EN
登录

SNP之外的全基因组关联检测

Genome-wide association testing beyond SNPs

Nature 等信源发布 2024-10-07 00:02

可切换为仅中文


AbstractDecades of genetic association testing in human cohorts have provided important insights into the genetic architecture and biological underpinnings of complex traits and diseases. However, for certain traits, genome-wide association studies (GWAS) for common SNPs are approaching signal saturation, which underscores the need to explore other types of genetic variation to understand the genetic basis of traits and diseases.

摘要几十年来,人类队列中的遗传关联测试为复杂性状和疾病的遗传结构和生物学基础提供了重要见解。然而,对于某些性状,针对常见SNP的全基因组关联研究(GWAS)正在接近信号饱和,这强调需要探索其他类型的遗传变异,以了解性状和疾病的遗传基础。

Copy number variation (CNV) is an important source of heritability that is well known to functionally affect human traits. Recent technological and computational advances enable the large-scale, genome-wide evaluation of CNVs, with implications for downstream applications such as polygenic risk scoring and drug target identification.

拷贝数变异(CNV)是遗传力的重要来源,众所周知,它在功能上影响人类性状。最近的技术和计算进步使得能够对CNV进行大规模的全基因组评估,并对多基因风险评分和药物靶标鉴定等下游应用产生影响。

Here, we review the current state of CNV-GWAS, discuss current limitations in resource infrastructure that need to be overcome to enable the wider uptake of CNV-GWAS results, highlight emerging opportunities and suggest guidelines and standards for future GWAS for genetic variation beyond SNPs at scale..

在这里,我们回顾了CNV-GWAS的现状,讨论了目前需要克服的资源基础设施局限性,以便更广泛地吸收CNV-GWAS的结果,突出了新出现的机会,并为未来GWAS提出了大规模SNP以外的遗传变异的指南和标准。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: The cumulative total of association studies added to the GWAS Catalog between 2021 and 2023 for SNP- and CNV-based tests.Fig. 2: Biological and clinical impact of CNV.Fig. 3: Data flow depicting the key steps from cohort genetic data to CNV-GWAS results.Fig. 4: Differences between array-based and sequence-based genome resolution for CNV association testing.Fig.

图1:2021年至2023年间添加到GWAS目录中的基于SNP和CNV的测试的关联研究累积总数。图2:CNV的生物学和临床影响。图3:数据流描绘了从队列遗传数据到CNV-GWAS结果的关键步骤。图4:CNV关联测试的基于阵列和基于序列的基因组分辨率之间的差异。图。

5: Emerging opportunities..

5: 新兴机遇。。

ReferencesWellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).Article

参考Wellcome Trust Case Control Consortium。对14000例七种常见疾病和3000例共享对照的全基因组关联研究。《自然》447661-678(2007)。文章

Google Scholar

谷歌学者

Barrett, J. C. & Cardon, L. R. Evaluating coverage of genome-wide association studies. Nat. Genet. 38, 659–662 (2006).Article

Barrett,J.C。和Cardon,L.R。评估全基因组关联研究的覆盖率。纳特·吉内特。38659-662(2006)。文章

Google Scholar

谷歌学者

LaFramboise, T. Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucleic Acids Res. 37, 4181–4193 (2009).Article

LaFramboise,T。单核苷酸多态性阵列:生物学,计算和技术进步的十年。核酸研究374181-4193(2009)。文章

Google Scholar

谷歌学者

Hofker, M. H., Fu, J. & Wijmenga, C. The genome revolution and its role in understanding complex diseases. Biochim. Biophys. Acta 1842, 1889–1895 (2014).Article

Hofker,M.H.,Fu,J。&Wijmenga,C。基因组革命及其在理解复杂疾病中的作用。生物化学。生物物理。Acta 18421889–1895(2014)。文章

Google Scholar

谷歌学者

Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).Article

Sollis,E.等人,《NHGRI-EBI GWAS目录:知识库和沉积资源》。核酸研究51,D977–D985(2023)。文章

Google Scholar

谷歌学者

Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).Article

Wilkinson,M.D.等人,《科学数据管理和管理的公平指导原则》。科学。数据31160018(2016)。文章

Google Scholar

谷歌学者

Wand, H. et al. Improving reporting standards for polygenic scores in risk prediction studies. Nature 591, 211–219 (2021).Article

Wand,H.等人。改进风险预测研究中多基因评分的报告标准。。文章

Google Scholar

谷歌学者

Ochoa, D. et al. The next-generation open targets platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).Article

Ochoa,D.等人,《下一代开放目标平台:重新设想、重新设计、重建》。核酸研究51,D1353–D1359(2023)。文章

Google Scholar

谷歌学者

Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).Article

Yengo,L.等人。与人类身高相关的常见遗传变异的饱和图谱。自然610704-712(2022)。文章

Google Scholar

谷歌学者

Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700 000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).Article

Yengo,L.等人对欧洲血统约70万人的身高和体重指数进行全基因组关联研究的荟萃分析。嗯,摩尔·吉内特。273641-3649(2018)。文章

Google Scholar

谷歌学者

Zhu, H. & Zhou, X. Statistical methods for SNP heritability estimation and partition: a review. Comput. Struct. Biotechnol. J. 18, 1557–1568 (2020).Article

Zhu,H。&Zhou,X。SNP遗传力估计和划分的统计方法:综述。计算机。结构。生物技术。J、 181557-1568(2020)。文章

Google Scholar

谷歌学者

Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).Article

。大规模发现发育障碍的新遗传原因。自然519223-228(2015)。文章

Google Scholar

谷歌学者

Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).Article

Manolio,T.A.等人发现复杂疾病的遗传缺失。Nature 461747–753(2009)。文章

Google Scholar

谷歌学者

Yang, L. A practical guide for structural variation detection in the human genome. Curr. Protoc. Hum. Genet. 107, e103 (2020).Article

Yang,L。人类基因组结构变异检测的实用指南。货币。普罗托克。。107,e103(2020)。文章

Google Scholar

谷歌学者

Taghizadeh, S. et al. Genome-wide identification of copy number variation and association with fat deposition in thin and fat-tailed sheep breeds. Sci. Rep. 12, 8834 (2022).Article

Taghizadeh,S.等人。全基因组鉴定薄尾和厚尾绵羊品种的拷贝数变异及其与脂肪沉积的关系。科学。代表128834(2022年)。文章

Google Scholar

谷歌学者

Delledonne, A. et al. Copy number variant scan in more than four thousand Holstein cows bred in Lombardy, Italy. PLoS ONE 19, e0303044 (2024).Article

Delledonne,A。等人在意大利伦巴第饲养的4000多头荷斯坦奶牛中进行了拷贝数变异扫描。《公共科学图书馆·综合》19,e0303044(2024)。文章

Google Scholar

谷歌学者

Wellcome Trust Case Control Consortium. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010).Article

惠康信托案件控制联盟。对16000例八种常见疾病和3000例共享对照的CNV进行全基因组关联研究。《自然》464713-720(2010)。文章

Google Scholar

谷歌学者

Verlouw, J. A. M. et al. A comparison of genotyping arrays. Eur. J. Hum. Genet. 29, 1611–1624 (2021).Article

Verlouw,J.A.M.等人。基因分型阵列的比较。Eur.J.Hum.Genet。291611-1624(2021)。文章

Google Scholar

谷歌学者

Rapti, M. et al. CoverageMaster: comprehensive CNV detection and visualization from NGS short reads for genetic medicine applications. Brief. Bioinform. 23, bbac049 (2022).Article

Rapti,M。等人。CoverageMaster:NGS短读物的全面CNV检测和可视化,用于遗传医学应用。简介。。23,bbac049(2022)。文章

Google Scholar

谷歌学者

Tanjo, T., Kawai, Y., Tokunaga, K., Ogasawara, O. & Nagasaki, M. Practical guide for managing large-scale human genome data in research. J. Hum. Genet. 66, 39–52 (2021).Article

Tanjo,T.,Kawai,Y.,Tokunaga,K.,Ogasawara,O。&Nagasaki,M。在研究中管理大规模人类基因组数据的实用指南。J、 嗯,Genet。66,39-52(2021)。文章

Google Scholar

谷歌学者

Vacic, V. et al. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature 471, 499–503 (2011).Article

Vacic,V。等人。神经肽受体基因VIPR2的重复赋予精神分裂症的显着风险。自然471499-503(2011)。文章

Google Scholar

谷歌学者

Fitzgerald, T. & Birney, E. CNest: a novel copy number association discovery method uncovers 862 new associations from 200,629 whole-exome sequence datasets in the UK Biobank. Cell Genom. 2, 100167 (2022).Article

