EN
登录

癌症mRNA剪接的临床翻译指导研究

Steering research on mRNA splicing in cancer towards clinical translation

Nature 等信源发布 2024-10-09 01:31

可切换为仅中文


AbstractSplicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also ‘moonlight’ in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint.

摘要剪接因子受几种类型的血液和实体恶性肿瘤中反复发生的体细胞突变和拷贝数变异的影响,这通常被视为剪接畸变可以驱动癌症发生和发展的初步证据。然而,许多剪接体成分在DNA修复和其他细胞过程中也“月光”,使得它们在癌症中的确切作用难以确定。

Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation.

尽管如此,很少有人会否认失调的mRNA剪接是大多数癌症的普遍特征。正确解释这些分子指纹可以揭示新的肿瘤脆弱性和未开发的治疗机会。然而,多重技术挑战,挥之不去的误解和悬而未决的问题阻碍了临床翻译。

To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers.

首先,由于短读RNA测序不擅长解析完整的mRNA同种型的局限性,以及长读RNA测序固有的浅读深度,癌症中剪接畸变的一般情况尚不明确,特别是在单细胞水平。尽管已知单个与癌症相关的同工型会导致癌症进展,但广泛的剪接改变可能是人类癌症的一个同等重要且可能更容易采取行动的特征。

This is to say that in addition to ‘repairing’ mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens..

这就是说,除了“修复”错误剪接的转录本外,可能的治疗途径还包括用小分子剪接体抑制剂加剧剪接畸变,用合成致死方法靶向复发性剪接畸变,以及训练免疫系统识别剪接衍生的新抗原。。

Access through your institution

通过您的机构访问

Buy or subscribe

购买或订阅

This is a preview of subscription content, access via your institution

这是订阅内容的预览,可通过您的机构访问

Access options

访问选项

Access through your institution

通过您的机构访问

Access through your institution

通过您的机构访问

Change institution

变革机构

Buy or subscribe

购买或订阅

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscription info for Chinese customersWe have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.Go to naturechina.comBuy this articlePurchase on SpringerLinkInstant access to full article PDFBuy nowPrices may be subject to local taxes which are calculated during checkout.

Access Nature和54篇其他Nature Portfolio journalsGet Nature+,我们最有价值的在线订阅24,99欧元/30天,随时为中国客户获取更多订阅信息我们为中国客户提供了一个专门的网站。请访问naturechina.com订阅本期刊。访问naturechina.comBuy本文在Springerlink上购买即时访问完整文章PDFBuy now价格可能需要缴纳结帐时计算的地方税。

Additional access options:

其他访问选项:

Log in

登录

Learn about institutional subscriptions

了解机构订阅

Read our FAQs

阅读我们的常见问题

Contact customer support

联系客户支持

Fig. 1: Splicing factor alterations in human tumours.Fig. 2: Four key steps towards clinical translation of mRNA splicing research.Fig. 3: Strategies that target mRNA splicing in cancer.

图1:人类肿瘤中的剪接因子改变。图2:mRNA剪接研究临床翻译的四个关键步骤。图3:靶向癌症中mRNA剪接的策略。

ReferencesBerget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977).Article

参考文献Berget,S.M.,Moore,C。&Sharp,P.A。在腺病毒2晚期mRNA的5'末端剪接片段。国家科学院。科学。美国743171-3175(1977)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8 (1977).Article

。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).Article

Pan,Q.,Shai,O.,Lee,L.J.,Frey,B.J。&Blencowe,B.J。通过高通量测序深入研究人类转录组中的可变剪接复杂性。纳特·吉内特。401413-1415(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).Article

Wang,E.T.等人。人体组织转录组中的替代同工型调控。《自然》456470–476(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kjer-Hansen, P. & Weatheritt, R. J. The function of alternative splicing in the proteome: rewiring protein interactomes to put old functions into new contexts. Nat. Struct. Mol. Biol. 30, 1844–1856 (2023).Article

Kjer Hansen,P。&Weatheritt,R.J。蛋白质组中选择性剪接的功能:重新连接蛋白质相互作用组以将旧功能置于新环境中。自然结构。分子生物学。301844-1856(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Marasco, L. E. & Kornblihtt, A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2023).Article

