EN
登录

LUAD中癌症相关成纤维细胞(CAF)的RNA-seq和大量RNA-seq数据分析构建基于CAF的风险特征

RNA-seq and bulk RNA-seq data analysis of cancer-related fibroblasts (CAF) in LUAD to construct a CAF-based risk signature

Nature 等信源发布 2024-10-06 13:25

可切换为仅中文


AbstractAngiogenesis, metastasis, and resistance to therapy are all facilitated by cancer-associated fibroblasts (CAFs). A CAF-based risk signature can be used to predict patients’ prognoses for Lung adenocarcinoma (LUAD) based on CAF characteristics. The Gene Expression Omnibus (GEO) database was used to gather signal-cell RNA sequencing (scRNA-seq) data for this investigation.

摘要肿瘤相关成纤维细胞(CAF)促进血管生成,转移和对治疗的抵抗。基于CAF的风险特征可用于根据CAF特征预测患者肺腺癌(LUAD)的预后。Gene Expression Omnibus(GEO)数据库用于收集本研究的信号细胞RNA测序(scRNA-seq)数据。

The GEO and TCGA databases were used to gather bulk RNA-seq and microarray data for LUAD. The scRNA-seq data were analyzed using the Seurat R program based on the CAF markers. Our goal was to use differential expression analysis to discover differentially expressed genes (DEGs) across normal and tumor samples in the TCGA dataset.

GEO和TCGA数据库用于收集LUAD的大量RNA-seq和微阵列数据。使用基于CAF标记的Seurat R程序分析scRNA-seq数据。我们的目标是使用差异表达分析来发现TCGA数据集中正常和肿瘤样本中的差异表达基因(DEG)。

Pearson correlation analysis was utilized to discover prognostic genes related with CAF, followed by univariate Cox regression analysis. Using Lasso regression, a risk signature based on CAF-related prognostic genes was created. A nomogram model was created based on the clinical and pathological aspects. 5 CAF clusters were identified in LUAD, 4 of which were associated with prognosis.

Pearson相关分析用于发现与CAF相关的预后基因,然后进行单变量Cox回归分析。使用套索回归,创建了基于CAF相关预后基因的风险特征。基于临床和病理方面创建了列线图模型。在LUAD中鉴定出5个CAF簇,其中4个与预后相关。

From 2811 DEGs, 1002 genes were found to be significantly correlated with CAF clusters, which led to the creation of a risk signature with 8 genes. These 8 genes were primarily connected with 41 pathways, such as antigen paocessing and presentation, apoptosis, and cell cycle. Meanwhile, the risk signature was significantly associated with stromal and immune scores, as well as some immune cells.

从2811个DEG中,发现1002个基因与CAF簇显着相关,这导致产生了具有8个基因的风险特征。这8个基因主要与41种途径有关,如抗原的获得和呈递,细胞凋亡和细胞周期。同时,风险特征与基质和免疫评分以及一些免疫细胞显着相关。

Multivariate analysis revealed that risk signature was an independent prognostic factor for LUAD, and its value in predicting immunotherapeutic outcomes was confirmed. A novel nomogram integrating the stage and CAF-based risk signature was constructed, which exhibited favorable predictability and r.

多变量分析显示,风险特征是LUAD的独立预后因素,其在预测免疫治疗结果中的价值得到证实。构建了一个整合阶段和基于CAF的风险特征的新型列线图,该列线图具有良好的可预测性和r。

IntroductionLung cancer is estimated to contribute to 25% of cancer-associated deaths, and non-small cell lung cancer (NSCLC) alone accounts for 85% of cases1, lung adenocarcinoma (LUAD) and squamous carcinoma are two major subtypes of NSCLC. Metastatic LUAD treatment has been revolutionized by immunotherapy since it was approved by the FDA in 2015.

引言肺癌估计占癌症相关死亡的25%,仅非小细胞肺癌(NSCLC)占病例的85%1,肺腺癌(LUAD)和鳞状细胞癌是NSCLC的两种主要亚型。自2015年FDA批准以来,转移性LUAD治疗已被免疫疗法彻底改变。

Despite many factors associated with intrinsic resistance to immune-checkpoint inhibitors (ICIs), LUAD has been hampered by a lack of predictive biomarkers and limited understanding of how ICIs affect the disease3. It was possible to predict the immunotherapy clinical outcomes of LUAD using omic data-derived signatures4.

