singh,G.K.《1969-1998年美国死亡率的地区剥夺和日益扩大的不平等》。《美国公共卫生杂志》931137-1143(2003)。文章

Google Scholar

谷歌学者

Bilal, U., Auchincloss, A. H. & Diez-Roux, A. V. Neighborhood environments and diabetes risk and control. Curr. Diab. Rep. 18, 62 (2018).Article

Bilal,U.,Auchincloss,A.H。&Diez Roux,A.V。邻里环境和糖尿病风险与控制。货币。迪亚布。代表18,62(2018)。文章

Google Scholar

谷歌学者

Figueroa, J. F., Frakt, A. B. & Jha, A. K. Addressing social determinants of health: time for a polysocial risk score. JAMA 323, 1553–1554 (2020).Article

Figueroa,J.F.,Frakt,A.B。&Jha,A.K。解决健康的社会决定因素:多社会风险评分的时间。。文章

Google Scholar

谷歌学者

Ping, Y., Oddén, M. C., Stawski, R. S., Abdel Magid, H. S. & Wu, C. Creation and validation of a polysocial score for mortality among community-dwelling older adults in the USA: the health and retirement study. Age Ageing 50, 2214–2221 (2021).Article

Ping,Y.,Oddén,M.C.,Stawski,R.S.,Abdel Magid,H.S.&Wu,C.创建和验证美国社区居住老年人死亡率的多社会评分:健康与退休研究。年龄502214-2221(2021)。文章

Google Scholar

谷歌学者

Javed, Z. et al. Development and validation of a polysocial risk score for atherosclerotic cardiovascular disease. Am. J. Prev. Cardiol. 8, 100251 (2021).Article

Javed,Z.等人。动脉粥样硬化性心血管疾病多社会风险评分的开发和验证。Am.J.前。心脏病。8100251(2021)。文章

Google Scholar

谷歌学者

He, Y. et al. Comparisons of polyexposure, polygenic, and clinical risk scores in risk prediction of type 2 diabetes. Diabetes Care 44, 935–943 (2021).Article

He,Y.等人。多暴露、多基因和临床风险评分在2型糖尿病风险预测中的比较。糖尿病护理44935-943(2021)。文章

Google Scholar

谷歌学者

Li, Y. et al. Impact of contextual-level social determinants of health on newer antidiabetic drug adoption in patients with type 2 diabetes. Int. J. Environ. Res. Public Health 20, 4036 (2023).Article

。内景J.环境。Res.Public Health 20436(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Concato, J. & Corrigan-Curay, J. Real-world evidence—where are we now? N. Engl. J. Med. 386, 1680–1682 (2022).Article

Concato,J。和Corrigan Curay,J。现实世界的证据我们现在在哪里?N、 英语。J、 。文章

CAS

中科院

Google Scholar

谷歌学者

Sherman, R. E. et al. Real-world evidence—what is it and what can it tell us? N. Engl. J. Med. 375, 2293–2297 (2016).Article

谢尔曼,R.E。等人。现实世界的证据它是什么,它能告诉我们什么?N、 英语。J、 医学3752293-2297(2016)。文章

Google Scholar

谷歌学者

Huang, J., Galal, G., Etemadi, M. & Vaidyanathan, M. Evaluation and mitigation of racial bias in clinical machine learning models: scoping review. JMIR Med Inf. 10, e36388 (2022).Article

Huang,J.,Galal,G.,Etemadi,M。和Vaidyanathan,M。临床机器学习模型中种族偏见的评估和缓解:范围审查。JMIR Med Inf.10,e36388(2022)。文章

Google Scholar

谷歌学者

Xu, J. et al. Algorithmic fairness in computational medicine. eBioMedicine 84, 104250 (2022).Article

Xu,J。等人。计算医学中的算法公平性。eBioMedicine 84104250(2022)。文章

Google Scholar

谷歌学者

Saraswat, D. et al. Explainable AI for healthcare 5.0: opportunities and challenges. IEEE Access 10, 84486–84517 (2022).Article

Saraswat,D.等人,《医疗保健5.0的可解释人工智能:机遇与挑战》。IEEE Access 1084486–84517(2022)。文章

Google Scholar

谷歌学者

Loh, H. W. et al. Application of explainable artificial intelligence for healthcare: a systematic review of the last decade (2011–2022). Comput. Methods Prog. Biomed. 226, 107161 (2022).Article

