商务合作
动脉网APP
可切换为仅中文
AbstractThe mesophilic methanogenic archaeal model organism Methanosarcina mazei strain Gö1 is crucial for climate and environmental research due to its ability to produce methane. Here, we establish a Ribo-seq protocol for M. mazei strain Gö1 under two growth conditions (nitrogen sufficiency and limitation).
摘要中温产甲烷古细菌模式生物Methanosarcina mazei菌株Gö1因其产生甲烷的能力而对气候和环境研究至关重要。在这里,我们在两种生长条件(氮充足和限制)下为M.mazei菌株Gö1建立了Ribo-seq方案。
The translation of 93 previously annotated and 314 unannotated small ORFs, coding for proteins ≤ 70 amino acids, is predicted with high confidence based on Ribo-seq data. LC-MS analysis validates the translation for 62 annotated small ORFs and 26 unannotated small ORFs. Epitope tagging followed by immunoblotting analysis confirms the translation of 13 out of 16 selected unannotated small ORFs.
基于Ribo-seq数据,可以高可信度预测编码蛋白质≤70个氨基酸的93个先前注释的和314个未注释的小ORF的翻译。LC-MS分析验证了62个带注释的小ORF和26个未注释的小ORF的翻译。表位标记,然后进行免疫印迹分析,证实了16个选定的未注释小ORF中13个的翻译。
A comprehensive differential transcription and translation analysis reveals that 29 of 314 unannotated small ORFs are differentially regulated in response to nitrogen availability at the transcriptional and 49 at the translational level. A high number of reported small RNAs are emerging as dual-function RNAs, including sRNA154, the central regulatory small RNA of nitrogen metabolism.
全面的差异转录和翻译分析表明,314个未注释的小ORF中有29个在转录水平上响应氮可用性而受到差异调节,49个在翻译水平上受到差异调节。大量报道的小RNA正在成为双功能RNA,包括sRNA154,氮代谢的中枢调节小RNA。
Several unannotated small ORFs are conserved in Methanosarcina species and overproducing several (small ORF encoded) small proteins suggests key physiological functions. Overall, the comprehensive analysis opens an avenue to elucidate the function(s) of multitudinous small proteins and dual-function RNAs in M.
几种未注释的小ORF在Methanosarcina物种中是保守的,并且过量产生几种(小ORF编码的)小蛋白质表明了关键的生理功能。总体而言,综合分析为阐明M中大量小蛋白和双功能RNA的功能开辟了一条途径。
mazei..
马泽。。
IntroductionAn unexpected complexity and density of genes within microbial genomes have been revealed by the steadily growing number of sequenced prokaryotic genomes in combination with high throughput OMICS profiling technologies such as next generation sequencing of DNA and RNA and optimized proteomics1,2.
引言微生物基因组中基因的意外复杂性和密度已经通过稳定增长的测序原核基因组数量以及高通量组学分析技术(如DNA和RNA的下一代测序和优化的蛋白质组学)揭示出来1,2。
In addition, discovering genes encoding longer proteins or non-coding RNAs, genome-wide studies have also revealed a potential wealth of small proteins in all kingdoms of life. Small proteins are defined here as ribosomal synthesized proteins of ≤ 70 amino acids (aa) in length that are translated from small open reading frames (sORFs).
此外,发现编码更长蛋白质或非编码RNA的基因,全基因组研究也揭示了生命王国中潜在的大量小蛋白质。小蛋白质在这里定义为长度≤70个氨基酸(aa)的核糖体合成蛋白质,这些蛋白质是从小开放阅读框(SORF)翻译而来的。
They have been frequently overlooked in the past due to various technical and methodological difficulties e.g., in mass spectrometry3,4. Recent emerging tools and evidences demonstrated that small proteins in eukarya, bacteria, and viruses are implicated in important and diverse cellular functions, such as transport, sporulation, signal transduction, virulence, symbiosis or antiCRISPR activity4,5,6,7,8,9,10,11,12.Small proteins in the domain of archaea are underrepresented in recent studies, and only few small proteins are characterized until now13,14.
由于各种技术和方法上的困难,例如在质谱中,它们在过去经常被忽视3,4。最近出现的工具和证据表明,真核生物,细菌和病毒中的小蛋白与重要和多样的细胞功能有关,如运输,孢子形成,信号转导,毒力,共生或抗CRISPR活性4,5,6,7,8,9,10,11,12。古细菌领域的小蛋白在最近的研究中代表性不足,到目前为止只有少数小蛋白被表征13,14。
This occurs to the smaller number of identified and cultivable archaea. Many archaea live in extreme habitats or in symbiosis with multicellular organisms. Consequently, due to the challenging experimental work and prediction tools optimized for bacteria, less is known about small proteins in archaea14.
这发生在数量较少的已鉴定和可培养的古细菌中。许多古细菌生活在极端的栖息地或与多细胞生物共生。因此,由于针对细菌优化的具有挑战性的实验工作和预测工具,对古细菌中的小蛋白质知之甚少14。
Methanosarcina mazei strain Gö1 is an archaeal model organism and represents a methylotrophic methanogenic archaeon15. It produces methane from carbon sources like CO2 plus H2, methanol, methylamine or acetate16,17,18,19 and can fix molecular nitrogen under nitrogen (N) limitation20. The.
Methanosarcina mazei菌株Gö1是一种古细菌模式生物,代表了一种甲基营养型产甲烷古菌15。它从二氧化碳加H2,甲醇,甲胺或乙酸酯等碳源产生甲烷16,17,18,19,并且可以在氮(N)限制下固定分子氮20。的。
To generate a translatome map that provides a comprehensive depiction of translated annotated sORFs and to discover unannotated sORFs in M. mazei Gö1, we optimized the Ribo-seq protocol initially proposed by40,44,45 and further developed it to suit the characteristic of this particular methanoarchaeon under two different growth conditions ( + N and -N) (Fig. 1A for more detailed information).
为了生成一个翻译组图谱,提供翻译注释的sORFs的全面描述,并在M.mazei Gö1中发现未注释的sORFs,我们优化了最初由40,44,45提出的Ribo-seq协议,并进一步开发了它,以适应两种不同生长条件( + N和-N)下这种特定甲烷动物的特征(图1A提供了更多详细信息)。
The polysome profile analysis confirmed successful capture of translating ribosomes (Fig. 1B, depicted by black lines), followed by conversion of M. mazei polysomes46,47 into monosomes using MNase digestion (Fig. 1B)48,49,50. The effective implementation of Ribo-seq for M. mazei was validated by examining the Ribo-seq coverage of translated ORFs and known non-coding transcripts.
多核糖体谱分析证实成功捕获翻译核糖体(图1B,用黑线描绘),然后使用MNase消化将M.mazei多核糖体46,47转化为单体(图1B)48,49,50。通过检查翻译的ORF和已知的非编码转录本的Ribo-seq覆盖率,验证了Ribo-seq对M.mazei的有效实施。
Exemplarily shown for the protein-coding gene psmB (MM_0694; encoding a proteasome subunit), which exhibited greater cDNA read coverage in the Ribo-seq library as compared to the paired RNA-seq library (Fig. 1C, left panel), indicating translation of this gene. Conversely, the sRNA162, a known non-coding regulatory sRNA51, displayed high read coverage of cDNA in the RNA-seq but no coverage in the Ribo-seq library (Fig. 1C right panel).