尽管许多因素与免疫检查点抑制剂(ICIs)的内在抗性有关,但LUAD由于缺乏预测性生物标志物以及对ICIs如何影响疾病的理解有限而受到阻碍3。使用组学数据衍生的签名可以预测LUAD的免疫治疗临床结果4。

Consequently, multigene signatures can be valuable for predicting LUAD outcomes.Tumor microenvironment (TME) is a specialized ecosystem of host components designed by tumor cells to support the development and metastasis of tumors5. There are diverse immune cell types in the TME, as well as cancer-associated fibroblasts, endothelial cells, pericytes, and other types of cells residing in the tissue.

因此,多基因特征对于预测LUAD结果可能是有价值的。肿瘤微环境(TME)是由肿瘤细胞设计的宿主成分的专门生态系统,用于支持肿瘤的发展和转移5。TME中存在多种免疫细胞类型,以及与癌症相关的成纤维细胞,内皮细胞,周细胞和组织中其他类型的细胞。

Host cells were once thought to play no role in tumorigenesis, but are now known to play a crucial role in the development of cancer6. In order to understand the spatial and temporal regulation of immune therapeutic interventions, it is important to gain a deeper understanding of the diversity of immune cells, stromal components, repertoire profiling, and the neoantigen prediction of TME5.

宿主细胞曾被认为在肿瘤发生中不起作用,但现在已知在癌症的发展中起关键作用6。为了了解免疫治疗干预的时空调节,重要的是要更深入地了解免疫细胞的多样性,基质成分,库谱分析以及TME5的新抗原预测。

TME is dominated by cancer associated fibroblasts (CAFs) that affect cancer features7. As a result of growth factors, inflammatory ligands, and extracellular matrix proteins, they promote the proliferation of cancer cells, the resistance to therapy, and the exclusion of the immune system8. With CAFs being highly heterogeneous, i.

TME以影响癌症特征的癌症相关成纤维细胞(CAF)为主7。作为生长因子,炎症配体和细胞外基质蛋白的结果,它们促进癌细胞的增殖,对治疗的抵抗力和免疫系统的排斥8。由于CAF高度异质,我。

Data availability

数据可用性

The NSCLC scRNA-seq datasets can be downloaded from the Gene Expression Omnibus (GEO) database under accession number GSE149655. Due to survival analysis data can be downloaded from the following database GSE3141, GSE31210, GSE37745, GSE50081, GSE68465 and TCGA cohort. The original code in the study can be requested from the corresponding author..

NSCLC scRNA-seq数据集可以从Gene Expression Omnibus(GEO)数据库下载,登录号为GSE149655。由于生存分析数据可以从以下数据库GSE3141,GSE31210,GSE37745,GSE50081,GSE68465和TCGA队列中下载。研究中的原始代码可以向通讯作者索取。。

AbbreviationsNSCLC:

缩写NSCLC:

Non-small cell lung cancer

非小细胞肺癌

LUAD:

鲁德:

Lung adenocarcinoma

肺腺癌

ICIs:

ICI:

Immune-checkpoint inhibitors

免疫检查点抑制剂

TME:

TME:

Tumor microenvironment

肿瘤微环境

CAFs:

CAF:

Cancer associated fibroblasts

癌症相关成纤维细胞

ScRNA-seq :

ScRNA如下:

ScRNA-seq Single-cell RNA-sequencing

ScRNA-seq单细胞RNA测序

GEO:

地理位置:

Gene Expression Omnibus

基因表达综合

UMI:

UMI:

Unique Molecular Identifier

唯一分子标识符

TCGA:

TCGA:

The Cancer Genome Atlas

癌症基因组图谱

SNV:

SNV:

Single-nucleotide variant

单核苷酸变体

CNV:

CNV公司:

Copy number variant

拷贝数变体

KEGG:

桶:

Kyoto Encyclopedia of Genes and Genome

京都基因与基因组百科全书

DEGs:

学位:

Differentially expressed genes

差异表达基因

FDR:

罗斯福:

ROC:

ROC:

Receiver operating characteristic curve

接收器工作特性曲线

DCA:

DCA:

Decision curve analysis

决策曲线分析

ICB:

ICB:

CDC25C:

CDC25C:

Cell division cycle 25 C

细胞分裂周期25 C

EXO1:

外显子1:

Exonuclease 1

核酸外切酶1

CCNB1:

CCNB1:

Cell cycle-related proteins cyclin B1

细胞周期相关蛋白cyclin B1

DPYSL2:

DPYSL2:

Dihydropyrimidinase-like 2

二氢嘧啶样2

METTL7A:

勇气7a:

Methyltransferase like 7 A

甲基转移酶样7 A

CLEC3B:

CLEC3B:

C-Type Lectin Domain Family 3 Member B

C型凝集素结构域家族3成员B

BTK:

顺便说一句:

Brutons tyrosine kinase

布鲁顿酪氨酸激酶

GRIA:

格里亚:

Glutamate receptor

谷氨酸受体

ReferencesSrivastava, S. et al. Emerging role in prognosis, heterogeneity, and therapeutics. Sem. Cancer Biol. 86 (Pt 2), 233–246 (2022).Article

参考文献Rivastava,S。等人。在预后,异质性和治疗中的新兴作用。扫描电镜。癌症生物学。86(第2部分),233-246(2022年)。文章

CAS

中科院

Google Scholar

谷歌学者

Desai, A. & Peters, S. Immunotherapy-based combinations in metastatic NSCLC. Cancer Treat. Rev. 116, 102545 (2023).Article

Desai,A。&Peters,S。转移性NSCLC中基于免疫疗法的组合。癌症治疗。修订版116102545(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Otano, I., Ucero, A. C., Zugazagoitia, J. & Paz-Ares, L. At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat. Reviews Clin. Oncol. 20 (3), 143–159 (2023).Article

Otano,I.,Ucero,A.C.,Zugazagoitia,J。&Paz-Ares,L。处于非小细胞肺癌癌基因成瘾亚群免疫治疗的十字路口。自然评论临床。。20(3),143-159(2023)。文章

Google Scholar

谷歌学者

Song, X. et al. Spatial multi-omics revealed the impact of tumor ecosystem heterogeneity on immunotherapy efficacy in patients with advanced non-small cell lung cancer treated with bispecific antibody. J. Immunother. Cancer ; 11(2). (2023).Tiwari, A., Trivedi, R. & Lin, S. Y. Tumor microenvironment: barrier or opportunity towards effective cancer therapy.

Song,X。等。空间多组学揭示了肿瘤生态系统异质性对双特异性抗体治疗的晚期非小细胞肺癌患者免疫治疗效果的影响。J、 免疫疗法。癌症;11(2)。(2023年)。Tiwari,A.,Trivedi,R。&Lin,S.Y。肿瘤微环境:有效癌症治疗的障碍或机会。

J. Biomed. Sci. 29 (1), 83 (2022).Article .

J.生物识别。科学。29 (1), 83 (2022).第[UNK]条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer cell. 41 (3), 374–403 (2023).Article

de Visser,K.E。和Joyce,J.A。不断发展的肿瘤微环境:从癌症起始到转移性生长。癌细胞。41(3),374-403(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Luo, H. et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun. 13 (1), 6619 (2022).Article

。国家公社。13(1),6619(2022)。文章

ADS

广告

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Biffi, G. & Tuveson, D. A. Diversity and Biology of Cancer-Associated fibroblasts. Physiol. Rev. 101 (1), 147–176 (2021).Article

Biffi,G。&Tuveson,D.A。癌症相关成纤维细胞的多样性和生物学。生理学。修订版101(1),147–176(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hu, H. et al. Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer cell. 39 (11), 1531–47e10 (2021).Article

Hu,H。等人。肺癌成纤维细胞的三种亚型定义了不同的治疗范例。癌细胞。39(11),1531-47e10(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, T. et al. Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J. Hematol. Oncol. 15 (1), 141 (2022).Article