Fitzgerald,T。&Birney,E。CNest:一种新的拷贝数关联发现方法揭示了英国生物库中200629个全外显子组序列数据集中的862个新关联。细胞基因组。。文章

Google Scholar

谷歌学者

Montavon, T., Thevenet, L. & Duboule, D. Impact of copy number variations (CNVs) on long-range gene regulation at the HoxD locus. Proc. Natl Acad. Sci. USA 109, 20204–20211 (2012).Article

Montavon,T.,Thevenet,L。&Duboule,D。拷贝数变异(CNV)对HoxD基因座远程基因调控的影响。程序。国家科学院。科学。美国10920204-20211(2012)。文章

Google Scholar

谷歌学者

Conrad, D. F. & Hurles, M. E. The population genetics of structural variation. Nat. Genet. 39, S30–S36 (2007).Article

Conrad,D.F。&Hurles,M.E。结构变异的群体遗传学。纳特·吉内特。39,S30–S36(2007)。文章

Google Scholar

谷歌学者

Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010).Article

Conrad,D.F.等人,《人类基因组拷贝数变异的起源和功能影响》。《自然》464704-712(2010)。文章

Google Scholar

谷歌学者

Lee, C. & Scherer, S. W. The clinical context of copy number variation in the human genome. Expert Rev. Mol. Med. 12, e8 (2010).Article

。专家Rev.Mol.Med。12,e8(2010)。文章

Google Scholar

谷歌学者

Lupski, J. R. Genomic rearrangements and sporadic disease. Nat. Genet. 39, S43–S47 (2007).Article

Lupski,J.R。基因组重排和散发性疾病。纳特·吉内特。39,S43–S47(2007)。文章

Google Scholar

谷歌学者

Campbell, C. D. & Eichler, E. E. Properties and rates of germline mutations in humans. Trends Genet. 29, 575–584 (2013).Article

Campbell,C.D。&Eichler,E.E。人类种系突变的性质和速率。。29575-584(2013)。文章

Google Scholar

谷歌学者

Belyeu, J. R. et al. De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. Am. J. Hum. Genet. 108, 597–607 (2021).Article

Belyeu,J.R.等人通过2396个家族的基因组测序揭示了从头结构突变率和配子起源偏倚。上午J。嗯。Genet。108597-607(2021)。文章

Google Scholar

谷歌学者

Gudmundsson, S. et al. Variant interpretation using population databases: lessons from gnomAD. Hum. Mutat. 43, 1012–1030 (2022).Article

Gudmundsson,S。等人。使用人口数据库的变体解释:来自gnomAD的教训。嗯。变异。431012-1030(2022)。文章

Google Scholar

谷歌学者

Chen, S. et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 625, 92–100 (2024).Article

。自然625,92-100(2024)。文章

Google Scholar

谷歌学者

Sudmant, P. H. et al. An integrated map of structural variation in 2,504 human genomes. Nature 526, 75–81 (2015).Article

Sudmant,P.H.等人,《2504个人类基因组结构变异的综合图谱》。《自然》526,75-81(2015)。文章

Google Scholar

谷歌学者

Zhang, F., Gu, W., Hurles, M. E. & Lupski, J. R. Copy number variation in human health, disease, and evolution. Annu. Rev. Genomics Hum. Genet. 10, 451–481 (2009).Article

Zhang,F.,Gu,W.,Hurles,M.E。&Lupski,J.R。人类健康,疾病和进化中的拷贝数变异。年。基因组学评论Hum.Genet。10451-481(2009)。文章

Google Scholar

谷歌学者

Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006).Article

Redon,R.等人,《人类基因组拷贝数的全球变异》。自然444444-454(2006)。文章

Google Scholar

谷歌学者

Wright, C. F. et al. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 385, 1305–1314 (2015).Article

Wright,C.F.等人,《DDD研究中发育障碍的遗传诊断:全基因组研究数据的可扩展分析》。柳叶刀3851305-1314(2015)。文章

Google Scholar

谷歌学者

Coutelier, M. et al. Combining callers improves the detection of copy number variants from whole-genome sequencing. Eur. J. Hum. Genet. 30, 178–186 (2022).Article

Coutelier,M。等人。结合呼叫者可以改进全基因组测序中拷贝数变异的检测。Eur.J.Hum.Genet。30178-186(2022)。文章

Google Scholar

谷歌学者

Hollox, E. J., Zuccherato, L. W. & Tucci, S. Genome structural variation in human evolution. Trends Genet. 38, 45–58 (2022).Article

Hollox,E.J.,Zuccherato,L.W。和Tucci,S。人类进化中的基因组结构变异。。38,45-58(2022)。文章

Google Scholar

谷歌学者

Rossi, N. et al. Ethnic-specific association of amylase gene copy number with adiposity traits in a large Middle Eastern biobank. NPJ Genom. Med. 6, 8 (2021).Article

Rossi,N.等人。大型中东生物库中淀粉酶基因拷贝数与肥胖性状的种族特异性关联。NPJ基因组。医学杂志6、8(2021)。文章

Google Scholar

谷歌学者

Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nat. Genet. 39, 1256–1260 (2007).Article

Perry,G.H.等人,《饮食与人类淀粉酶基因拷贝数变异的进化》。纳特·吉内特。391256-1260(2007)。文章

Google Scholar

谷歌学者

Higuchi, R., Iwane, T., Iida, A. & Nakajima, K. Copy number variation of the salivary amylase gene and glucose metabolism in healthy young Japanese women. J. Clin. Med. Res. 12, 184–189 (2020).Article

Higuchi,R.,Iwane,T.,Iida,A。&Nakajima,K。健康年轻日本女性唾液淀粉酶基因和葡萄糖代谢的拷贝数变异。J、 临床。医学决议12184-189(2020)。文章

Google Scholar

谷歌学者

Rouleau, M. et al. Extensive metabolic consequences of human glycosyltransferase gene knockouts in prostate cancer. Br. J. Cancer 128, 285–296 (2023).Article

Rouleau,M.等人。前列腺癌中人类糖基转移酶基因敲除的广泛代谢后果。《癌症杂志》128285-296(2023)。文章

Google Scholar

谷歌学者

Mafune, A. et al. Homozygous deletions of UGT2B17 modifies effects of smoking on TP53-mutations and relapse of head and neck carcinoma. BMC Cancer 15, 205 (2015).Article

Mafune,A。等人。UGT2B17的纯合缺失改变了吸烟对TP53突变和头颈癌复发的影响。。文章

Google Scholar

谷歌学者

Collins, R. L. et al. A cross-disorder dosage sensitivity map of the human genome. Cell 185, 3041–3055.e25 (2022).Article

Collins,R.L.等人,《人类基因组的交叉疾病剂量敏感性图谱》。细胞1853041-3055.e25(2022)。文章

Google Scholar

谷歌学者

Barra, V. & Fachinetti, D. The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat. Commun. 9, 4340 (2018).Article

Barra,V。&Fachinetti,D。着丝粒的黑暗面:涉及着丝粒DNA的结构异常的类型,原因和后果。国家公社。94340(2018)。文章

Google Scholar

谷歌学者

Cook, C. B. et al. Somatic mosaicism detected by genome-wide sequencing in 500 parent–child trios with suspected genetic disease: clinical and genetic counseling implications. Cold Spring Harb. Mol. Case Stud. 7, a006125 (2021).Article

Cook,C.B.等人。通过全基因组测序在500名疑似遗传病的亲子三重奏中检测到体细胞镶嵌:临床和遗传咨询意义。冷泉兔。分子壳体螺柱7,a006125(2021)。文章

Google Scholar

谷歌学者

Elrick, H. et al. SAVANA: reliable analysis of somatic structural variants and copy number aberrations in clinical samples using long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.07.25.604944 (2024) .Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans.

Elrick,H。等人。SAVANA:使用长读测序对临床样品中的体细胞结构变异和拷贝数畸变进行可靠分析。bioRxiv预印本https://doi.org/10.1101/2024.07.25.604944(2024年)。Karczewski,K.J.等人。突变约束谱从141456人的变异中量化。

Nature 581, 434–443 (2020).Article .