示例性地显示了蛋白质编码基因psmB(MM\U 0694;编码蛋白酶体亚基),与成对的RNA-seq文库相比,其在Ribo-seq文库中表现出更大的cDNA读取覆盖率(图1C,左图),表明该基因的翻译。相反,sRNA162(一种已知的非编码调节性sRNA51)在RNA-seq中显示出高的cDNA读取覆盖率,但在Ribo-seq文库中没有覆盖率(图1C右图)。
This observation further validates its non-coding nature. Furthermore, the read coverages of the 5’- and 3’-UTRs of psmB demonstrated higher levels in the RNA-seq library compared to the Ribo-seq library (Fig. 1C, left panel). This indicates that mRNA regions that are not translated or unprotected regions were effectively degraded by MNase, supporting the validity of our Ribo-seq approach.
该观察结果进一步验证了其非编码性质。此外,与Ribo-seq文库相比,psmB的5'-和3'-UTR的读取覆盖率在RNA-seq文库中显示出更高的水平(图1C,左图)。这表明未翻译或未保护区域的mRNA区域被MNase有效降解,支持了我们的Ribo-seq方法的有效性。
Similarly, the operon comprising four small proteins (MM1355-MM1358, TRAM domains) also displayed successful digestion of the 5’- and 3’-UTRs (Fig. 1D). This further confirms the reliabilit.
类似地,包含四种小蛋白(MM1355-MM1358,TRAM结构域)的操纵子也显示出对5'-和3'-UTR的成功消化(图1D)。这进一步证实了可靠性。
Data availability
数据可用性
Ribo-seq and RNA-seq data generated and analyzed during the current study have been deposited in GEO with the accession number GSE240615. The Ribo-seq for M. mazei can be viewed with an interactive online JBrowse instance (http://www.bioinf.uni-freiburg.de/ribobase) on request. All re-processed LC-MS data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD045039, the meta-data is provided in Supplementary Data 10.
在当前研究期间生成和分析的Ribo-seq和RNA-seq数据已保存在GEO中,登录号为GSE240615。可以使用交互式在线JBrowse实例查看M.mazei的Ribo-seq(http://www.bioinf.uni-freiburg.de/ribobase)根据要求。所有重新处理的LC-MS数据都已通过PRIDE合作伙伴存储库存储到ProteomeXchange Consortium,数据集标识符为PXD045039,元数据在补充数据10中提供。
This consists of previously published raw files from the datasets PXD00432556 [https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD004325], PXD01979254 [https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD019792], PXD01199655 [https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD011996], as well as datasets PXD055745, and PXD055748, which were produced in house following the methodologies detailed in this manuscript, with publications pending. Source data are provided with this paper..
这包括来自数据集PXD00432556的先前发布的原始文件[https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD004325],PXD01979254[https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD019792],PXD01199655[https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD011996],以及数据集PXD055745和PXD055748,这些数据集是按照本手稿中详细介绍的方法在内部生成的,尚待发布。本文提供了源数据。。
Code availability
代码可用性
All the codes regarding functional enrichment analysis are available at the following GitHub repository: https://github.com/RickGelhausen/pathsnake. An archived version of the repository has been generated and is accessible via Zenodo with the following https://doi.org/10.5281/zenodo.13384255.
以下GitHub存储库中提供了有关功能丰富分析的所有代码:https://github.com/RickGelhausen/pathsnake.https://doi.org/10.5281/zenodo.13384255.
ReferencesDai, X. & Shen, L. Advances and trends in omics technology development. Front Med (Lausanne) 9, 911861 (2022).Article
ReferencesDai,X。&Shen,L。组学技术发展的进展和趋势。Front Med(洛桑)9911861(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Land, M. et al. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15, 141–161 (2015).Article
Land,M.等人对20年细菌基因组测序的见解。函数。整数。基因组学15141-161(2015)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ahrens, C. H., Wade, J. T., Champion, M. M. & Langer, J. D. A Practical guide to small protein discovery and characterization using mass spectrometry. J. Bacteriol. 204, e00353–00321 (2022).Article
Ahrens,C.H.,Wade,J.T.,Champion,M.M。和Langer,J.D。使用质谱法发现和表征小蛋白质的实用指南。J、 细菌。204,e00353–00321(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Storz, G., Wolf, Y. I. & Ramamurthi, K. S. Small proteins can no longer be ignored. Annu Rev. Biochem 83, 753–777 (2014).Article
Storz,G.,Wolf,Y.I。&Ramamurthi,K.S。小蛋白质不再被忽视。Annu Rev.Biochem 83753-777(2014)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Aoyama, J. J., Raina, M., Zhong, A. & Storz, G. Dual-function Spot 42 RNA encodes a 15-amino acid protein that regulates the CRP transcription factor. Proc. Natl Acad. Sci. USA 119, e2119866119 (2022).Article
Aoyama,J.J.,Raina,M.,Zhong,A。&Storz,G。双功能斑点42 RNA编码调节CRP转录因子的15个氨基酸的蛋白质。程序。国家科学院。科学。美国119,e2119866119(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Duval, M. & Cossart, P. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr. Opin. Microbiol 39, 81–88 (2017).Article
Duval,M。&Cossart,P。小细菌和吞噬蛋白:关于快速移动领域的最新观点。货币。奥平。微生物39,81-88(2017)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hemm, M. R., Weaver, J. & Storz, G. Escherichia coli Small Proteome. Ecosal Plus 9, https://doi.org/10.1128/ecosalplus.ESP-0031-2019 (2020).Khitun, A. & Slavoff, S. A. Proteomic detection and validation of translated small open reading frames. Curr. Protoc. Chem. Biol. 11, e77 (2019).Article .
Hemm,M.R.,Weaver,J。&Storz,G。大肠杆菌小蛋白质组。Ecosal Plus 9,https://doi.org/10.1128/ecosalplus.ESP-0031-2019(2020年)。Khitun,A。&Slavoff,S.A。蛋白质组学检测和验证翻译的小开放阅读框。货币。普罗托克。化学。生物学11,e77(2019)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Melior, H. et al. The leader peptide peTrpL forms antibiotic-containing ribonucleoprotein complexes for posttranscriptional regulation of multiresistance genes. MBio 11, https://doi.org/10.1128/mBio.01027-20 (2020).Patraquim, P., Mumtaz, M. A. S., Pueyo, J. I., Aspden, J. L. & Couso, J.-P.