Liu,T。等人。癌症相关成纤维细胞特异性lncRNA LINC01614增强肺腺癌中谷氨酰胺的摄取。J、 血液学。Oncol公司。15(1),141(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, H. et al. Multi-scale integrative analyses identify THBS2(+) cancer-associated fibroblasts as a key orchestrator promoting aggressiveness in early-stage lung adenocarcinoma. Theranostics. 12 (7), 3104–3130 (2022).Article

Yang,H。等人。多尺度综合分析确定THBS2(+)癌症相关成纤维细胞是促进早期肺腺癌侵袭性的关键协调者。治疗学。12(7),3104–3130(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tang, P. C. et al. Smad3 Promotes Cancer-Associated Fibroblasts Generation via Macrophage-Myofibroblast Transition. Advanced science (Weinheim, Baden-Wurttemberg, Germany). ; 9(1):e2101235. (2022).Sanchez-Vega, F. et al. Oncogenic signaling pathways in the Cancer Genome Atlas. Cell. 173 (2), 321–37e10 (2018).Article .

Tang,P.C.等人,Smad3通过巨噬细胞-肌成纤维细胞转化促进癌症相关成纤维细胞的产生。高级科学(Weinheim,巴登-符腾堡,德国);9(1):e2101235。(2022年)。Sanchez Vega,F。等人,《癌症基因组图谱》中的致癌信号通路。细胞。173(2),321-37e10(2018)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yu, L. et al. Characterization of cancer-related fibroblasts (CAF) in hepatocellular carcinoma and construction of CAF-based risk signature based on single-cell RNA-seq and bulk RNA-seq data. Front. Immunol. 13, 1009789 (2022).Article

Yu,L.等人。肝细胞癌中癌症相关成纤维细胞(CAF)的表征以及基于单细胞RNA-seq和大量RNA-seq数据构建基于CAF的风险特征。正面。免疫。131009789(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiang, H. et al. Single-cell analysis identifies NOTCH3-Mediated interactions between stromal cells that promote Microenvironment Remodeling and Invasion in Lung Adenocarcinoma. Cancer Res. 84 (9), 1410–1425 (2024).Article

Xiang,H。等人。单细胞分析确定了NOTCH3介导的基质细胞之间的相互作用,促进了肺腺癌的微环境重塑和侵袭。癌症研究84(9),1410-1425(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, X. et al. Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 12 (2), 620–638 (2022).Article

Li,X。等人。单细胞RNA测序揭示了与胃癌患者不良临床结果相关的促侵袭性癌症相关成纤维细胞亚群。治疗学。12(2),620-638(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51 (D1), D587–d92 (2023).Article

Kanehisa,M.,Furumichi,M.,Sato,Y.,Kawashima,M。&Ishiguro Watanabe,M。KEGG用于基于分类学的途径和基因组分析。核酸研究51(D1),D587–d92(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28 (1), 27–30 (2000).Article

Kanehisa,M。&Goto,S。KEGG:京都基因与基因组百科全书。核酸研究28(1),27-30(2000)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Science: Publication Protein Soc. 28 (11), 1947–1951 (2019).Article

Kanehisa,M。了解细胞生物的起源和进化。蛋白质科学:出版蛋白质Soc.28(11),1947-1951(2019)。文章

CAS

中科院

Google Scholar

谷歌学者

Zhao, Y. et al. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis. 14 (9), 587 (2023).Article

赵,Y。等。肿瘤微环境中的基质细胞:肿瘤进展的共犯?细胞死亡Dis。14(9),587(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Berg, T. J. & Pietras, A. Radiotherapy-induced remodeling of the tumor microenvironment by stromal cells. Sem. Cancer Biol. 86 (Pt 3), 846–856 (2022).Article

Berg,T.J。&Pietras,A。放射治疗诱导基质细胞对肿瘤微环境的重塑。扫描电镜。癌症生物学。86(Pt 3),846–856(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Reviews Clin. Oncol. 18 (12), 792–804 (2021).Article

Chen,Y.,McAndrews,K.M。&Kalluri,R。癌症相关成纤维细胞的临床和治疗相关性。自然评论临床。Oncol公司。18(12),792-804(2021)。文章

CAS

中科院

Google Scholar

谷歌学者

Wang, H., Cao, H., Xu, Z., Wang, D. & Zeng, Y. SNP rs2596542G > A in MICA is associated with risk of hepatocellular carcinoma: a meta-analysis. Biosci. Rep.; 39(5). (2019).Venkatesan, S. et al. Induction of APOBEC3 exacerbates DNA replication stress and chromosomal instability in early breast and Lung Cancer Evolution.