《自然》581434-443(2020)。文章。

Google Scholar

谷歌学者

Thaxton, C. et al. Utilizing ClinGen gene-disease validity and dosage sensitivity curations to inform variant classification. Hum. Mutat. 43, 1031–1040 (2022).Article

Thaxton,C.等人利用ClinGen基因疾病有效性和剂量敏感性管理来告知变体分类。嗯。变异。431031-1040(2022)。文章

Google Scholar

谷歌学者

Huang, N., Lee, I., Marcotte, E. M. & Hurles, M. E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).Article

Huang,N.,Lee,I.,Marcotte,E.M。和Hurles,M.E。表征和预测人类基因组中的单倍剂量不足。PLoS Genet。6,e1001154(2010)。文章

Google Scholar

谷歌学者

Rice, A. M. & McLysaght, A. Dosage-sensitive genes in evolution and disease. BMC Biol. 15, 78 (2017).Article

Rice,A.M。&McLysaght,A。进化和疾病中的剂量敏感基因。BMC生物。15,78(2017)。文章

Google Scholar

谷歌学者

All of Us Research Program Genomics Investigators. Genomic data in the All of Us Research Program. Nature 627, 340–346 (2024).Article

我们所有的研究计划基因组学研究人员。美国全民研究计划中的基因组数据。自然627340-346(2024)。文章

Google Scholar

谷歌学者

Auwerx, C. et al. Rare copy-number variants as modulators of common disease susceptibility. Genome Med. 16, 5 (2024).Article

Auwerx,C。等人。罕见的拷贝数变异作为常见疾病易感性的调节剂。基因组医学16,5(2024)。文章

Google Scholar

谷歌学者

Kirschner, R. et al. RPGR transcription studies in mouse and human tissues reveal a retina-specific isoform that is disrupted in a patient with X-linked retinitis pigmentosa. Hum. Mol. Genet. 8, 1571–1578 (1999).Article

在小鼠和人体组织中进行的RPGR转录研究揭示了一种视网膜特异性亚型,该亚型在X连锁性视网膜色素变性患者中被破坏。嗯,摩尔·吉内特。。文章

Google Scholar

谷歌学者

Shaikh, T. H. Copy number variation disorders. Curr. Genet. Med. Rep. 5, 183–190 (2017).Article

Shaikh,T.H。拷贝数变异障碍。货币。。医学代表5183-190(2017)。文章

Google Scholar

谷歌学者

Xu, H. H. et al. Familial 5.29 Mb deletion in chromosome Xq22.1-q22.3 with a normal phenotype: a rare pedigree and literature review. BMC Med. Genomics 16, 111 (2023).Article

Xu,H.H.等人。表型正常的Xq22.1-q22.3染色体家族性5.29 Mb缺失:一个罕见的谱系和文献综述。BMC医学基因组学16111(2023)。文章

Google Scholar

谷歌学者

Naseer, M. I. et al. Copy number variations in Saudi family with intellectual disability and epilepsy. BMC Genomics 17, 757 (2016).Article

Naseer,M.I.等人,《沙特智障和癫痫家庭的拷贝数变异》。BMC Genomics 17757(2016)。文章

Google Scholar

谷歌学者

Wolstencroft, J. et al. Neuropsychiatric risk in children with intellectual disability of genetic origin: IMAGINE, a UK national cohort study. Lancet Psychiatry 9, 715–724 (2022).Article

Wolstencroft,J.等人,《遗传性智力障碍儿童的神经精神风险:想象》,英国国家队列研究。柳叶刀精神病学9715-724(2022)。文章

Google Scholar

谷歌学者

Zarrei, M. et al. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum. Mol. Genet. 32, 2411–2421 (2023).Article

Zarrei,M.等人,《普通人群的基因拷贝数变异与儿科心理健康/神经发育》。嗯,摩尔·吉内特。322411-2421(2023)。文章

Google Scholar

谷歌学者

Auwerx, C. et al. The individual and global impact of copy-number variants on complex human traits. Am. J. Hum. Genet 109, 647–668 (2022).Article

Auwerx,C.等人。拷贝数变异对复杂人类性状的个体和整体影响。《美国期刊·哼·基因》109647-668(2022)。文章

Google Scholar

谷歌学者

Ceyhan-Birsoy, O. et al. Next generation sequencing-based copy number analysis reveals low prevalence of deletions and duplications in 46 genes associated with genetic cardiomyopathies. Mol. Genet. Genom. Med. 4, 143–151 (2016).Article

Ceyhan Birsoy,O。等人。基于下一代测序的拷贝数分析显示,与遗传性心肌病相关的46个基因中缺失和重复的发生率较低。分子遗传学。基因组。医学杂志4143-151(2016)。文章

Google Scholar

谷歌学者

Singer, E. S. et al. Characterization of clinically relevant copy-number variants from exomes of patients with inherited heart disease and unexplained sudden cardiac death. Genet. Med. 23, 86–93 (2021).Article

Singer,E.S.等人。遗传性心脏病和不明原因心源性猝死患者外显子组临床相关拷贝数变异的表征。。医学杂志23,86-93(2021)。文章

Google Scholar

谷歌学者

Nfonsam, L. et al. ALU transposition induces familial hypertrophic cardiomyopathy. Mol. Genet. Genom. Med. 8, e951 (2020).Article

Nfonsam,L。等人ALU转座诱导家族性肥厚型心肌病。分子遗传学。基因组。医学杂志8,e951(2020)。文章

Google Scholar

谷歌学者

Wilfert, A. B., Sulovari, A., Turner, T. N., Coe, B. P. & Eichler, E. E. Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med 9, 101 (2017).Article

Wilfert,A.B.,Sulovis,A.,Turner,T.N.,Coe,B.P。&Eichler,E.E。神经发育障碍中的复发性从头突变:特性和临床意义。Genome Med 9101(2017)。文章

Google Scholar

谷歌学者

Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241 (2012).Article

。细胞1481223-1241(2012)。文章

Google Scholar

谷歌学者

Marshall, C. R. et al. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 49, 27–35 (2017).Article

Marshall,C.R.等人对41321名受试者进行的全基因组研究表明,拷贝数变异对精神分裂症的贡献。纳特·吉内特。49,27-35(2017)。文章

Google Scholar

谷歌学者

Davies, R. W. et al. Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nat. Med. 26, 1912–1918 (2020).Article

Davies,R.W.等人使用常见的遗传变异来检查22q11.2缺失综合征的表型表达和风险预测。。文章

Google Scholar

谷歌学者

Maury, E. A. et al. Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions. Cell Genom. 3, 100356 (2023).Article

来自12834例患者的精神分裂症相关体细胞拷贝数变异揭示了复发性NRXN1和ABCB11破坏。细胞基因组。。文章

Google Scholar

谷歌学者

Trost, B. et al. Genomic architecture of autism from comprehensive whole-genome sequence annotation. Cell 185, 4409–4427.e18 (2022).Article

Trost,B。等人。来自全面全基因组序列注释的自闭症基因组结构。细胞1854409-4427.e18(2022)。文章

Google Scholar

谷歌学者

Riggs, E. R. et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 22, 245–257 (2020).Article .

Riggs,E.R.等人,《体质拷贝数变异的解释和报告技术标准:美国医学遗传学和基因组学学院(ACMG)和临床基因组资源(ClinGen)的联合共识建议》。。医学22245-257(2020)。文章。

Google Scholar

谷歌学者

Hippman, C. & Nislow, C. Pharmacogenomic testing: clinical evidence and implementation challenges. J. Pers. Med. 9, 10 (2019).Article

Hippman,C。&Nislow,C。药物基因组学测试:临床证据和实施挑战。J、 。文章

Google Scholar

谷歌学者

Crews, K. R. et al. Clinical pharmacogenetics implementation consortium guideline for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin. Pharmacol. Ther. 110, 888–896 (2021).Article

Crews,K.R.等人,《临床药物遗传学实施联盟CYP2D6、OPRM1和COMT基因型指南和选择性阿片类药物治疗》。临床。药理学。他们。110888-896(2021)。文章

Google Scholar

谷歌学者

Twesigomwe, D. et al. Characterization of CYP2D6 pharmacogenetic variation in sub-Saharan African populations. Clin. Pharmacol. Ther. 113, 643–659 (2023).Article

Twesigomwe,D。等人。撒哈拉以南非洲人群CYP2D6药物遗传学变异的表征。临床。药理学。他们。113643-659(2023)。文章

Google Scholar

谷歌学者

Twist, G. P. et al. Constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences. NPJ Genom. Med. 1, 15007 (2016).Article

Twist,G.P.等人,《星座:从全基因组序列中快速自动分配高度多态性药物基因CYP2D6表型的工具》。NPJ基因组。医学杂志11507(2016)。文章

Google Scholar

谷歌学者

Lee, S. B. et al. Stargazer: a software tool for calling star alleles from next-generation sequencing data using CYP2D6 as a model. Genet. Med. 21, 361–372 (2019).Article