Melior,H。等人。前导肽peTrpL形成含抗生素的核糖核蛋白复合物,用于多抗性基因的转录后调控。MBio 11,https://doi.org/10.1128/mBio.01027-20(2020年)。帕特拉奎姆(Patraquim,P.),蒙塔兹(Mumtaz),马萨诸塞州(M.A.S.),普约(Pueyo),J.I。,阿斯普登(Aspden),J.L。和库索(Couso),J.P。
Developmental regulation of canonical and small ORF translation from mRNAs. Genome Biol. 21, 128 (2020).Article .
mRNA的经典和小ORF翻译的发育调控。基因组生物学。21128(2020)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Song, K. et al. AtpΘ is an inhibitor of F0F1 ATP synthase to arrest ATP hydrolysis during low-energy conditions in cyanobacteria. Curr. Biol. 32, 136–148.e135 (2022).Article
Song,K.等人,AtpΘ是F0F1 Atp合酶的抑制剂,可在蓝藻低能条件下阻止Atp水解。生物学32136-148.e135(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Peng, X., Mayo-Muñoz, D., Bhoobalan-Chitty, Y. & Martínez-Álvarez, L. Anti-CRISPR proteins in archaea. Trends Microbiol. 28, 913–921 (2020).Article
Peng,X.,Mayo Muñoz,D.,Bhoobalan Chitty,Y。&Martínez-Álvarez,L。古细菌中的抗CRISPR蛋白。趋势微生物。28913-921(2020)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Jordan, B., Weidenbach, K. & Schmitz, R. A. The power of the small: the underestimated role of small proteins in bacterial and archaeal physiology. Curr. Opin. Microbiol 76, 102384 (2023).Article
Jordan,B.,Weidenbach,K。&Schmitz,R.A。小的力量:小蛋白质在细菌和古细菌生理学中被低估的作用。货币。奥平。微生物76102384(2023)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Weidenbach, K., Gutt, M., Cassidy, L., Chibani, C. & Schmitz, R. A. Small proteins in archaea, a mainly unexplored world. J. Bacteriol. 204, e0031321 (2022).Article
Weidenbach,K.,Gutt,M.,Cassidy,L.,Chibani,C.&Schmitz,R.A。古细菌中的小蛋白质,一个主要未开发的世界。J、 细菌。204,e0031321(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Deppenmeier, U. et al. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol Biotechnol. 4, 453–461 (2002).CAS
Deppenmeier,U。等人。马泽甲烷八叠球菌的基因组:细菌和古细菌之间横向基因转移的证据。J、 分子微生物生物技术。4453-461(2002)。中科院
PubMed
PubMed
Google Scholar
谷歌学者
Deppenmeier, U., Müller, V. & Gottschalk, G. Pathways of energy conservation in methanogenic archaea. Arch. Microbiol 165, 149–163 (1996).Article
Deppenmeier,U.,Müller,V。&Gottschalk,G。产甲烷古细菌的节能途径。拱门。微生物165149-163(1996)。文章
CAS
中科院
Google Scholar
谷歌学者
Ferry, J. G. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev. 23, 13–38 (1999).Article
Ferry,J.G。产甲烷途径中单碳代谢的酶学。FEMS Microbiol Rev.23,13-38(1999)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Hippe, H., Caspari, D., Fiebig, K. & Gottschalk, G. Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc. Natl Acad. Sci. USA 76, 494–498 (1979).Article
Hippe,H.,Caspari,D.,Fiebig,K。&Gottschalk,G。利用三甲胺和其他N-甲基化合物进行甲烷八叠球菌的生长和甲烷形成。Proc。国家科学院。科学。美国76494-498(1979)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Thauer, R. K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiol. (Read., Engl.) 144, 2377–2406 (1998).Article
Thauer,R.K。产甲烷生物化学:向Marjory Stephenson致敬。1998年马乔里·斯蒂芬森奖讲座。微生物。(阅读,英语。)1442377-2406(1998)。文章
CAS
中科院
Google Scholar
谷歌学者
Ehlers, C., Veit, K., Gottschalk, G. & Schmitz, R. A. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. Archaea 1, 143–150 (2002).Article
Ehlers,C.,Veit,K.,Gottschalk,G。&Schmitz,R.A。中温古生菌Methanosarcina mazei菌株Gö1中单个nif簇的功能组织。古细菌1143-150(2002)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buddeweg, A., Sharma, K., Urlaub, H. & Schmitz, R. A. sRNA41 affects ribosome binding sites within polycistronic mRNAs in Methanosarcina mazei Gö1. Mol. Microbiol 107, 595–609 (2018).Article
Buddeweg,A.,Sharma,K.,Urlaub,H。&Schmitz,R.A。sRNA41影响Methanosarcina mazei Gö1中多顺反子mRNA内的核糖体结合位点。Mol.Microbiol 107595-609(2018)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Prasse, D. & Schmitz, R. A. Small RNAs involved in regulation of nitrogen metabolism. Microbiol Spectr 6, 10–1128 (2018).Weidenbach, K., Ehlers, C., Kock, J., Ehrenreich, A. & Schmitz, R. A. Insights into the NrpR regulon in Methanosarcina mazei Gö1. Arch. Microbiol 190, 319–332 (2008).Article .
。Microbiol Spectr 6,10-1128(2018)。Weidenbach,K.,Ehlers,C.,Kock,J.,Ehrenreich,A。&Schmitz,R.A。对甲烷八叠球菌(Methanosarcina mazei Gö1)中NrpR调节子的见解。拱门。微生物190319-332(2008)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Weidenbach, K., Ehlers, C., Kock, J. & Schmitz, R. A. NrpRII mediates contacts between NrpRI and general transcription factors in the archaeon Methanosarcina mazei Gö1. FEBS J. 277, 4398–4411 (2010).Article
Weidenbach,K.,Ehlers,C.,Kock,J。&Schmitz,R.A。NrpRII介导NrpRI与古生甲烷八叠球菌mazei Gö1中一般转录因子之间的接触。FEBS J.2774398–4411(2010)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Weidenbach, K., Ehlers, C. & Schmitz, R. A. The transcriptional activator NrpA is crucial for inducing nitrogen fixation in Methanosarcina mazei Gö1 under nitrogen-limited conditions. FEBS J. 281, 3507–3522 (2014).Article
Weidenbach,K.,Ehlers,C。&Schmitz,R.A。转录激活因子NrpA对于在氮限制条件下诱导甲烷八叠球菌(Methanosarcina mazei Gö1)的固氮至关重要。FEBS J.2813507–3522(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Prasse, D., Förstner, K. U., Jäger, D., Backofen, R. & Schmitz, R. A. sRNA154 a newly identified regulator of nitrogen fixation in Methanosarcina mazei strain Gö1. RNA Biol. 14, 1544–1558 (2017).Article