Wang,H.,Cao,H.,Xu,Z.,Wang,D。和Zeng,Y。MICA中的SNP rs2596542G > A与肝细胞癌的风险相关:荟萃分析。生物科学。代表。;39(5)。(2019年)。Venkatesan,S。等人。APOBEC3的诱导加剧了早期乳腺癌和肺癌进化中的DNA复制应激和染色体不稳定性。

Cancer Discov. 11 (10), 2456–2473 (2021).Article .

癌症发现。11(10),2456-2473(2021)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Olivares-Hernández, A. et al. Influence of DNA mismatch repair (MMR) system in survival and response to Immune Checkpoint inhibitors (ICIs) in Non-small Cell Lung Cancer (NSCLC): retrospective analysis. Biomedicines; 10(2). (2022).Barrett, R. L. & Puré, E. Cancer-associated fibroblasts and their influence on tumor immunity and immunotherapy.

Olivares Hernández,A.等。DNA错配修复(MMR)系统对非小细胞肺癌(NSCLC)生存和免疫检查点抑制剂(ICI)反应的影响:回顾性分析。;10(2)。(2022年)。Barrett,R.L。&Puré,E。癌症相关成纤维细胞及其对肿瘤免疫和免疫治疗的影响。

eLife; 9. (2020).Li, Y. et al. HNRNPK/CLCN3 axis facilitates the progression of LUAD through CAF-tumor interaction. Int. J. Biol. Sci. 18 (16), 6084–6101 (2022).Article .

埃利夫;9(2020年)。Li,Y。等人。HNRNPK/CLCN3轴通过CAF-肿瘤相互作用促进LUAD的进展。国际生物学杂志。科学。18(16),6084-6101(2022)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mao, X. et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol. Cancer. 20 (1), 131 (2021).Article

Mao,X。等人。肿瘤微环境中癌症相关成纤维细胞与免疫细胞之间的串扰:新发现和未来前景。摩尔癌症。20(1),131(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zengin, T. & Önal-Süzek, T. Comprehensive profiling of genomic and transcriptomic differences between Risk Groups of Lung Adenocarcinoma and lung squamous cell carcinoma. J. Personalized Med.; 11(2). (2021).Wang, S. et al. Integrative analyses of bulk and single-cell RNA-seq identified cancer-associated fibroblasts-related signature as a prognostic factor for immunotherapy in NSCLC.

Zengin,T。&Önal-Süzek,T。肺腺癌和肺鳞状细胞癌风险组之间基因组和转录组差异的综合分析。J、 个性化医疗。;11(2)。(2021年)。Wang,S。等人。对大量和单细胞RNA-seq的综合分析确定了癌症相关成纤维细胞相关特征作为NSCLC免疫治疗的预后因素。

Cancer Immunol. Immunotherapy: CII. 72 (7), 2423–2442 (2023).Article .

癌症免疫。免疫疗法:CII。72(7),2423–2442(2023)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ren, Q. et al. A novel signature predicts prognosis and immunotherapy in lung adenocarcinoma based on cancer-associated fibroblasts. Front. Immunol. 14, 1201573 (2023).Article

Ren,Q。等人。一种基于癌症相关成纤维细胞的新型特征预测肺腺癌的预后和免疫治疗。正面。免疫。141201573(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Frisone, D., Friedlaender, A., Addeo, A. & Tsantoulis, P. The Landscape of Immunotherapy Resistance in NSCLC. Front. Oncol. 12, 817548 (2022).Article