Lee,S.B.等人,《Stargazer:一种使用CYP2D6作为模型从下一代测序数据中调用star等位基因的软件工具》。。医学21361-372(2019)。文章

Google Scholar

谷歌学者

Chen, X. et al. Cyrius: accurate CYP2D6 genotyping using whole-genome sequencing data. Pharmacogenomics J. 21, 251–261 (2021).Article

Chen,X。等人。Cyrius:使用全基因组测序数据进行准确的CYP2D6基因分型。药物基因组学J.21251-261(2021)。文章

Google Scholar

谷歌学者

Twesigomwe, D. et al. StellarPGx: a nextflow pipeline for calling star alleles in cytochrome P450 genes. Clin. Pharmacol. Ther. 110, 741–749 (2021).Article

Twesigomwe,D。等人,《StellarPGx:用于调用细胞色素P450基因中star等位基因的nextflow管道》。临床。药理学。他们。110741-749(2021)。文章

Google Scholar

谷歌学者

Cavallari, L. H. & Johnson, J. A. A case for genotype-guided pain management. Pharmacogenomics 20, 705–708 (2019).Article

Cavallari,L.H。&Johnson,J.A。基因型指导的疼痛管理案例。药物基因组学20705-708(2019)。文章

Google Scholar

谷歌学者

Tayeh, M. K. et al. Clinical pharmacogenomic testing and reporting: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 24, 759–768 (2022).Article

Tayeh,M.K.等人,《临床药物基因组学测试和报告:美国医学遗传学和基因组学学院(ACMG)的技术标准》。。医学24759-768(2022)。文章

Google Scholar

谷歌学者

Singh, A. K. et al. Detecting copy number variation in next generation sequencing data from diagnostic gene panels. BMC Med. Genomics 14, 214 (2021).Article

Singh,A.K.等人。从诊断基因组检测下一代测序数据中的拷贝数变异。BMC医学基因组学14214(2021)。文章

Google Scholar

谷歌学者

Wang, K. et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17, 1665–1674 (2007).Article

。Genome Res.171665–1674(2007)。文章

Google Scholar

谷歌学者

Behera, S. et al. Comprehensive and accurate genome analysis at scale using DRAGEN accelerated algorithms. Preprint at bioRxiv https://doi.org/10.1101/2024.01.02.573821 (2024).Hujoel, M. L. A. et al. Influences of rare copy-number variation on human complex traits. Cell 185, 4233–4248.e27 (2022).Article .

Behera,S.等人。使用DRAGEN加速算法进行大规模全面准确的基因组分析。bioRxiv预印本https://doi.org/10.1101/2024.01.02.573821(2024年)。Hujoel,M.L.A.等人。稀有拷贝数变异对人类复杂性状的影响。细胞1854233-4248.e27(2022)。文章。

Google Scholar

谷歌学者

Gabrielaite, M. et al. A comparison of tools for copy-number variation detection in germline whole exome and whole genome sequencing data. Cancers 13, 6283 (2021).Article

Gabrielaite,M.等人。种系全外显子组和全基因组测序数据中拷贝数变异检测工具的比较。癌症136283(2021)。文章

Google Scholar

谷歌学者

Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Prim. 1, 60 (2021).Article

Uffelmann,E。等人。全基因组关联研究。自然修订方法。1,60(2021)。文章

Google Scholar

谷歌学者

Collins, R. L. et al. A structural variation reference for medical and population genetics. Nature 581, 444–451 (2020).Article

Collins,R.L.等人,《医学和群体遗传学的结构变异参考》。自然581444-451(2020)。文章

Google Scholar

谷歌学者

Gross, A. M. et al. Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease. Genet. Med. 21, 1121–1130 (2019).Article

Gross,A.M.等人,《临床基因组测序中的拷贝数变异:罕见和未诊断疾病的部署和解释》。。医学211121-1130(2019)。文章

Google Scholar

谷歌学者

Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet 53, 1097–1103 (2021).Article

Mbatchou,J.等人。定量和二元性状的计算有效全基因组回归。《国家遗传学》531097-1103(2021)。文章

Google Scholar

谷歌学者

Romdhane, L. et al. Ethnic and functional differentiation of copy number polymorphisms in Tunisian and HapMap population unveils insights on genome organizational plasticity. Sci. Rep. 14, 4654 (2024).Article

Romdhane,L.等人,《突尼斯和HapMap人群拷贝数多态性的种族和功能分化》揭示了基因组组织可塑性的见解。科学。代表144654(2024)。文章

Google Scholar

谷歌学者

Fadista, J., Manning, A. K., Florez, J. C. & Groop, L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 24, 1202–1205 (2016).Article

Fadista,J.,Manning,A.K.,Florez,J.C。&Groop,L。(in)著名的GWAS P值阈值重新审视并更新了低频变体。Eur.J.Hum.Genet。241202-1205(2016)。文章

Google Scholar

谷歌学者

Kaler, A. S. & Purcell, L. C. Estimation of a significance threshold for genome-wide association studies. BMC Genomics 20, 618 (2019).Article

Kaler,A.S。&Purcell,L.C。估计全基因组关联研究的显着性阈值。BMC基因组学20618(2019)。文章

Google Scholar

谷歌学者

Null, M. et al. Genome-wide analysis of copy number variants and normal facial variation in a large cohort of Bantu Africans. HGG Adv. 3, 100082 (2022).

Null,M.等人。对大量班图非洲人的拷贝数变异和正常面部变异进行全基因组分析。HGG Adv.310082(2022)。

Google Scholar

谷歌学者

Hujoel, M. L. A. et al. Hidden protein-altering variants influence diverse human phenotypes. Preprint at bioRxiv https://doi.org/10.1101/2023.06.07.544066 (2023).Li, S., Carss, K. J., Halldorsson, B. V. & Cortes, A. UK biobank whole-genome sequencing consortium. whole-genome sequencing of half-a-million UK biobank participants.

Hujoel,M.L.A.等人。隐藏的蛋白质改变变体影响多种人类表型。bioRxiv预印本https://doi.org/10.1101/2023.06.07.544066(2023年)。Li,S.,Carss,K.J.,Halldorsson,B.V。&Cortes,A。UK biobank全基因组测序联盟。50万英国生物库参与者的全基因组测序。

Preprint at bioRxiv https://doi.org/10.1101/2023.12.06.23299426 (2023).Halldorsson, B. V. et al. The sequences of 150,119 genomes in the UK Biobank. Nature 607, 732–740 (2022).Article .

bioRxiv预印本https://doi.org/10.1101/2023.12.06.23299426(2023年)。Halldorsson,B.V。等人,《英国生物库中150119个基因组的序列》。。文章。

Google Scholar

谷歌学者

Beyter, D. et al. Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. Nat. Genet. 53, 779–786 (2021).Article

Beyter,D.等人对3622名冰岛人进行了长读测序,从而深入了解了结构变异在人类疾病和其他性状中的作用。纳特·吉内特。53779-786(2021)。文章

Google Scholar

谷歌学者

Eggertsson, H. P. et al. GraphTyper2 enables population-scale genotyping of structural variation using pangenome graphs. Nat. Commun. 10, 5402 (2019).Article

Eggertsson,H.P.等人的GraphTyper2使用泛基因组图实现了结构变异的种群规模基因分型。国家公社。105402(2019)。文章

Google Scholar

谷歌学者

Backman, J. D. et al. Exome sequencing and analysis of 454,787 UK Biobank participants. Nature 599, 628–634 (2021).Article

Backman,J.D.等人。454787名英国生物库参与者的外显子组测序和分析。自然599628-634(2021)。文章

Google Scholar

谷歌学者

Wang, Q. et al. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature 597, 527–532 (2021).Article

Wang,Q。等人。在281104个英国生物库外显子组中对人类疾病的罕见变异贡献。自然597527-532(2021)。文章

Google Scholar

谷歌学者

Li, Y. R. et al. Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nat. Commun. 11, 255 (2020).Article

Li,Y.R.等人。在超过100000名欧洲血统受试者中,罕见的拷贝数变异揭示了多种疾病的关联。国家公社。11255(2020)。文章

Google Scholar

谷歌学者

Aguirre, M., Rivas, M. A. & Priest, J. Phenome-wide burden of copy-number variation in the UK biobank. Am. J. Hum. Genet. 105, 373–383 (2019).Article