Prasse,D.,Förstner,K.U.,Jäger,D.,Backofen,R。&Schmitz,R.A。sRNA154是一种新发现的甲烷八叠球菌mazei菌株Gö1固氮调节剂。RNA生物学。141544-1558(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jäger, D. et al. Deep sequencing analysis of the Methanosarcina mazei Gö1 transcriptome in response to nitrogen availability. Proc. Natl Acad. Sci. 106, 21878–21882 (2009).Article
Jäger,D。等人。甲烷八叠球菌mazei Gö1转录组对氮可用性的深度测序分析。程序。国家科学院。科学。10621878-21882(2009)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ehlers, C., Jäger, D. & Schmitz, R. A. Establishing a markerless genetic exchange system for Methanosarcina mazei strain Gö1 for constructing chromosomal mutants of small RNA genes. Archaea 2011, 439608 (2011).Article
。古细菌2011439608(2011)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ehlers, C. et al. Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Gö1. Mol. Genet Genomics 273, 290–298 (2005).Article
Ehlers,C.等人。遗传方法的发展和甲烷八叠球菌mazei菌株Gö1中染色体glnK1突变体的构建。Mol.Genet Genomics 273290–298(2005)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Thomsen, J., Weidenbach, K., Metcalf, W. W. & Schmitz, R. A. Genetic methods and construction of chromosomal mutations in methanogenic archaea. Methods Mol. Biol. 2522, 105–117 (2022).Article
Thomsen,J.,Weidenbach,K.,Metcalf,W。W。和Schmitz,R。A。遗传方法和产甲烷古细菌染色体突变的构建。方法分子生物学。2522105-117(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Prasse, D. et al. First description of small proteins encoded by spRNAs in Methanosarcina mazei strain Gö1. Biochimie 117, 138–148 (2015).Article
Prasse,D。等人。首次描述了甲烷八叠球菌(Methanosarcina mazei)菌株Gö1中由SpRNA编码的小蛋白。生物化学117138-148(2015)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gutt, M. et al. High complexity of Glutamine synthetase regulation in Methanosarcina mazei: Small protein 26 interacts and enhances glutamine synthetase activity. FEBS J. 288, 5350–5373 (2021).Article
Gutt,M.等人。马泽甲烷八叠球菌谷氨酰胺合成酶调节的高度复杂性:小蛋白26相互作用并增强谷氨酰胺合成酶活性。FEBS J.2885350–5373(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Habenicht, T. et al. Small protein mediates inhibition of ammonium transport in Methanosarcina mazei-an ancient mechanism? Microbiol Spectr. 11, e0281123 (2023).Article
Habenicht,T。等人。小蛋白介导抑制甲烷八叠球菌中的铵转运-一种古老的机制?微生物光谱。11,e0281123(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Aspden, J. L. et al. Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. eLife 3, e03528 (2014).Article
Aspden,J.L.等人。Poly-Ribo-Seq揭示的小开放阅读框的广泛翻译。eLife 3,e03528(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Baek, J., Lee, J., Yoon, K. & Lee, H. Identification of unannotated small genes in Salmonella. G3 Genes|Genomes|Genet. 7, 983–989 (2017).Article
Baek,J.,Lee,J.,Yoon,K。&Lee,H。沙门氏菌中未注释小基因的鉴定。G3基因|基因组|基因。7983-989(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bazzini, A. A. et al. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO J. 33, 981–993 (2014).Article
Bazzini,A.A.等人。使用核糖体足迹和进化保守性鉴定脊椎动物中的小ORF。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Neuhaus, K. et al. Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics 18, 216 (2017).Article
Neuhaus,K。等人。通过组合RNAseq和RIBOseq-ryhB从大肠杆菌O157中的小mRNA中分化ncRNA:H7 EDL933(EHEC)编码调节性RNA ryhB和肽RyhP。BMC基因组学18216(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hemm, M. R., Paul, B. J., Schneider, T. D., Storz, G. & Rudd, K. E. Small membrane proteins found by comparative genomics and ribosome binding site models. Mol. Microbiol 70, 1487–1501 (2008).Article
Hemm,M.R.,Paul,B.J.,Schneider,T.D.,Storz,G。&Rudd,K.E。通过比较基因组学和核糖体结合位点模型发现的小膜蛋白。分子微生物学701487-1501(2008)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gelsinger, D. R. et al. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Res. 48, 5201–5216 (2020).Article
古细菌中的核糖体分析揭示了无前导翻译,新的翻译起始位点和核糖体在单密码子分辨率下暂停。核酸研究485201-5216(2020)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hadjeras, L. et al. Revealing the small proteome of Haloferax volcanii by combining ribosome profiling and small-protein optimized mass spectrometry. microLife 4, uqad001 (2023).Article
Hadjeras,L.等人通过结合核糖体分析和小蛋白质优化质谱揭示了火山卤虫的小蛋白质组。microLife 4,uqad001(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Raina, M., King, A., Bianco, C. & Vanderpool, C. K. Dual-Function RNAs. Microbiol Spectr 6, https://doi.org/10.1128/microbiolspec.RWR-0032-2018 (2018).Bobrovskyy, M. & Vanderpool, C. K. Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress.
Raina,M.,King,A.,Bianco,C。&Vanderpool,C.K。双功能RNA。微生物光谱6,https://doi.org/10.1128/microbiolspec.RWR-0032-2018(2018年)。Bobrovsky,M。&Vanderpool,C.K。葡萄糖磷酸应激的小RNA调节剂转录后抑制的多种机制。
Mol. Microbiol 99, 254–273 (2016).Article .
Mol.Microbiol 99254-273(2016)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Lloyd, C. R., Park, S., Fei, J. & Vanderpool, C. K. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 199, https://doi.org/10.1128/jb.00869-16 (2017).Oh, E. et al. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo.
Lloyd,C.R.,Park,S.,Fei,J。&Vanderpool,C.K。小蛋白SgrT控制葡萄糖特异性磷酸转移酶系统的转运活性。细菌杂志199,https://doi.org/10.1128/jb.00869-16(2017年)。Oh,E。等人。选择性核糖体分析揭示了触发因子在体内的共翻译伴侣作用。
Cell 147, 1295–1308 (2011).Article .