Loh,H.W.等人,《可解释人工智能在医疗保健中的应用:过去十年(2011-2022年)的系统综述》。计算机。方法程序。生物医学。226107161(2022)。文章

Google Scholar

谷歌学者

Payrovnaziri, S. N. et al. Explainable artificial intelligence models using real-world electronic health record data: a systematic scoping review. J. Am. Med. Inform. Assoc. 27, 1173–1185 (2020).Article

Payrovnaziri,S.N.等人。使用真实世界电子健康记录数据的可解释人工智能模型:系统范围界定综述。J、 上午医疗通知。协会第271173-1185号(2020年)。文章

Google Scholar

谷歌学者

Lundberg, S. & Lee, S. -I. A unified approach to interpreting model predictions. in Proceedings of the 31st International Conference on Neural Information Processing Systems 4768–4777 (Curran Associates Inc., Red Hook, NY, USA, 2017).Spirtes, P., Glymour, C. & Scheines, R. Causation, prediction, and search.

Lundberg,S.&Lee,S.-I.解释模型预测的统一方法。在第31届神经信息处理系统国际会议论文集4768-4777(Curran Associates Inc.,Red Hook,NY,USA,2017)中。Sprites,P.,Glymour,C。&Scheines,R。因果关系,预测和搜索。

(Springer New York, 1993).Guo, Y. et al. International classification of diseases, tenth revision, clinical modification social determinants of health codes are poorly used in electronic health records. Medicine 99, e23818 (2020).Article .

(施普林格纽约,1993)。郭,Y。等。国际疾病分类,第十次修订,临床修改健康代码的社会决定因素在电子健康记录中使用不佳。医学99,e23818(2020)。文章。

Google Scholar

谷歌学者

Weinstein, E., Galindo, R. J., Fried, M., Rucker, L. & Davis, N. J. Impact of a focused nutrition educational intervention coupled with improved access to fresh produce on purchasing behavior and consumption of fruits and vegetables in overweight patients with diabetes mellitus. Diabetes Educ.

Weinstein,E.,Galindo,R.J.,Fried,M.,Rucker,L。&Davis,N.J。重点营养教育干预以及改善新鲜农产品获取对超重糖尿病患者购买行为和水果和蔬菜消费的影响。糖尿病教育。

40, 100–106 (2014).Article .

40100–106(2014)。文章。

Google Scholar

谷歌学者

Egede, L. E. et al. Nonmedical interventions for type 2 diabetes: evidence, actionable strategies, and policy opportunities. Health Aff. 41, 963–970 (2022).Article

Egede,L.E.等人,《2型糖尿病的非医学干预:证据、可行策略和政策机遇》。健康Aff。41963-970(2022)。文章

Google Scholar

谷歌学者

Schleifer, D. It’s about trust: low‐income parents’ perspectives on how pediatricians can screen for social determinants of health. Health Serv. Res. 55, 134–135 (2020).Hammer, G. P., du Prel, J.-B. & Blettner, M. Avoiding bias in observational studies: part 8 in a series of articles on evaluation of scientific publications.

这是关于信任:低收入父母对儿科医生如何筛查健康的社会决定因素的看法。。第55134-135号决议(2020年)。Hammer,G.P.,du Prel,J.-B.&Blettner,M。避免观察性研究中的偏见:科学出版物评估系列文章的第8部分。

Dtsch. Arztebl. Int. 106, 664–668 (2009)..

Dtsch。医生的球。国际法第106664-668号(2009年)。。

Google Scholar

谷歌学者

Yu, Z. et al. Identifying social determinants of health from clinical narratives: A study of performance, documentation ratio, and potential bias. J. Biomed. Inform. 153, 104642 (2024).Lee, J. D. & Hastie, T. J. Learning the structure of mixed graphical models. J. Comput. Graph. Stat.

Yu,Z.等人。从临床叙述中识别健康的社会决定因素:对表现,文献比率和潜在偏见的研究。J、 生物医学。通知。153104642(2024)。Lee,J.D.&Hastie,T.J.学习混合图形模型的结构。J、 计算机。图表。统计。

24, 230–253 (2015).Article .

24230-253(2015)。文章。

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Raghu, V. K., Poon, A. & Benos, P. V. Evaluation of causal structure learning methods on mixed data types. Proc. Mach. Learn Res 92, 48–65 (2018).