英国生物库中全基因组拷贝数变异的负担。上午J。嗯。Genet。105373-383(2019)。文章

Google Scholar

谷歌学者

Babadi, M. et al. GATK-gCNV enables the discovery of rare copy number variants from exome sequencing data. Nat. Genet. 55, 1589–1597 (2023).Article

Babadi,M。等人。GATK gCNV能够从外显子组测序数据中发现罕见的拷贝数变异。纳特·吉内特。551589-1597(2023)。文章

Google Scholar

谷歌学者

Wu, M. C. et al. Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. 89, 82–93 (2011).Article

Wu,M.C.等人。使用序列核关联测试对测序数据进行罕见变异关联测试。上午J。嗯。Genet。89,82-93(2011)。文章

Google Scholar

谷歌学者

Zhan, X., Girirajan, S., Zhao, N., Wu, M. C. & Ghosh, D. A novel copy number variants kernel association test with application to autism spectrum disorders studies. Bioinformatics 32, 3603–3610 (2016).Article

Zhan,X.,Girirajan,S.,Zhao,N.,Wu,M.C。&Ghosh,D。一种新的拷贝数变异核关联测试,可应用于自闭症谱系障碍研究。。文章

Google Scholar

谷歌学者

Dougherty, M. L. et al. Transcriptional fates of human-specific segmental duplications in brain. Genome Res. 28, 1566–1576 (2018).Article

Dougherty,M.L.等人。大脑中人类特异性节段重复的转录命运。基因组研究281566-1576(2018)。文章

Google Scholar

谷歌学者

Egorova, T. V. et al. In-frame deletion of dystrophin exons 8–50 results in DMD phenotype. Int. J. Mol. Sci. 24, 9117 (2023).Article

Egorova,T.V。等人。肌营养不良蛋白外显子8-50的框内缺失导致DMD表型。Int.J.Mol.Sci。249117(2023)。文章

Google Scholar

谷歌学者

Schmitz, D. et al. Copy number variations and their effect on the plasma proteome. Genetics 225, iyad179 (2023).Article

Schmitz,D.等人。拷贝数变异及其对血浆蛋白质组的影响。遗传学225,iyad179(2023)。文章

Google Scholar

谷歌学者

de Los Campos, G., Grueneberg, A., Funkhouser, S., Pérez-Rodríguez, P. & Samaddar, A. Fine mapping and accurate prediction of complex traits using Bayesian Variable Selection models applied to biobank-size data. Eur. J. Hum. Genet. 31, 313–320 (2023).Article

de Los Campos,G.,Grueneberg,A.,Funkhouser,S.,Pérez Rodríguez,P。&Samaddar,A。使用应用于生物库大小数据的贝叶斯变量选择模型对复杂性状进行精细映射和准确预测。Eur.J.Hum.Genet。31313-320(2023)。文章

Google Scholar

谷歌学者

Broekema, R. V., Bakker, O. B. & Jonkers, I. H. A practical view of fine-mapping and gene prioritization in the post-genome-wide association era. Open Biol. 10, 190221 (2020).Article

Broekema,R.V.,Bakker,O.B。&Jonkers,I.H。后全基因组关联时代精细定位和基因优先排序的实用观点。打开Biol。。文章

Google Scholar

谷歌学者

Zhang, C., Cerveira, E., Rens, W. & Lee, C. Multicolor fluorescence in situ hybridization (FISH) approaches for simultaneous analysis of the entire human genome. Curr. Protoc. Hum. Genet. 99, e70 (2018).Article

Zhang,C.,Cerveira,E.,Rens,W。&Lee,C。用于同时分析整个人类基因组的多色荧光原位杂交(FISH)方法。货币。普罗托克。。99,e70(2018)。文章

Google Scholar

谷歌学者

Gribble, S. M., Ng, B. L., Prigmore, E., Fitzgerald, T. & Carter, N. P. Array painting: a protocol for the rapid analysis of aberrant chromosomes using DNA microarrays. Nat. Protoc. 4, 1722–1736 (2009).Article

Gribble,S.M.,Ng,B.L.,Prigmore,E.,Fitzgerald,T。&Carter,N.P。阵列绘画:使用DNA微阵列快速分析异常染色体的方案。自然协议。41722-1736(2009)。文章

Google Scholar

谷歌学者

Mantere, T. et al. Optical genome mapping enables constitutional chromosomal aberration detection. Am. J. Hum. Genet. 108, 1409–1422 (2021).Article

Mantere,T。等人。光学基因组作图可实现体质染色体畸变检测。上午J。嗯。Genet。1081409-1422(2021)。文章

Google Scholar

谷歌学者

Schrauwen, I. et al. Optical genome mapping unveils hidden structural variants in neurodevelopmental disorders. Sci. Rep. 14, 11239 (2024).Article

Schrauwen,I。等人。光学基因组作图揭示了神经发育障碍中隐藏的结构变异。科学。代表1411239(2024)。文章

Google Scholar

谷歌学者

Louzada, S. & Yang, F. in Cancer Cytogenetics and Cytogenomics (eds. Ye, J. C. & Heng, H. H.) 185–203. Methods in Molecular Biology series vol. 2825 (Springer, 2024).Choi, J. et al. A whole-genome reference panel of 14,393 individuals for East Asian populations accelerates discovery of rare functional variants.

Louzada,S。&Yang,F。《癌症细胞遗传学和细胞基因组学》(编辑:Ye,J.C。&Heng,H.H。)185-203。分子生物学系列第2825卷(Springer,2024)中的方法。。

Sci. Adv. 9, eadg6319 (2023).Article .

科学。Adv.9,eadg6319(2023)。文章。

Google Scholar

谷歌学者

Lepamets, M. et al. Omics-informed CNV calls reduce false-positive rates and improve power for CNV-trait associations. HGG Adv. 3, 100133 (2022).

。HGG Adv.3100133(2022)。

Google Scholar

谷歌学者

Hujoel, M. L. A. et al. Protein-altering variants at copy number-variable regions influence diverse human phenotypes. Nat. Genet. 56, 569–578 (2024).Article

Hujoel,M.L.A.等人。拷贝数可变区的蛋白质改变变体影响多种人类表型。纳特·吉内特。56569-578(2024)。文章

Google Scholar

谷歌学者

Gordeeva, V. et al. Benchmarking germline CNV calling tools from exome sequencing data. Sci. Rep. 11, 14416 (2021).Article

Gordeeva,V。等人。从外显子组测序数据对种系CNV调用工具进行基准测试。科学。代表1114416(2021)。文章

Google Scholar

谷歌学者

Zhou, Z., Wang, W., Wang, L. S. & Zhang, N. R. Integrative DNA copy number detection and genotyping from sequencing and array-based platforms. Bioinformatics 34, 2349–2355 (2018).Article

。生物信息学342349-2355(2018)。文章

Google Scholar

谷歌学者

Montanucci, L. et al. Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals. Nat. Commun. 14, 4392 (2023).Article

Montanucci,L.等人。741075名个体癫痫发作相关拷贝数变异的全基因组鉴定和表型表征。国家公社。。文章

Google Scholar

谷歌学者

Owen, D. et al. Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics 19, 867 (2018).Article

Owen,D.等人。致病性CNV对英国生物库参与者身体特征的影响。BMC基因组学19867(2018)。文章

Google Scholar

谷歌学者

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article

Purcell,S。等人。PLINK:用于全基因组关联和基于人群的连锁分析的工具集。上午J。嗯。Genet。81559-575(2007)。文章

Google Scholar

谷歌学者

Fawcett, K. A. et al. Exome-wide analysis of copy number variation shows association of the human leukocyte antigen region with asthma in UK Biobank. BMC Med. Genomics 15, 119 (2022).Article

Fawcett,K.A。等人。对拷贝数变异的全基因组分析显示,在英国生物库中,人类白细胞抗原区域与哮喘有关。BMC医学基因组学15119(2022)。文章

Google Scholar

谷歌学者

Liu, J. et al. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum. Genet. 137, 553–567 (2018).Article

Liu,J.等人。基因座上拷贝数变异(CNV)和单核苷酸多态性(SNP)的共存可能导致SNP与疾病相关的重要性计算失真。。137553-567(2018)。文章

Google Scholar

谷歌学者

Wineinger, N. E., Pajewski, N. M. & Tiwari, H. K. A method to assess linkage disequilibrium between CNVs and SNPs inside copy number variable regions. Front. Genet. 2, 17 (2011).Article

Wineinger,N.E.,Pajewski,N.M。和Tiwari,H.K。一种评估拷贝数可变区内CNV和SNP之间连锁不平衡的方法。正面。。2,17(2011)。文章