。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hadjeras, L. et al. Unraveling the small proteome of the plant symbiont Sinorhizobium meliloti by ribosome profiling and proteogenomics. microLife 4, uqad012 (2023).Article
Hadjeras,L.等人通过核糖体分析和蛋白质基因组学揭示了植物共生体苜蓿中华根瘤菌的小蛋白质组。microLife 4,uqad012(2023)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ingolia, N. T. Ribosome Footprint Profiling of Translation throughout the Genome. Cell 165, 22–33 (2016).Article
Ingolia,N.T。整个基因组翻译的核糖体足迹分析。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vazquez-Laslop, N., Sharma, C. M., Mankin, A. & Buskirk, A. R. Identifying small open reading frames in prokaryotes with ribosome profiling. J. Bacteriol. 204, e0029421 (2022).Article
Vazquez-Laslop,N.,Sharma,C.M.,Mankin,A。&Buskirk,A.R。通过核糖体分析鉴定原核生物中的小开放阅读框。J、 细菌。204,e0029421(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Gelhausen, R. et al. HRIBO: high-throughput analysis of bacterial ribosome profiling data. Bioinformatics 37, 2061–2063 (2021).Article
Gelhausen,R。et al。HRIBO:细菌核糖体分析数据的高通量分析。生物信息学372061-2063(2021)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Clauwaert, J., Menschaert, G. & Waegeman, W. DeepRibo: a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns. Nucleic Acids Res. 47, e36 (2019).Article
Clauwaert,J.,Menschaert,G。&Waegeman,W。DeepRibo:通过结合核糖体分析信号和结合位点模式,对原核生物进行精确基因注释的神经网络。核酸研究47,e36(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ndah, E. et al. REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes. Nucleic Acids Res. 45, e168 (2017).Article
Ndah,E。等人。修复:核糖体分析辅助(重新)注释细菌基因组。核酸研究45,e168(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jäger, D. et al. An archaeal sRNA targeting cis - and trans -encoded mRNAs via two distinct domains. Nucleic Acids Res. 40, 10964–10979 (2012).Article
Jäger,D。等人。通过两个不同的结构域靶向顺式和反式编码mRNA的古细菌sRNA。核酸研究4010964-10979(2012)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).Article
Haas,B.J.等人。使用证据模型(EVidenceModeler)和组装剪接比对的程序自动进行真核基因结构注释。基因组生物学。9,R7(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Omasits, U. et al. An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics. Genome Res. 27, 2083–2095 (2017).Article
Omasits,U。等人。通过蛋白质基因组学鉴定原核基因组的整个蛋白质编码潜力的综合策略。基因组研究272083-2095(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cassidy, L. et al. Multidimensional separation schemes enhance the identification and molecular characterization of low molecular weight proteomes and short open reading frame-encoded peptides in top-down proteomics. J. Proteom. 230, 103988 (2021).Article
Cassidy,L。等人。多维分离方案增强了自上而下蛋白质组学中低分子量蛋白质组和短开放阅读框编码肽的鉴定和分子表征。J、 蛋白质组学。230103988(2021)。文章
CAS
中科院
Google Scholar
谷歌学者
Cassidy, L., Kaulich, P. T. & Tholey, A. Depletion of high-molecular-mass proteins for the identification of small proteins and short open reading frame encoded peptides in cellular proteomes. J. Proteome Res. 18, 1725–1734 (2019).Article
Cassidy,L.,Kaulich,P.T。&Tholey,A。高分子量蛋白质的消耗,用于鉴定细胞蛋白质组中的小蛋白质和短开放阅读框编码的肽。J、 蛋白质组研究181725-1734(2019)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Cassidy, L., Prasse, D., Linke, D., Schmitz, R. A. & Tholey, A. Combination of bottom-up 2D-LC-MS and semi-top-down GelFree-LC-MS enhances coverage of proteome and low molecular weight short open reading frame encoded peptides of the archaeon Methanosarcina mazei. J. Proteome Res. 15, 3773–3783 (2016).Article .
Cassidy,L.,Prasse,D.,Linke,D.,Schmitz,R.A。&Tholey,A。自下而上的2D-LC-MS和半自上而下的无凝胶LC-MS的组合增强了蛋白质组和低分子量短开放阅读框编码的古细菌甲烷八叠球菌肽的覆盖率。J、 蛋白质组学研究153773-3783(2016)。文章。
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Kaulich, P. T., Cassidy, L., Weidenbach, K., Schmitz, R. A. & Tholey, A. Complementarity of different SDS-PAGE gel staining methods for the identification of short open reading frame-encoded peptides. PROTEOMICS 20, 2000084 (2020).Article
。蛋白质组学2020000084(2020)。文章
CAS
中科院
Google Scholar
谷歌学者
Madeira, F. et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 50, W276–W279 (2022).Article
Madeira,F.等人,EMBL-EBI于2022年提供搜索和序列分析工具服务。核酸研究50,W276–W279(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article
Jumper,J.等人。使用AlphaFold进行高度准确的蛋白质结构预测。自然596583-589(2021)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).Article
Varadi,M。等人。AlphaFold蛋白质结构数据库:通过高精度模型大规模扩展蛋白质序列空间的结构覆盖范围。核酸研究50,D439–D444(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Schumacher, K. et al. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. bioRxiv, 2023.2006.2002.543275 https://doi.org/10.1101/2023.06.02.543275 (2023).Ingolia, N. T. et al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes.
Schumacher,K。等人。核糖体分析揭示了大肠杆菌对轻度和重度酸应激的微调反应。bioRxiv,2023.2006.2002.543275https://doi.org/10.1101/2023.06.02.543275(2023年)。Ingolia,N.T。等人的核糖体分析揭示了注释蛋白质编码基因之外的普遍翻译。
Cell Rep. 8, 1365–1379 (2014).Article .
Cell Rep.81365–1379(2014)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ingolia, N. T., Hussmann, J. A. & Weissman, J. S. Ribosome profiling: Global views of translation. Cold Spring Harb Perspect Biol 11 https://doi.org/10.1101/cshperspect.a032698 (2019).Brar, G. A. & Weissman, J. S. Ribosome profiling reveals the what, when, where and how of protein synthesis.
Ingolia,N.T.,Hussmann,J.A。和Weissman,J.S。核糖体分析:全球翻译观。https://doi.org/10.1101/cshperspect.a032698(2019年)。Brar,G.A。&Weissman,J.S。核糖体分析揭示了蛋白质合成的时间,地点和方式。
Nat. Rev. Mol. Cell Biol. 16, 651–664 (2015).Article .
Nat。Rev。Mol。Cell Biol。16651-664(2015)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Gelhausen, R. et al. RiboReport - benchmarking tools for ribosome profiling-based identification of open reading frames in bacteria. Brief Bioinformatics 23, https://doi.org/10.1093/bib/bbab549 (2022).Fritsch, C. et al. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting.
Gelhausen,R.等人,《核糖体报告-基于核糖体分析的细菌开放阅读框鉴定的基准工具》。生物信息学简介23,https://doi.org/10.1093/bib/bbab549(2022年)。Fritsch,C.等人。使用核糖体足迹在全基因组范围内搜索新型人类uORF和N端蛋白质延伸。
Genome Res 22, 2208–2218 (2012).Article .
基因组研究222208-2218(2012)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fijalkowska, D. et al. eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs. Nucleic Acids Res 45, 7997–8013 (2017).Article
Fijalkowska,D。等人,eIF1调节次优翻译起始位点的识别,并通过uORF引导基因表达。核酸研究457997-8013(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mohammad, F., Green, R. & Buskirk, A. R. A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. eLife 8, https://doi.org/10.7554/eLife.42591 (2019).Venturini, E. et al. A global data-driven census of Salmonella small proteins and their potential functions in bacterial virulence.
Mohammad,F.,Green,R。&Buskirk,A.R。一种系统改进的细菌核糖体分析方法揭示了单密码子分辨率的暂停。eLife 8,https://doi.org/10.7554/eLife.42591(2019年)。Venturini,E.等人。沙门氏菌小蛋白及其在细菌毒力中的潜在功能的全球数据驱动普查。
microLife 1, uqaa002 (2020).Article .
microLife 1,uqaa002(2020)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Mackowiak, S. D. et al. Extensive identification and analysis of conserved small ORFs in animals. Genome Biol. 16, 179 (2015).Article
Mackowiak,S.D.等人。动物中保守小ORF的广泛鉴定和分析。基因组生物学。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Fuchs, S. et al. Towards the characterization of the hidden world of small proteins in Staphylococcus aureus, a proteogenomics approach. PLoS Genet 17, e1009585 (2021).Article
Fuchs,S.等人致力于表征金黄色葡萄球菌中小蛋白质的隐藏世界,一种蛋白质基因组学方法。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
VanOrsdel, C. E. et al. Identifying New Small Proteins in Escherichia coli. Proteomics 18, e1700064 (2018).Article
VanOrsdel,C.E.等人在大肠杆菌中鉴定新的小蛋白。蛋白质组学18,e1700064(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Weaver, J., Mohammad, F., Buskirk, A. R. & Storz, G. Identifying small proteins by ribosome profiling with stalled initiation complexes. MBio 10, https://doi.org/10.1128/mBio.02819-18 (2019).Miravet-Verde, S. et al. Unraveling the hidden universe of small proteins in bacterial genomes.