Raghu,V.K.,Poon,A。&Benos,P.V。混合数据类型因果结构学习方法的评估。程序。马赫。学习Res 92,48-65(2018)。

Google Scholar

谷歌学者

Colombo, D. & Maathuis, M. H. Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 15, 3921–3962 (2014).The Physicians Foundation 2022 Physician Survey: Part 1 Examining How the Social Drivers of Health Affect the Nation’s Physicians and their Patients. The Physicians Foundation https://physiciansfoundation.org/physician-and-patient-surveys/the-physicians-foundation-2022-physician-survey-part-1/ (2022).Xu, J.

Colombo,D。&Maathuis,M.H。基于顺序无关约束的因果结构学习。J、 马赫。学习。第153921–3962号决议(2014年)。医师基金会2022年医师调查:第一部分研究健康的社会驱动因素如何影响国家的医生及其患者。医师基金会https://physiciansfoundation.org/physician-and-patient-surveys/the-physicians-foundation-2022-physician-survey-part-1/(2022年)。徐,J。

et al. Federated Learning for Healthcare Informatics. Int. J. Healthc. Inf. Syst. Inform. 5, 1–19 (2021)..

等。医疗保健信息学联合学习。国际卫生杂志。信息系统。通知。5,1-19(2021年)。。

Google Scholar

谷歌学者

Wiese, A. D. et al. Performance of a computable phenotype for identification of patients with diabetes within PCORnet: the patient-centered clinical research network. Pharmacoepidemiol. Drug Saf. 28, 632–639 (2019).Article

Wiese,A.D.等人,《PCORnet中用于识别糖尿病患者的可计算表型的表现:以患者为中心的临床研究网络》。药物流行病学。药物安全。28632-639(2019)。文章

Google Scholar

谷歌学者

Yu, Z., Yang, X., Guo, Y., Bian, J. & Wu, Y. Assessing the documentation of social determinants of health for lung cancer patients in clinical narratives. Front. Public Health 10, 778463 (2022).Article

Yu,Z.,Yang,X.,Guo,Y.,Bian,J。&Wu,Y。在临床叙述中评估肺癌患者健康的社会决定因素的文献。正面。公共卫生10778463(2022)。文章

Google Scholar

谷歌学者

Yu, Z. et al. A study of social and behavioral determinants of health in lung cancer patients using transformers-based natural language processing models. AMIA Annu. Symp. Proc. 2021, 1225–1233 (2021).

Yu,Z.等人。使用基于变压器的自然语言处理模型研究肺癌患者健康的社会和行为决定因素。阿米亚阿努。症状。程序。20211225-1233(2021)。

Google Scholar

谷歌学者

Zhang, H. et al. Semantic standards of external exposome data. Environ. Res. 197, 111185 (2021).Article

。环境。第197111185(2021)号决议。文章

ADS

广告

CAS

中科院

Google Scholar

谷歌学者

Hu, H. et al. An external exposome-wide association study of COVID-19 mortality in the United States. Sci. Total Environ. 768, 144832 (2021).Article

Hu,H.等人。美国新型冠状病毒肺炎死亡率的外部暴露范围关联研究。科学。总环境。768144832(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383 (1987).Article

Charlson,M.E.,Pompei,P.,Ales,K.L。&MacKenzie,C.R。纵向研究中预后合并症分类的新方法:开发和验证。J、 慢性疾病。。文章

CAS

中科院

Google Scholar

谷歌学者

Shebeshi, D. S., Dolja-Gore, X. & Byles, J. Charlson Comorbidity Index as a predictor of repeated hospital admission and mortality among older women diagnosed with cardiovascular disease. Aging Clin. Exp. Res. 33, 2873–2878 (2021).Article

Shebeshi,D.S.,Dolja Gore,X。&Byles,J。Charlson合并症指数是诊断为心血管疾病的老年女性反复住院和死亡率的预测指标。老年临床。实验第332873-2878号决议(2021年)。文章

Google Scholar

谷歌学者

Tolles, J. & Meurer, W. J. Logistic regression: relating patient characteristics to outcomes. JAMA 316, 533–534 (2016).Article

Tolles,J。&Meurer,W.J。逻辑回归:将患者特征与结果联系起来。JAMA 316533-534(2016)。文章

Google Scholar

谷歌学者

Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267–288 (1996).Article

Tibshirani,R。通过套索回归收缩和选择。J、 R.统计社会服务。。58267-288(1996)。文章

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Hoerl, A. E. & Kennard, R. W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970).Article