Google Scholar

谷歌学者

Estivill, X. & Armengol, L. Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet. 3, 1787–1799 (2007).Article

Estivill,X。&Armengol,L。拷贝数变异和常见疾病:填补空白并探索全基因组关联研究的复杂性。PLoS Genet。31787-1799(2007)。文章

Google Scholar

谷歌学者

Morales, J. et al. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol. 19, 21 (2018).Article

Morales,J.等人。基因组学研究中祖先数据表示的标准化框架,并应用于NHGRI-EBI GWAS目录。基因组生物学。19,21(2018)。文章

Google Scholar

谷歌学者

Hayhurst, J. et al. A community driven GWAS summary statistics standard. Preprint at bioRxiv https://doi.org/10.1101/2022.07.15.500230 (2022).Magno, R. & Maia, A. T. gwasrapidd: an R package to query, download and wrangle GWAS catalog data. Bioinformatics 36, 649–650 (2020).Article

Hayhurst,J.等人,《社区驱动的GWAS汇总统计标准》。bioRxiv预印本https://doi.org/10.1101/2022.07.15.500230(2022年)。Magno,R.&Maia,A.T.gwasrapidd:用于查询,下载和整理GWAS目录数据的R包。生物信息学36649-650(2020)。文章

Google Scholar

谷歌学者

Cao, T., Li, A. & Huang, Y. pandasGWAS: a Python package for easy retrieval of GWAS catalog data. BMC Genomics 24, 238 (2023).Article

Cao,T.,Li,A。&Huang,Y。pandasGWAS:一个Python包,用于轻松检索GWAS目录数据。。文章

Google Scholar

谷歌学者

Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. Preprint at bioRxiv https://doi.org/10.1101/2020.08.10.244293 (2020).Costanzo, M. C. et al. Cardiovascular disease knowledge portal: a community resource for cardiovascular disease research. Circ. Genom. Precis. Med. 16, e004181 (2023).Article .

Elsworth,B.等人,《MRC IEU OpenGWAS数据基础设施》。bioRxiv预印本https://doi.org/10.1101/2020.08.10.244293(2020年)。心血管疾病知识门户:心血管疾病研究的社区资源。保监会。基因组。精确。医学杂志16,e004181(2023)。文章。

Google Scholar

谷歌学者

Lambert, S. A. et al. The polygenic score catalog: new functionality and tools to enable FAIR research. Preprint at medRxiv https://doi.org/10.1101/2024.05.29.24307783 (2024).Chen, Y. et al. Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak.

Lambert,S.A.等人,《多基因评分目录:实现公平研究的新功能和工具》。medRxiv预印本https://doi.org/10.1101/2024.05.29.24307783(2024年)。Chen,Y。等人。使用DeBreak的长测序读数破译结构变异的确切断点。

Nat. Commun. 14, 283 (2023).Article .

Nat.普通。14283(2023)。文章。

Google Scholar

谷歌学者

Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02024-y (2024).Article

Smolka,M.等人。用Sniffles2检测镶嵌和种群水平的结构变异。美国国家生物技术公司。https://doi.org/10.1038/s41587-023-02024-y(2024年)。文章

Google Scholar

谷歌学者

Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).Article

Sedlazeck,F.J.等人。使用单分子测序准确检测复杂的结构变异。自然方法15461-468(2018)。文章

Google Scholar

谷歌学者

Dierckxsens, N., Li, T., Vermeesch, J. R. & Xie, Z. A benchmark of structural variation detection by long reads through a realistic simulated model. Genome Biol. 22, 342 (2021).Article

Dierckxsens,N.,Li,T.,Vermeesch,J.R。&Xie,Z。通过真实的模拟模型进行长时间读取的结构变异检测基准。基因组生物学。22342(2021)。文章

Google Scholar

谷歌学者

Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).Article

Jiang,T。等人。使用cuteSV进行基于长读的人类基因组结构变异检测。基因组生物学。21189(2020)。文章

Google Scholar

谷歌学者

Amarasinghe, S. L. et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21, 30 (2020).Article

。基因组生物学。21,30(2020)。文章

Google Scholar

谷歌学者

De Coster, W., Weissensteiner, M. H. & Sedlazeck, F. J. Towards population-scale long-read sequencing. Nat. Rev. Genet. 22, 572–587 (2021).Article

De Coster,W.,Weissensteiner,M.H。和Sedlazeck,F.J。走向人口规模的长读测序。Genet自然Rev。22572-587(2021)。文章

Google Scholar

谷歌学者

Gustafson, J. A. et al. Nanopore sequencing of 1000 genomes project samples to build a comprehensive catalog of human genetic variation. Preprint at medRxiv https://doi.org/10.1101/2024.03.05.24303792 (2024).Schloissnig, S. et al. Long-read sequencing and structural variant characterization in 1,019 samples from the 1000 genomes project.

Gustafson,J.A。等人,《1000个基因组的纳米孔测序计划样本》,以建立人类遗传变异的综合目录。medRxiv预印本https://doi.org/10.1101/2024.03.05.24303792(2024年)。Schloissnig,S.等人,《1000个基因组计划1019个样本的长读测序和结构变异表征》。

Preprint at bioRxiv https://doi.org/10.1101/2024.04.18.590093 (2024).Groza, C. et al. Pangenome graphs improve the analysis of structural variants in rare genetic diseases. Nat. Commun. 15, 657 (2024).Article .

bioRxiv预印本https://doi.org/10.1101/2024.04.18.590093(2024年)。Groza,C。等人,《泛基因组图》改进了对罕见遗传疾病中结构变异的分析。国家公社。15657(2024)。文章。

Google Scholar

谷歌学者

Ebler, J. et al. Pangenome-based genome inference allows efficient and accurate genotyping across a wide spectrum of variant classes. Nat. Genet. 54, 518–525 (2022).Article

基于泛基因组的基因组推断可以在广泛的变异类别中进行有效而准确的基因分型。纳特·吉内特。54518-525(2022)。文章

Google Scholar

谷歌学者

Noyvert, B. et al. Imputation of structural variants using a multi-ancestry long-read sequencing panel enables identification of disease associations. Preprint at bioRxiv https://doi.org/10.1101/2023.12.20.23300308 (2023).Lambert, S. A. et al. The polygenic score catalog as an open database for reproducibility and systematic evaluation.

Noyvert,B。等人。使用多血统长读测序面板估算结构变异可以识别疾病关联。bioRxiv预印本https://doi.org/10.1101/2023.12.20.23300308(2023年)。Lambert,S.A.等人,《多基因评分目录》,作为可重复性和系统评估的开放数据库。

Nat. Genet. 53, 420–425 (2021).Article .

Nat.Genet。53, 420-425 (2021).第[UNK]条。

Google Scholar

谷歌学者

Xiang, R. et al. Recent advances in polygenic scores: translation, equitability, methods and FAIR tools. Genome Med. 16, 33 (2024).Article

Xiang,R.等人。多基因评分的最新进展:翻译,公平性,方法和公平工具。基因组医学16,33(2024)。文章

Google Scholar

谷歌学者

Hao, L. et al. Development of a clinical polygenic risk score assay and reporting workflow. Nat. Med. 28, 1006–1013 (2022).Article

Hao,L.等人。临床多基因风险评分测定和报告工作流程的开发。《自然医学》281006-1013(2022)。文章

Google Scholar

谷歌学者

Lennon, N. J. et al. Selection, optimization and validation of ten chronic disease polygenic risk scores for clinical implementation in diverse US populations. Nat. Med. 30, 480–487 (2024).Article

。《自然医学》30480-487(2024)。文章

Google Scholar

谷歌学者

Bergen et al. Joint contributions of rare copy number variants and common SNPs to risk for schizophrenia. Am. J. Psychiatry 176, 29–35 (2019).Article

Bergen等人。罕见拷贝数变异和常见SNP对精神分裂症风险的共同贡献。《美国精神病学杂志》176,29-35(2019)。文章

Google Scholar

谷歌学者

Taniguchi, S. et al. Polygenic risk scores in schizophrenia with clinically significant copy number variants. Psychiatry Clin. Neurosci. 74, 35–39 (2020).Article

Taniguchi,S。等人。具有临床显着拷贝数变异的精神分裂症的多基因风险评分。精神病学临床。神经科学。74,35-39(2020)。文章

Google Scholar

谷歌学者

Mollon, J. et al. Impact of copy number variants and polygenic risk scores on psychopathology in the UK biobank. Biol. Psychiatry 94, 591–600 (2023).Article