Weaver,J.,Mohammad,F.,Buskirk,A.R。&Storz,G。通过核糖体分析和停滞的起始复合物鉴定小蛋白质。MBio 10,https://doi.org/10.1128/mBio.02819-18(2019年)。Miravet Verde,S.等人揭示了细菌基因组中隐藏的小蛋白质宇宙。
Mol. Syst. Biol. 15, e8290 (2019).Article .
。生物学杂志15,e8290(2019)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Veit, K. et al. Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol. Genet Genomics 276, 41–55 (2006).Article
Veit,K。等人。不同氮可用性下甲烷八叠球菌mazei菌株Gö1的整体转录分析。Mol.Genet Genomics 276,41-55(2006)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gray, T., Storz, G. & Papenfort, K. Small Proteins; Big Questions. J. Bacteriol. 204, e00341–00321 (2022).Article
Gray,T.,Storz,G。&Papenfort,K。Small Proteins;大问题。J、 细菌。204,e00341–00321(2022)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vanderpool, C. K. Physiological consequences of small RNA-mediated regulation of glucose-phosphate stress. Curr. Opin. Microbiol 10, 146–151 (2007).Article
Vanderpool,C.K。小RNA介导的葡萄糖磷酸应激调节的生理后果。货币。奥平。微生物10146-151(2007)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Venkat, K. et al. A dual-function RNA balances carbon uptake and central metabolism in Vibrio cholerae. Embo j. 40, e108542 (2021).Article
Venkat,K。等人。一种双功能RNA平衡霍乱弧菌的碳吸收和中枢代谢。Embo j.40,e108542(2021)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580 (1983).Article
Hanahan,D。用质粒转化大肠杆菌的研究。J、 分子生物学。166557-580(1983)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Miller, V. L. & Mekalanos, J. J. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170, 2575–2583 (1988).Article
Miller,V.L。&Mekalanos,J.J。一种新型自杀载体及其在插入突变构建中的应用:霍乱弧菌外膜蛋白和毒力决定因子的渗透调节需要toxR。J、 细菌。1702575-2583(1988)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Inoue, H., Nojima, H. & Okayama, H. High efficiency transformation of Escherichia coli with plasmids. Gene 96, 23–28 (1990).Article
Inoue,H.,Nojima,H。&Okayama,H。用质粒高效转化大肠杆菌。基因96,23-28(1990)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Gehlert, F. O. et al. Active in vivo translocation of the Methanosarcina mazei Gö1 Casposon. Nucleic Acids Research, gkad474 https://doi.org/10.1093/nar/gkad474 (2023).Gerashchenko, M. V. & Gladyshev, V. N. Translation inhibitors cause abnormalities in ribosome profiling experiments.
Gehlert,F.O.等人。甲烷八叠球菌mazei Gö1 Casposon的体内活性易位。核酸研究,gkad474https://doi.org/10.1093/nar/gkad474(2023年)。Gerashchenko,M.V。和Gladyshev,V.N。翻译抑制剂会导致核糖体分析实验异常。
Nucleic Acids Res. 42, e134 (2014).Article .
核酸研究42,e134(2014)。文章。
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sharma, C. M., Darfeuille, F., Plantinga, T. H. & Vogel, J. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev. 21, 2804–2817 (2007).Article
Sharma,C.M.,Darfueille,F.,Plantinga,T.H。&Vogel,J。一种小RNA通过靶向核糖体结合位点内部和上游富含C/A的元件来调节多种ABC转运蛋白mRNA。。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550 (2012).Article
Ingolia,N.T.,Brar,G.A.,Rouskin,S.,McGeachy,A.M。和Weissman,J.S。通过对核糖体保护的mRNA片段进行深度测序来监测体内翻译的核糖体分析策略。自然协议。71534-1550(2012)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Köster, J. & Rahmann, S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).Article
Köster,J.&Rahmann,S。Snakemake–一个可扩展的生物信息学工作流引擎。生物信息学282520-2522(2012)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Grüning, B. et al. Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods 15, 475–476 (2018).Article
Grüning,B。等人。Bioconda:生命科学的可持续和全面的软件分发。自然方法15475-476(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).Article
Martin,M。Cutadapt从高通量测序读数中删除了衔接子序列。EMBnet j.17,10(2011)。文章
Google Scholar
谷歌学者
Otto, C., Stadler, P. F. & Hoffmann, S. Lacking alignments? The next-generation sequencing mapper segemehl revisited. Bioinformatics 30, 1837–1843 (2014).Article
Otto,C.,Stadler,P.F。&Hoffmann,S。缺乏对齐?重新审视了下一代测序映射器segemehl。生物信息学301837-1843(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article
Li,H。等人。序列比对/图谱格式和SAMtools。生物信息学252078-2079(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).Article
。生物信息学30923-930(2014)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res 7, 1338 (2018).Article
Wingett,S.W。&Andrews,S.FastQ屏幕:用于多基因组作图和质量控制的工具。F1000Res71338(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).Article
。生物信息学323047-3048(2016)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Buels, R. et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17, 66 (2016).Article
Buels,R。et al。JBrowse:用于基因组可视化和分析的动态网络平台。基因组生物学。17,66(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Kaulich, P. T., Cassidy, L., Winkels, K. & Tholey, A. Improved identification of proteoforms in top-down proteomics using FAIMS with internal CV stepping. Anal. Chem. 94, 3600–3607 (2022).Article
Kaulich,P.T.,Cassidy,L.,Winkels,K。&Tholey,A。使用具有内部CV步进的FAIM改进了自上而下蛋白质组学中蛋白质形式的鉴定。肛门。化学。943600-3607(2022)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Slavoff, S. A. et al. Peptidomic discovery of short open reading frame–encoded peptides in human cells. Nat. Chem. Biol. 9, 59–64 (2013).Article
Slavoff,S.A.等人。人类细胞中短开放阅读框编码肽的肽组学发现。自然化学。生物学杂志9,59-64(2013)。文章
CAS
中科院
PubMed
PubMed
Google Scholar
谷歌学者
Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).Article
Vizcaíno,J.A。等人。蛋白质组交换提供全球协调的蛋白质组学数据提交和传播。美国国家生物技术公司。32223-226(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Xiao, Z., Zou, Q., Liu, Y. & Yang, X. Genome-wide assessment of differential translations with ribosome profiling data. Nat. Commun. 7, 11194 (2016).Article