Hoerl,A.E.&Kennard,R.W。岭回归:非正交问题的有偏估计。技术指标12,55-67(1970)。文章

Google Scholar

谷歌学者

Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005).Article

Zou,H。&Hastie,T。通过弹性网进行正则化和变量选择。J、 R.统计社会服务。。67301-320(2005)。文章

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Shin, J. et al. Improving machine learning diabetes prediction models for the utmost clinical effectiveness. J. Pers. Med. 12, 1899 (2022).Zhao, Y. et al. Using machine learning techniques to develop risk prediction models for the risk of incident diabetic retinopathy among patients with type 2 diabetes mellitus: a cohort study.

Shin,J.等人。改进机器学习糖尿病预测模型以获得最大的临床效果。J、 《医学杂志》121899(2022)。Zhao,Y.等人。使用机器学习技术开发2型糖尿病患者发生糖尿病视网膜病变风险的风险预测模型:一项队列研究。

Front. Endocrinol. 13, 876559 (2022).Article .

正面。内分泌。13876559(2022)。文章。

Google Scholar

谷歌学者

Deberneh, H. M. & Kim, I. Prediction of type 2 diabetes based on machine learning algorithm. Int. J. Environ. Res. Public Health 18, 3317 (2021).Article

Deberneh,H.M。&Kim,I。基于机器学习算法的2型糖尿病预测。内景J.环境。。文章

Google Scholar

谷歌学者

Li, Y., Wang, H. & Luo, Y. Improving fairness in the prediction of heart failure length of stay and mortality by integrating social determinants of health. Circ. Heart Fail. 15, e009473 (2022).Article

Li,Y.,Wang,H。&Luo,Y。通过整合健康的社会决定因素,提高心力衰竭住院时间和死亡率预测的公平性。保监会。心脏衰竭。15,e009473(2022)。文章

Google Scholar

谷歌学者

Yang, H., Li, J., Liu, S., Yang, X. & Liu, J. Predicting risk of hypoglycemia in patients with type 2 diabetes by electronic health record-based machine learning: development and validation. JMIR Med Inf. 10, e36958 (2022).Article

。JMIR Med Inf.10,e36958(2022)。文章

Google Scholar

谷歌学者

Wang, L., Wang, X., Chen, A., Jin, X. & Che, H. Prediction of type 2 diabetes risk and its effect evaluation based on the XGBoost model. Healthcare 8, 247 (2020).Article

。医疗保健8247(2020)。文章

Google Scholar

谷歌学者

Lockhart, R. S. Introduction to Statistics and Data Analysis: For the Behavioral Sciences. (Macmillan, 1998).Castelnovo, A. et al. A clarification of the nuances in the fairness metrics landscape. Sci. Rep. 12, 1–21 (2022).Article

《统计与数据分析导论:行为科学》。(麦克米伦,1998)。Castelnovo,A.等人,《澄清公平度量领域的细微差别》。科学。代表12,1-21(2022)。文章

Google Scholar

谷歌学者

Chouldechova, A. Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5, 153–163 (2017).Article

Chouldechova,A。具有不同影响的公平预测:对累犯预测工具偏见的研究。大数据5153-163(2017)。文章

Google Scholar

谷歌学者

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C. & Venkatasubramanian, S. Certifying and Removing Disparate Impact. in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 259–268 (Association for Computing Machinery, New York, NY, USA, 2015).Zhang, B.

Feldman,M.,Friedler,S.A.,Moeller,J.,Scheidegger,C。&Venkatasubramanian,S。证明和消除不同的影响。。张,B。

H., Lemoine, B. & Mitchell, M. Mitigating Unwanted Biases with Adversarial Learning. in Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society 335–340 (Association for Computing Machinery, New York, NY, USA, 2018).Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J. & Weinberger, K. Q. On Fairness and Calibration.

H、 ,Lemoine,B。&Mitchell,M。通过对抗性学习减轻不必要的偏见。在2018年AAAI/ACM人工智能,道德和社会会议论文集335-340(美国纽约州纽约市计算机械协会,2018年)中。Pleiss,G.,Raghavan,M.,Wu,F.,Kleinberg,J。&Weinberger,K.Q。关于公平性和校准。

In Proceedings of the 31st International Conference on Neural Information Processing Systems (eds. Guyon, I. et al.) vol. 30 (Curran Associates, Inc., 2017).Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet .

在第31届神经信息处理系统国际会议论文集(编辑Guyon,I。et al。)第30卷(Curran Associates,Inc.,2017)。Pedregosa,F.等人,《Scikit learn:Python中的机器学习》。J、 马赫。学习。第122825-2830号决议(2011年)。MathSciNet。

Google Scholar

谷歌学者

Lemaitre, G., Nogueira, F. & Aridas, C. K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18, 1–5 (2017).Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python. in Proceedings of the 9th Python in Science Conference (SciPy, 2010).

Lemaitre,G.,Nogueira,F。&Aridas,C.K。不平衡学习:一个python工具箱,用于解决机器学习中不平衡数据集的诅咒。J、 马赫。学习。第18、1-5号决议(2017年)。Seabold,S.&Perktold,J。Statsmodels:使用python进行计量经济学和统计建模。在第九届Python in Science会议论文集(SciPy,2010)中。

https://doi.org/10.25080/majora-92bf1922-011.Bellamy, R. K. E. et al. AI Fairness 360: an extensible toolkit for detecting and mitigating algorithmic bias. IBM J. Res. Dev. 63, 4:1–4:15 (2019).Article .

https://doi.org/10.25080/majora-92bf1922-011.Bellamy,R.K.E.等人,《AI Fairity 360:用于检测和缓解算法偏差的可扩展工具包》。IBM J.Res.Dev.63,4:1–4:15(2019)。文章。

Google Scholar

谷歌学者

Ramsey, J. D. et al. Tetrad—a toolbox for causal discovery. https://www.atmos.colostate.edu/~iebert/PAPERS/CI2018_paper_35.pdf.Download referencesAcknowledgementsThis work was supported by the National Institutes of Health (NIH) (R01DK133465: J.G. and R24ES036131: J.B.). The study was exempt approved by the University of Florida IRB (IRB202201196).Author informationAuthor notesThese authors contributed equally: Yu Huang, Jingchuan Guo.Authors and AffiliationsDepartment of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USAYu Huang, Zhengkang Fan, Elizabeth A.

Ramsey,J.D.等人,《四分体——因果发现的工具箱》。https://www.atmos.colostate.edu/~iebert/PAPERS/CI2018\u paper\u 35.pdf。下载参考文献致谢这项工作得到了美国国立卫生研究院(NIH)的支持(R01DK133465:J.G.和R24ES036131:J.B.)。该研究得到佛罗里达大学IRB(IRB202201196)的豁免批准。作者信息作者注意到这些作者做出了同样的贡献:黄宇,郭敬川。作者和附属机构佛罗里达大学健康结果与生物医学信息学系,佛罗里达州盖恩斯维尔,USAYu Huang,Zhengkang Fan,Elizabeth A。

Shenkman & Jiang BianDepartment of Pharmaceutical Outcomes and Policy, University of Florida, Gainesville, FL, USAJingchuan Guo, Yao An Lee, Ying Lu, Wei-Han Chen & Huilin TangDivision of Endocrinology, Diabetes and Metabolism, College of Medicine, University of Florida, Gainesville, FL, USAWilliam T.

Shenkman和Jiang BianDepartment of Pharmaceutical Outcomes and Policy,佛罗里达大学,盖恩斯维尔,佛罗里达州,USAJingchuan Guo,Yao An Lee,Ying Lu,Wei Han Chen&Huilin Tang佛罗里达大学医学院内分泌,糖尿病和代谢系,盖恩斯维尔,佛罗里达州,USAWilliam T。

DonahooDepartment of Surgery, College of Medicine— Jacksonville, University of Florida, Jacksonville, FL, USALori BilelloDepartment of Community Health and Family Medicine, College of Medicine, University of Florida, Jacksonville, FL, USAAaron A. SaguilDivision of General Internal Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USAEric RosenbergAuthorsYu HuangView author publicationsYou can also search for this author in.