Mollon,J.等人,《英国生物库中拷贝数变异和多基因风险评分对精神病理学的影响》。生物学精神病学94591-600(2023)。文章

Google Scholar

谷歌学者

Alexander-Bloch, A. et al. Copy number variant risk scores associated with cognition, psychopathology, and brain structure in youths in the philadelphia neurodevelopmental cohort. JAMA Psychiatry 79, 699–709 (2022).Article

Alexander Bloch,A.等人,《费城神经发育队列中青少年认知、精神病理学和大脑结构相关的拷贝数变异风险评分》。JAMA精神病学79699-709(2022)。文章

Google Scholar

谷歌学者

Saarentaus, E. C. et al. Polygenic burden has broader impact on health, cognition, and socioeconomic outcomes than most rare and high-risk copy number variants. Mol. Psychiatry 26, 4884–4895 (2021).Article

与大多数罕见和高风险的拷贝数变异相比,多基因负担对健康、认知和社会经济结果的影响更广。摩尔精神病学264884-4895(2021)。文章

Google Scholar

谷歌学者

Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).Article

Kachuri,L.等人。在全球人群中转移多基因风险评分的原则和方法。Genet自然Rev。25,8-25(2024)。文章

Google Scholar

谷歌学者

Hu, S. et al. Leveraging fine-scale population structure reveals conservation in genetic effect sizes between human populations across a range of human phenotypes. Preprint at bioRxiv https://doi.org/10.1101/2023.08.08.552281 (2023).Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals.

Hu,S.等人利用精细规模的种群结构揭示了在一系列人类表型中人群之间遗传效应大小的保守性。bioRxiv预印本https://doi.org/10.1101/2023.08.08.552281(2023年)。Hou,K。等人。对于混合个体中不同大陆血统片段的常见变异,对复杂性状的因果影响是相似的。

Nat. Genet. 55, 549–558 (2023).Article .

Nat.Genet。55, 549-558 (2023).第[UNK]条。

Google Scholar

谷歌学者

Heyne, H. O. et al. Mono- and biallelic variant effects on disease at biobank scale. Nature 613, 519–525 (2023).Article

Heyne,H.O.等人。在生物库规模上,单等位基因和双等位基因变异对疾病的影响。自然613519-525(2023)。文章

Google Scholar

谷歌学者

Song, P. et al. Data resource profile: understanding the patterns and determinants of health in South Asians-the South Asia biobank. Int. J. Epidemiol. 50, 717–718e (2021).Article

Song,P。等人。数据资源概况:了解南亚人健康的模式和决定因素南亚生物库。国际流行病学杂志。50717-718e(2021)。文章

Google Scholar

谷歌学者

Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).Article

Browning,S.R。&Browning,B.L。通过使用局部单倍型聚类进行全基因组关联研究的快速准确的单倍型定相和缺失数据推断。Am.J.Hum.Genet。811084-1097(2007)。文章

Google Scholar

谷歌学者

Loh, P. R. et al. Reference-based phasing using the haplotype reference consortium panel. Nat. Genet. 48, 1443–1448 (2016).Article

Loh,P.R.等人。使用单倍型参考联盟小组进行基于参考的定相。纳特·吉内特。481443-1448(2016)。文章

Google Scholar

谷歌学者

Delaneau, O., Zagury, J. F., Robinson, M. R., Marchini, J. L. & Dermitzakis, E. T. Accurate, scalable and integrative haplotype estimation. Nat. Commun. 10, 5436 (2019).Article

Delaneau,O.,Zagury,J.F.,Robinson,M.R.,Marchini,J.L。和Dermitzakis,E.T。准确,可扩展和整合的单倍型估计。国家公社。105436(2019)。文章

Google Scholar

谷歌学者

Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S. & Delaneau, O. Accurate rare variant phasing of whole-genome and whole-exome sequencing data in the UK Biobank. Nat. Genet. 55, 1243–1249 (2023).Article

Hofmeister,R.J.,Ribeiro,D.M.,Rubinacci,S。&Delaneau,O。英国生物库中全基因组和全外显子组测序数据的精确稀有变异定相。纳特·吉内特。551243-1249(2023)。文章

Google Scholar

谷歌学者

Browning, B. L. & Browning, S. R. Statistical phasing of 150,119 sequenced genomes in the UK Biobank. Am. J. Hum. Genet. 110, 161–165 (2023).Article

Browning,B.L。和Browning,S.R。英国生物库中150119个测序基因组的统计定相。上午J。嗯。Genet。110161-165(2023)。文章

Google Scholar

谷歌学者

Lassen, F. H. et al. Exome-wide evidence of compound heterozygous effects across common phenotypes in the UK Biobank. Preprint at medRxiv https://doi.org/10.1101/2023.06.29.23291992 (2023).Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci.

Lassen,F.H.等人。英国生物库中常见表型的复合杂合效应的全外显子组证据。medRxiv预印本https://doi.org/10.1101/2023.06.29.23291992(2023年)。Mountjoy,E。等人。一种开放的方法,可以在所有已发表的人类GWAS性状相关基因座上系统地优先考虑因果变异和基因。

Nat. Genet. 53, 1527–1533 (2021).Article .

Nat.Genet。53, 1527–1533 (2021).第[UNK]条。

Google Scholar

谷歌学者

Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).Article

Giambartolomei,C。等人。使用汇总统计数据对成对遗传关联研究之间的共定位进行贝叶斯检验。PLoS Genet。10,e1004383(2014)。文章

Google Scholar

谷歌学者

Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).Article

Abdellaoui,A.,Yengo,L.,Verweij,K.J.H.&Visscher,P.M。GWAS发现的15年:实现承诺。上午J。嗯。Genet。110179-194(2023)。文章

Google Scholar

谷歌学者

Namba, S. et al. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genom. 2, 100190 (2022).Article

Namba,S.等人,《全球生物库荟萃分析时代基因组学驱动药物发现的实用指南》。细胞基因组。2100 190(2022)。文章

Google Scholar

谷歌学者

Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).Article

。科学308385-389(2005)。文章

Google Scholar

谷歌学者

Arruda, A. L., Morris, A. P. & Zeggini, E. Advancing equity in human genomics through tissue-specific multi-ancestry molecular data. Cell Genom. 4, 100485 (2024).Article

Arruda,A.L.,Morris,A.P。&Zeggini,E。通过组织特异性多血统分子数据推进人类基因组学的公平性。细胞基因组。4100485(2024)。文章

Google Scholar

谷歌学者

Download referencesAcknowledgementsThe authors thank all members of the CNV-GWAS Consortium for contributions and discussions and the EMBL-EBI for funding of the authors’ work.Author informationAuthor notesThese authors contributed equally: Laura Harris, Ellen M. McDonagh, Xiaolei Zhang.Authors and AffiliationsEuropean Molecular Biology Laboratory (EMBL), European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, UKLaura Harris, Ellen M.

下载参考文献致谢作者感谢CNV-GWAS联盟的所有成员的贡献和讨论,以及EMBL-EBI对作者工作的资助。作者信息作者注意到这些作者做出了同样的贡献:Laura Harris,Ellen M.McDonagh,Xiaolei Zhang。作者和附属机构欧洲分子生物学实验室(EMBL),欧洲生物信息学研究所(EBI),惠康基因组校园,辛克斯顿,UKLaura Harris,Ellen M。

McDonagh, Xiaolei Zhang, Katherine Fawcett, Amy Foreman, Panagiotis I. Sergouniotis, Helen Parkinson, Ewan Birney & Tomas FitzgeraldDepartment of Population Health Sciences, University of Leicester, Leicester, UKKatherine FawcettWellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UKPetr DaneckDivision of Evolution, Infection and Genomics, School of Biological Sciences, University of Manchester, Manchester, UKPanagiotis I.

麦克唐纳(McDonagh),张晓蕾(Xiaolei Zhang),凯瑟琳·福塞特(Katherine Fawcett),艾米·福尔曼(Amy Foreman),Panagiotis I.Sergouniotis,海伦·帕金森(Helen Parkinson),伊万·伯尼(Ewan Birney)和托马斯·菲茨杰拉德(Tomas FitzgeraldDepartment of Population Health Sciences),莱斯特大学(University of Leicester),英国凯瑟琳·福塞特(Katherine FawcettWellcome Sanger Institute),惠康基因组校园(Wellcome Genome Campus),辛克斯顿。

SergouniotisDepartment of Molecular and Translational Medicine, University of Brescia, Brescia, ItalyFrancesco MazzarottoNational Heart and Lung Institute, Imperial College London, London, UKFrancesco MazzarottoBritish Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UKMichael InouyeCambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UKMichael InouyeCambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, AustraliaMichael InouyeDepartment of Genetics and Genome Biology, University of Leicester, Leicester, UKEdward J.