Frisone,D.,Friedlaender,A.,Addeo,A。&Tsantoulis,P。NSCLC免疫治疗耐药性的前景。正面。Oncol公司。12817548(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, C. et al. Single-cell and spatial transcriptomics reveal POSTN(+) cancer-associated fibroblasts correlated with immune suppression and tumour progression in non-small cell lung cancer. Clin. Translational Med. 13 (12), e1515 (2023).Article

单细胞和空间转录组学揭示了POSTN(+)癌症相关成纤维细胞与非小细胞肺癌的免疫抑制和肿瘤进展相关。临床。翻译医学13(12),e1515(2023)。文章

CAS

中科院

Google Scholar

谷歌学者

Zhang, J. et al. Single-cell analysis reveals the COL11A1(+) fibroblasts are cancer-specific fibroblasts that promote tumor progression. Front. Pharmacol. 14, 1121586 (2023).Article

Zhang,J。等人。单细胞分析显示COL11A1(+)成纤维细胞是促进肿瘤进展的癌症特异性成纤维细胞。正面。药理学。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Download referencesFundingThis work was supported by the Clinical research fund of Shandong Medical Association National (grant numbers YXH2022ZX02029), the National Natural Science Foundation of China (grant numbers 81972796, 81972863).Author informationAuthors and AffiliationsDepartment of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, ChinaYoujiao SiDepartment of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, ChinaZhonghua ZhaoDepartment of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, ChinaXiangjiao Meng & Kaikai ZhaoAuthorsYoujiao SiView author publicationsYou can also search for this author in.

下载参考文献资助这项工作得到了山东省医学会国家临床研究基金(批准号YXH2022ZX02029),国家自然科学基金(批准号8197279681972863)的支持。作者信息作者和附属机构山东省第一医科大学山东省第一医科大学山东省肿瘤医院和研究所放射科,山东省济南市山东省滨州市滨州医科大学医院肿瘤科,山东省滨州市中华人民共和国赵中华放射肿瘤科,山东省第一医科大学山东省肿瘤医院和研究所,山东省济南市山东省医学科学院孟香娇和赵开凯作者Youjiao SiView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarZhonghua ZhaoView author publicationsYou can also search for this author in

PubMed谷歌学者Zhonghua ZhaoView作者出版物您也可以在

PubMed Google ScholarXiangjiao MengView author publicationsYou can also search for this author in

PubMed谷歌学者Xiangjiao MengView作者出版物您也可以在

PubMed Google ScholarKaikai ZhaoView author publicationsYou can also search for this author in

PubMed Google ScholarKaikai ZhaoView作者出版物您也可以在

PubMed Google ScholarContributionsSYJ and ZZH conducted statistical analyses of the data and prepared the draft manuscript. MXJ and ZKK edited the manuscript. All authors checked and proofread the final version of the manuscript.Corresponding authorCorrespondence to

PubMed Google ScholarContributionsSYJ和ZZH对数据进行了统计分析,并准备了手稿草稿。MXJ和ZKK编辑了手稿。所有作者都检查并校对了稿件的最终版本。对应作者对应

Kaikai Zhao.Ethics declarations

赵凯凯。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleSi, Y., Zhao, Z., Meng, X. et al. RNA-seq and bulk RNA-seq data analysis of cancer-related fibroblasts (CAF) in LUAD to construct a CAF-based risk signature.

转载和许可本文引用本文Si,Y.,Zhao,Z.,Meng,X。等人对LUAD中癌症相关成纤维细胞(CAF)的RNA-seq和大量RNA-seq数据分析,以构建基于CAF的风险签名。

Sci Rep 14, 23243 (2024). https://doi.org/10.1038/s41598-024-74336-1Download citationReceived: 01 April 2024Accepted: 25 September 2024Published: 06 October 2024DOI: https://doi.org/10.1038/s41598-024-74336-1Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

。https://doi.org/10.1038/s41598-024-74336-1Download引文接收日期:2024年4月1日接受日期:2024年9月25日发布日期:2024年10月6日OI:https://doi.org/10.1038/s41598-024-74336-1Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsLung adenocarcinomaCancer-associated fibroblastsImmunotherapyNomogram

关键词腺癌相关成纤维细胞免疫治疗图

CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。