佛罗里达大学杰克逊维尔医学院外科,佛罗里达州杰克逊维尔,美国佛罗里达州杰克逊维尔,佛罗里达大学医学院社区健康与家庭医学系,佛罗里达大学杰克逊维尔,佛罗里达州,美国亚伦A.Sagildivision of General Internal Medicine,Department of Medicine,College of Medicine,佛罗里达大学医学院,盖恩斯维尔,佛罗里达州,美国埃里克·罗森伯·高索西(Eric RosenbergAuthorsYu HuangView)作者出版物你也可以在中搜索这位作者。

PubMed Google ScholarJingchuan GuoView author publicationsYou can also search for this author in

PubMed谷歌学者Jingchuan GuoView作者出版物您也可以在

PubMed Google ScholarWilliam T. DonahooView author publicationsYou can also search for this author in

PubMed谷歌学者William T.DonahooView作者出版物您也可以在

PubMed Google ScholarYao An LeeView author publicationsYou can also search for this author in

PubMed谷歌学术评论LeeView作者出版物您也可以在

PubMed Google ScholarZhengkang FanView author publicationsYou can also search for this author in

PubMed谷歌学者郑康FanView作者出版物您也可以在

PubMed Google ScholarYing LuView author publicationsYou can also search for this author in

PubMed Google ScholarYing LuView作者出版物您也可以在

PubMed Google ScholarWei-Han ChenView author publicationsYou can also search for this author in

PubMed Google ScholarWei Han ChenView作者出版物您也可以在

PubMed Google ScholarHuilin TangView author publicationsYou can also search for this author in

PubMed Google ScholarHuilin TangView作者出版物您也可以在

PubMed Google ScholarLori BilelloView author publicationsYou can also search for this author in

PubMed谷歌学者BilelloView作者出版物您也可以在

PubMed Google ScholarAaron A. SaguilView author publicationsYou can also search for this author in

PubMed Google ScholarAaron A.SaguilView作者出版物您也可以在

PubMed Google ScholarEric RosenbergView author publicationsYou can also search for this author in

PubMed谷歌学者罗森伯格观点作者出版物您也可以在

PubMed Google ScholarElizabeth A. ShenkmanView author publicationsYou can also search for this author in

PubMed Google ScholarElizabeth A.ShenkmanView作者出版物您也可以在

PubMed Google ScholarJiang BianView author publicationsYou can also search for this author in

PubMed Google ScholarJiang BianView作者出版物您也可以在

PubMed Google ScholarContributionsConceptualization, J.G., J.B., and W.T.D.; methodology, Y.H., J.G., and J.B.; formal analysis, Y.H.; data curation, Z.F., Y. Lee., W.H.C., and H.T.; resources, J.G. and J.B.; writing—initial draft, Y.H., and J.G.; critical review and editing, J.G., J.B., W.T.D., Z.F., Y.

PubMed谷歌学术贡献概念化,J.G.,J.B。和W.T.D。;方法论,Y.H.,J.G。和J.B。;形式分析,Y.H。;数据管理,Z.F.,Y.Lee。,W、 H.C.和H.T。;资源,J.G.和J.B。;。;批判性评论和编辑,J.G.,J.B.,W.T.D.,Z.F.,Y。

Lu., W.H.C., H.T., L.B., A.A.S., E.R., and E.A.S.; supervision: J.B. All authors have read and agreed to the published version of the manuscript.Corresponding authorCorrespondence to.

卢,W.H.C.,H.T.,L.B.,A.A.S.,E.R。和E.A.S。;监督:J.B.所有作者均已阅读并同意稿件的发布版本。对应作者对应。

Jiang Bian.Ethics declarations

江边。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Emanuele Frontoni, Ayis Pyrros, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Emanuele Frontoni,Ayis Pyros和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1-8Reporting SummarySource dataSource dataRights and permissions.

。补充信息补充信息同行评审文件其他补充文件的描述补充数据1-8报告摘要源数据源数据权限和权限。

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleHuang, Y., Guo, J., Donahoo, W.T. et al. A fair individualized polysocial risk score for identifying increased social risk in type 2 diabetes.

转载和许可本文引用本文Huang,Y.,Guo,J.,Donahoo,W.T.等人,一个公平的个体化多社会风险评分,用于识别2型糖尿病增加的社会风险。

Nat Commun 15, 8653 (2024). https://doi.org/10.1038/s41467-024-52960-9Download citationReceived: 29 November 2023Accepted: 27 September 2024Published: 05 October 2024DOI: https://doi.org/10.1038/s41467-024-52960-9Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》158653(2024)。https://doi.org/10.1038/s41467-024-52960-9Download引文接收日期:2023年11月29日接收日期:2024年9月27日发布日期:2024年10月5日OI:https://doi.org/10.1038/s41467-024-52960-9Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。