Xiao,Z.,Zou,Q.,Liu,Y。&Yang,X。用核糖体分析数据对差异翻译进行全基因组评估。国家公社。711194(2016)。文章
ADS
广告
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Li, W., Wang, W., Uren, P. J., Penalva, L. O. F. & Smith, A. D. Riborex: fast and flexible identification of differential translation from Ribo-seq data. Bioinformatics 33, 1735–1737 (2017).Article
Li,W.,Wang,W.,Uren,P.J.,Penalva,L.O.F.&Smith,A.D.Riborex:从Ribo-seq数据快速灵活地识别差异翻译。生物信息学331735-1737(2017)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chothani, S. et al. deltaTE: Detection of translationally regulated genes by integrative analysis of Ribo-seq and RNA-seq data. Curr. Protoc. Mol. Biol. 129, e108 (2019).Article
Chothani,S。等人,deltaTE:通过Ribo-seq和RNA-seq数据的综合分析检测翻译调控基因。货币。普罗托克。分子生物学。129,e108(2019)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Article
Love,M.I.,Huber,W。&Anders,S。用DESeq2缓和了RNA-seq数据的倍数变化和分散估计。基因组生物学。15550(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innov. (Camb.) 2, 100141 (2021).CAS
Wu,T。等人。clusterProfiler 4.0:用于解释组学数据的通用富集工具。因诺夫。(剑桥)2100141(2021)。中科院
Google Scholar
谷歌学者
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).Article
Ashburner,M.等人,《基因本体论:生物学统一的工具》。纳特·吉内特。25,25-29(2000)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Consortium, T. G. O. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 49, D325–D334 (2021).Article
财团,T.G.O。基因本体资源:丰富金矿。核酸研究49,D325–D334(2021)。文章
Google Scholar
谷歌学者
UniProt, C. Uniprot: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).Article
UniProt,C。UniProt:2023年的通用蛋白质知识库。核酸研究51,D523–D531(2023)。文章
Google Scholar
谷歌学者
Carlson, M. & Pagès, H. AnnotationForge: Tools for building SQLite-based annotation data packages. R Packag. version 1 (2020).Wickham, H. ggplot2. Wiley Interdiscip. Rev.: computational Stat. 3, 180–185 (2011).Article
Carlson,M.&Pagès,H.AnnotationForge:用于构建基于SQLite的注释数据包的工具。R包装。版本1(2020)。威克姆,H。ggplot2。Wiley Interdiscip公司。。文章
Google Scholar
谷歌学者
Thomsen, J. & Schmitz, R. A. Generating a small shuttle vector for effective genetic engineering of Methanosarcina mazei allowed first insights in plasmid replication mechanism in the Methanoarchaeon. Int J Mol Sci. 23 https://doi.org/10.3390/ijms231911910 (2022).Guss, A. M., Rother, M., Zhang, J.
Thomsen,J.&Schmitz,R.A.为马泽甲烷八叠球菌的有效基因工程生成了一个小的穿梭载体,首次洞察了甲烷动物的质粒复制机制。国际分子科学杂志。23https://doi.org/10.3390/ijms231911910(2022年)。格斯,A.M.,罗瑟,M.,张,J。
K., Kulkarni, G. & Metcalf, W. W. New methods for tightly regulated gene expression and highly efficient chromosomal integration of cloned genes for Methanosarcina species. Archaea 2, 193–203 (2008).Article .
K、 ,Kulkarni,G。&Metcalf,W。W。用于严格调控基因表达和高效染色体整合甲烷八叠球菌物种克隆基因的新方法。古细菌2193-203(2008)。文章。
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Allen, R. J. et al. Conservation analysis of the CydX protein yields insights into small protein identification and evolution. BMC Genomics 15, 946 (2014).Article
CydX蛋白的保守性分析为小蛋白的鉴定和进化提供了见解。BMC Genomics 15946(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).Article
Yu,N.Y.等人,PSORTb 3.0:改进的蛋白质亚细胞定位预测,具有精细的定位子类别和对所有原核生物的预测能力。生物信息学261608-1615(2010)。文章
CAS
中科院
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Download referencesAcknowledgementsWe thank Stephanie Färber and Philipp Kible for technical assistance during the establishment of M. mazei Ribo-seq and Rebecca Eulitz during the in vivo validation. We further thank Eva Herdering for providing M. mazei cells grown under different stress conditions for LC-MS/MS analysis.
下载参考文献致谢我们感谢Stephanie Färber和Philipp Kible在体内验证期间建立M.mazei Ribo-seq和Rebecca Eulitz期间提供的技术援助。我们进一步感谢Eva Herdering为LC-MS/MS分析提供了在不同应激条件下生长的M.mazei细胞。
This work was supported by the German Research Foundation (DFG) priority program SPP2002 “Small Proteins in Prokaryotes, an Unexplored World” (Grants SH580/7-1 and SH580/7-2 to C.M.S., CIBSS-EXC-2189-390939984 and BA2168/21-2 to R.B., TH 872/10-1 and 10-2 to A.T., RSCHM1052/20-1 + 20-2, RSCHM1052/19-2 to R.A.S.).
这项工作得到了德国研究基金会(DFG)优先项目SPP2002“原核生物中的小蛋白质,未探索的世界”的支持(授予C.M.S.的SH580/7-1和SH580/7-2,授予CIBSS-EXC-2189-390939984和BA2168/21-2给R.B.,授予A.T.的TH 872/10-1和10-2,授予R.A.S.的RSCHM1052/20-1 + 20-2,RSCHM1052/19-2)。
This work was supported by the BMBF-funded de.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI) (031A532B, 031A533A, 031A533B, 031A534A, 031A535A, 031A537A, 031A537B, 031A537C, 031A537D, 031A538A).FundingOpen Access funding enabled and organized by Projekt DEAL.Author informationAuthors and AffiliationsInstitute for General Microbiology, Kiel University, 24118, Kiel, GermanyMuhammad Aammar Tufail, Britta Jordan, Tim Habenicht, Miriam Gutt, Lisa Hellwig & Ruth A.
这项工作得到了德国生物信息学基础设施网络(de.NBI)内由BMBF资助的de.NBI云(031A532B、031A533A、031A533B、031A534A、031A535A、031A537A、031A537B、031A537C、031A537D、031A538A)的支持。资金开放获取资金由Projekt交易启用和组织。作者信息作者和附属机构基尔大学普通微生物学研究所,24118,基尔,GermanyMuhammadAammarTufail,BrittaJordan,TimHabenicht,MiriamGutt,LisaHellwig&Ruth A。
SchmitzInstitute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, GermanyLydia Hadjeras & Cynthia M. SharmaBioinformatics Group, Department of Computer Science, University of Freiburg, 79110, Freiburg, GermanyRick Gelhausen & Rolf BackofenSystematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Kiel University, 24105, Kiel, GermanyLiam Cassidy & Andreas TholeyAuthorsMuhammad Aammar TufailView author publicationsYou can also search for this author in.