Sergouniotis布雷西亚大学分子与转化医学系,布雷西亚,意大利弗朗西斯科·马扎罗国家心肺研究所,伦敦帝国理工学院,英国弗朗西斯科·马扎罗托布里奇心脏基金会心血管流行病学组,剑桥大学公共卫生与初级保健系,剑桥大学,英国迈克尔·伊诺伊坎布里奇·贝克系统基因组学倡议,剑桥大学公共卫生与初级保健系,英国迈克尔·伊诺伊坎布里奇·贝克系统基因组学倡议,贝克心脏与糖尿病研究所,澳大利亚墨尔本莱斯特大学遗传学与基因组生物学系英国爱德华J。

HolloxAuthorsLaura HarrisView author publicationsYou can also search for this author in.

HolloxAuthorsLauraHarrisView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarEllen M. McDonaghView author publicationsYou can also search for this author in

PubMed Google ScholarEllen M.McDonaghView作者出版物您也可以在

PubMed Google ScholarXiaolei ZhangView author publicationsYou can also search for this author in

PubMed谷歌学者张晓磊查看作者出版物您也可以在

PubMed Google ScholarKatherine FawcettView author publicationsYou can also search for this author in

PubMed Google ScholarKatherine FawcettView作者出版物您也可以在

PubMed Google ScholarAmy ForemanView author publicationsYou can also search for this author in

PubMed Google ScholarAmy ForemanView作者出版物您也可以在

PubMed Google ScholarPetr DaneckView author publicationsYou can also search for this author in

PubMed Google ScholarPetr DaneckView作者出版物您也可以在

PubMed Google ScholarPanagiotis I. SergouniotisView author publicationsYou can also search for this author in

PubMed Google ScholarPanagiotis I.SergouniotisView作者出版物您也可以在

PubMed Google ScholarHelen ParkinsonView author publicationsYou can also search for this author in

PubMed谷歌学者Helen ParkinsonView作者出版物您也可以在

PubMed Google ScholarFrancesco MazzarottoView author publicationsYou can also search for this author in

PubMed谷歌学者Francesco MazzarottoView作者出版物您也可以在

PubMed Google ScholarMichael InouyeView author publicationsYou can also search for this author in

PubMed Google Scholarmamichael InouyeView作者出版物您也可以在

PubMed Google ScholarEdward J. HolloxView author publicationsYou can also search for this author in

PubMed Google ScholarEdward J.HolloxView作者出版物您也可以在

PubMed Google ScholarEwan BirneyView author publicationsYou can also search for this author in

PubMed Google ScholarEwan BirneyView作者出版物您也可以在

PubMed Google ScholarTomas FitzgeraldView author publicationsYou can also search for this author in

PubMed Google ScholarTomas FitzgeraldView作者出版物您也可以在

PubMed Google ScholarContributionsL.H., E.M.M., X.Z., K.F., P.I.S., F.M., M.I. and T.F. wrote the article. All authors researched the literature, provided substantial contributions to discussions of the content, and reviewed and/or edited the manuscript.Corresponding authorCorrespondence to.

PubMed谷歌学术贡献l。H、 ,E.M.M.,X.Z.,K.F.,P.I.S.,F.M.,M.I.和T.F.撰写了这篇文章。所有作者都研究了文献,为内容的讨论做出了重大贡献,并审查和/或编辑了手稿。对应作者对应。

Tomas Fitzgerald.Ethics declarations

托马斯·菲茨杰拉德。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Reviews Genetics thanks Bjarni V. Halldórsson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

《自然评论》遗传学感谢Bjarni V.Halldórsson和另一位匿名审稿人对这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Related linksAll of Us: https://allofus.nih.gov/ClinGen: https://clinicalgenome.org/Finngen: https://www.finngen.fi/enGenomics England: https://www.genomicsengland.co.uk/gnomAD: https://gnomad.broadinstitute.org/GWAS Catalog: https://www.ebi.ac.uk/gwas/Linkage disequilibrium: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gene-linkage-disequilibriumOpen Targets Platform: https://platform.opentargets.org/PGS Catalog: https://www.pgscatalog.org/PharmGKB: https://www.pharmgkb.org/gene/PA128/labelAnnotationPRECISE: https://npm.sg/UK Biobank: https://www.ukbiobank.ac.uk/Supplementary informationSupplementary Information 1Supplementary Information 2GlossaryCryptic relatedness.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。相关链接我们所有人:https://allofus.nih.gov/ClinGen:(笑声)https://clinicalgenome.org/Finngen:(笑声)https://www.finngen.fi/enGenomics英格兰:https://www.genomicsengland.co.uk/gnomAD:(笑声)https://gnomad.broadinstitute.org/GWAS目录:https://www.ebi.ac.uk/gwas/Linkage不平衡:https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gene-linkage-disequilibriumOpen目标平台:https://platform.opentargets.org/PGS目录:https://www.pgscatalog.org/PharmGKB:(笑声)https://www.pharmgkb.org/gene/PA128/labelAnnotationPRECISE:(笑声)https://npm.sg/UK生物库:https://www.ukbiobank.ac.uk/Supplementary信息补充信息1补充信息2损失与cryptic的相关性。

Confounding relatedness within a population, which can occur when individuals in the study cohort are more closely related to one another than assumed by the investigators.

当研究队列中的个体彼此之间的关系比研究人员假设的更密切时,可能会发生人群内的混淆相关性。

Diplotype

外交官

The combination of two alleles for a gene, one inherited from each of the individual’s parents.

一个基因的两个等位基因的组合,一个遗传自个体的父母。

Dosage sensitivity

剂量敏感性

When a variation in the number of copies of a gene or genetic element leads to a change in phenotype.

当基因或遗传元件拷贝数的变化导致表型改变时。

Epistasis

上位性

A phenomenon whereby nonlinear interactions between different genes or variants affect the same trait.

不同基因或变体之间的非线性相互作用影响同一性状的现象。

FAIR recommendations

公平的建议

A set of guidelines to increase the value of data by making it findable, accessible, interoperable and reusable.

通过使数据可查找、可访问、可互操作和可重用来提高数据价值的一组准则。

Imputation

插补

A method for inferring genotypes (or genetic variants) at locations that were not included in the assay.

在测定中未包括的位置推断基因型(或遗传变异)的方法。

Lead associations

领导协会

A lead association is the genetic variant that has the strongest association signals (lowest P value) from the association test. This variant may or may not be causal.

铅关联是关联测试中具有最强关联信号(最低P值)的遗传变异。这种变异可能是也可能不是因果关系。

LOEUF score

LOEUF评分

A continuous metric designed to assess how intolerant a gene is to loss-of-function variation.

旨在评估基因对功能丧失变异的不耐受程度的连续指标。

Mendelian randomization

孟德尔随机化

An epidemiological method used to study the causal effect of a risk factor (such as genetic variation) on health, social or economic outcomes.

一种流行病学方法,用于研究风险因素(如遗传变异)对健康、社会或经济结果的因果影响。

Optical mapping

光学测绘

An imaging method that analyses fluorescently labelled DNA molecules to provide a high-resolution map of structural variation.

一种成像方法,分析荧光标记的DNA分子以提供结构变异的高分辨率图谱。

Polygenic score

多基因评分

(PGS). A weighted estimate of how genetic variants affect a phenotype, often used to estimate a person’s risk of developing a disease or complex trait.

(第页)。对遗传变异如何影响表型的加权估计,通常用于估计一个人患疾病或复杂性状的风险。

Single-nucleotide polymorphism

单核苷酸多态性

(SNP). A germline genetic variant that is present in more than 1% of the population, in which a single nucleotide base differs from the reference genome.

(SNP)。存在于超过1%的人群中的种系遗传变异,其中单个核苷酸碱基与参考基因组不同。

Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleHarris, L., McDonagh, E.M., Zhang, X.

权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Harris,L.,McDonagh,E.M.,Zhang,X。

et al. Genome-wide association testing beyond SNPs..

等。超越SNP的全基因组关联测试。。

Nat Rev Genet (2024). https://doi.org/10.1038/s41576-024-00778-yDownload citationAccepted: 03 September 2024Published: 07 October 2024DOI: https://doi.org/10.1038/s41576-024-00778-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

。https://doi.org/10.1038/s41576-024-00778-yDownload引文接受日期:2024年9月3日发布日期:2024年10月7日OI:https://doi.org/10.1038/s41576-024-00778-yShare。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供