维尔茨堡大学SchmitzInstitute of Molecular Infection Biology,维尔茨堡大学,97080,维尔茨堡,GermanyLydia Hadjeras&Cynthia M.SharmaBioinformatics Group,弗莱堡大学计算机科学系,79110,弗莱堡,GermanyRick Gelhausen&Rolf BackofenSystematic Proteome Research&Bioanalytics,基尔大学实验医学研究所,24105,基尔,GermanyLiam Cassidy&Andreas TholeyAuthorsMuhammad Aammar TufailView作者出版物您也可以在中搜索这位作者。
PubMed Google ScholarBritta JordanView author publicationsYou can also search for this author in
PubMed Google ScholarBritta JordanView作者出版物您也可以在
PubMed Google ScholarLydia HadjerasView author publicationsYou can also search for this author in
PubMed Google ScholarLydia HadjerasView作者出版物您也可以在
PubMed Google ScholarRick GelhausenView author publicationsYou can also search for this author in
PubMed Google ScholarRick GelhausenView作者出版物您也可以在
PubMed Google ScholarLiam CassidyView author publicationsYou can also search for this author in
PubMed Google ScholarLiam CassidyView作者出版物您也可以在
PubMed Google ScholarTim HabenichtView author publicationsYou can also search for this author in
PubMed Google ScholarTim HabenichtView作者出版物您也可以在
PubMed Google ScholarMiriam GuttView author publicationsYou can also search for this author in
PubMed谷歌学术评论GuttView作者出版物您也可以在
PubMed Google ScholarLisa HellwigView author publicationsYou can also search for this author in
PubMed Google ScholarLisa HellwigView作者出版物您也可以在
PubMed Google ScholarRolf BackofenView author publicationsYou can also search for this author in
PubMed Google ScholarRolf BackofenView作者出版物您也可以在
PubMed Google ScholarAndreas TholeyView author publicationsYou can also search for this author in
PubMed Google ScholarAndreas TholeyView作者出版物您也可以在
PubMed Google ScholarCynthia M. SharmaView author publicationsYou can also search for this author in
PubMed Google ScholarCynthia M.SharmaView作者出版物您也可以在
PubMed Google ScholarRuth A. SchmitzView author publicationsYou can also search for this author in
PubMed Google ScholarRuth A.SchmitzView作者出版物您也可以在
PubMed Google ScholarContributionsM.A.T., B.J., and L.H. contributed equally and are co-sharing first authors. C.M.S., R.B., and R.A.S. initiated the project. L.H., C.M.S., and R.A.S. designed the experiments. B.J. and M.G. cultured M. mazei and harvested cell pellets for Ribo-seq under L.H.
PubMed谷歌学术贡献。A、 。C、 M.S.,R.B。和R.A.S.启动了该项目。五十、 H.,C.M.S.和R.A.S.设计了实验。B、 J.和M.G.在L.H.下培养M.mazei并收获Ribo-seq的细胞沉淀。
supervision. L.H. established Ribo-seq for M. mazei. B.J., M.A.T., and L.H. manually curated the predicted unannotated sORFs, the annotated sRNAs, suspected mis-annotated genes, and consolidated the data from different genome annotations including the newest annotation. B.J. performed the conservation analyses, predicted the function of unannotated small proteins, and performed the cloning and western blot analyses together with L.He.
监督。五十、 H.为M.mazei建立了Ribo-seq。B、 J.,M.A.T。和L.H.手动策划了预测的未注释的SORF,注释的sRNA,疑似注释错误的基因,并整合了来自不同基因组注释(包括最新注释)的数据。B、 J.进行了保守性分析,预测了未注释的小蛋白的功能,并与L.He一起进行了克隆和蛋白质印迹分析。
R.G. performed the bioinformatic processing of the Ribo-seq data, established a workflow for differential expression analysis for Ribo-seq data, created an annotation database for M. mazei and developed a script for functional enrichment analysis. M.A.T. further analysed the differential expression data and did functional enrichment analysis and visualization.
R、 G.对Ribo-seq数据进行了生物信息学处理,建立了Ribo-seq数据差异表达分析的工作流程,为M.mazei创建了注释数据库,并开发了功能富集分析的脚本。M、 A.T.进一步分析了差异表达数据,并进行了功能富集分析和可视化。
B.J. and M.A.T. did the data visualization under the supervision of R.A.S. T.H. conducted the structure prediction analysis with AlphaFold 2. L.H. and R.G. created a JBrowse instance for the described Ribo-seq datasets in the RIBOBASE database to facilitate their accessibility to the scientific community.
B、 J.和M.A.T.在R.A.S.T.H.的监督下进行了数据可视化。使用AlphaFold 2进行了结构预测分析。五十、 H.和R.G.为RIBOBASE数据库中描述的Ribo-seq数据集创建了一个JBrowse实例,以便于科学界访问。
L.C. and A.T. performed all LC-MS/MS analyses including interpretation. B.J., M.A.T., and L.H. wrote a first draft of the manuscript. B.J., M.A.T., L.He. and R.A.S. finalized writing the manuscript. B.J., M.A.T., and R.A.S. incorporated the changes according to the feedback from all the authors. R.B., C.M.S., and R.A.S.
五十、 C.和A.T.进行了所有LC-MS/MS分析,包括解释。B、 J.,M.A.T。和L.H.撰写了手稿的初稿。B、 J.,M.A.T.,L.He。和R.A.S.完成了手稿的撰写。B、 J.,M.A.T。和R.A.S.根据所有作者的反馈纳入了这些变化。R、 B.,C.M.S。和R.A.S。
supervised the research and provided resources and f.
监督研究并提供资源和f。
Ruth A. Schmitz.Ethics declarations
露丝·A·施密茨。道德宣言
Competing interests
相互竞争的利益
The authors declare no competing interests.
作者声明没有利益冲突。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Jorg Soppa, Rani Baes and the other, anonymous, reviewer for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢Jorg Soppa,Rani Baes和另一位匿名审稿人对这项工作的同行评审做出的贡献。可以获得同行评审文件。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of additional supplementary filesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Supplementary Data 6Supplementary Data 7Supplementary Data 8Supplementary Data 9Supplementary Data 10Reporting SummarySource dataSource DataRights and permissions.
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5补充数据6补充数据7补充数据8补充数据9补充数据10报告摘要源数据源数据权限。
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..
Reprints and permissionsAbout this articleCite this articleTufail, M.A., Jordan, B., Hadjeras, L. et al. Uncovering the small proteome of Methanosarcina mazei using Ribo-seq and peptidomics under different nitrogen conditions.
转载和许可本文引用本文Tufail,M.A.,Jordan,B.,Hadjeras,L。等人在不同的氮条件下使用Ribo-seq和肽组学揭示了甲烷八叠球菌的小蛋白质组。
Nat Commun 15, 8659 (2024). https://doi.org/10.1038/s41467-024-53008-8Download citationReceived: 08 October 2023Accepted: 25 September 2024Published: 06 October 2024DOI: https://doi.org/10.1038/s41467-024-53008-8Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
。https://doi.org/10.1038/s41467-024-53008-8Download引文接收日期:2023年10月8日接收日期:2024年9月25日发布日期:2024年10月6日OI:https://doi.org/10.1038/s41467-024-53008-8Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供
CommentsBy submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.
评论通过提交评论,您同意遵守我们的条款和社区指南。如果您发现有虐待行为或不符合我们的条款或准则,请将其标记为不合适。