Marasco,L.E。和Kornblihtt,A.R。选择性剪接的生理学。Nat。Rev。Mol。Cell Biol。24242-254(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Boise, L. H. et al. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 (1993).Article

Boise,L.H.等人,bcl-x,一种bcl-2相关基因,作为凋亡细胞死亡的主要调节因子。细胞74597-608(1993)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Cascino, I., Fiucci, G., Papoff, G. & Ruberti, G. Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J. Immunol. 154, 2706–2713 (1995).Article

Cascino,I.,Fiucci,G.,Papoff,G。&Ruberti,G。通过选择性剪接产生三种功能性可溶性形式的人凋亡诱导Fas分子。J、 免疫。1542706-2713(1995)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).Article

Ueda,H。等人。T细胞调节基因CTLA4与自身免疫性疾病易感性的关联。自然423506-511(2003)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Li, X. et al. A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation. Nat. Cell Biol. 18, 561–571 (2016).Article

Li,X。等人。从酮己糖激酶-C到酮己糖激酶-A的剪接开关驱动肝细胞癌的形成。自然细胞生物学。18561-571(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, H. et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 498, 241–245 (2013).Article

Han,H。等人。MBNL蛋白抑制ES细胞特异性选择性剪接和重编程。自然498241-245(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bradley, R. K. & Anczukow, O. RNA splicing dysregulation and the hallmarks of cancer. Nat. Rev. Cancer 23, 135–155 (2023).Article

Bradley,R.K。&Anczukow,O。RNA剪接失调和癌症的标志。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Climente-Gonzalez, H., Porta-Pardo, E., Godzik, A. & Eyras, E. The functional impact of alternative splicing in cancer. Cell Rep. 20, 2215–2226 (2017).Article

Climente Gonzalez,H.,Porta Pardo,E.,Godzik,A。&Eyras,E。选择性剪接在癌症中的功能影响。Cell Rep.202215–2226(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Jayasinghe, R. G. et al. Systematic analysis of splice-site-creating mutations in cancer. Cell Rep. 23, 270–281.e3 (2018).Article

Jayasinghe,R.G.等人。癌症中剪接位点产生突变的系统分析。Cell Rep.23270–281.e3(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).Article

Hanahan,D。癌症的标志:新的维度。癌症发现。12,31–46(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Berg, P., Baltimore, D., Brenner, S., Roblin, R. O. & Singer, M. F. Summary statement of the Asilomar conference on recombinant DNA molecules. Proc. Natl Acad. Sci. USA 72, 1981–1984 (1975).Article

Berg,P.,Baltimore,D.,Brenner,S.,Roblin,R.O。&Singer,M.F。Asilomar重组DNA分子会议的总结声明。程序。国家科学院。科学。美国721981-1984(1975)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).Article

Papaemmanuil,E.等人。环状铁粒幼细胞骨髓增生异常中的体细胞SF3B1突变。N、 。J、 医学3651384-1395(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).Article

吉田,K。等人。骨髓增生异常中剪接机制的频繁途径突变。《自然》478,64-69(2011)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Graubert, T. A. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 44, 53–57 (2011).Article

Graubert,T.A.等人。骨髓增生异常综合征中U2AF1剪接因子的复发突变。纳特·吉内特。44,53-57(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011). Together with Papaemmanuil et al. (2011) and Yoshida et al. (2011), this work reveals that, in haematologic malignancies, multiple splicing factors accumulate mutations at rates comparable with those of well-established cancer drivers.Article .

。N、 。J、 医学3652497-2506(2011)。与Papaemmanuil等人(2011)和Yoshida等人(2011)一起,这项工作表明,在血液系统恶性肿瘤中,多种剪接因子以与公认的癌症驱动因素相当的速率积累突变。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Seiler, M. et al. Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep. 23, 282–296.e4 (2018).Article

Seiler,M.等人。剪接因子基因的体细胞突变景观及其在33种癌症类型中的功能后果。Cell Rep.23282–296.e4(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 7, 10615 (2016).Article

Alsafadi,S。等人。癌症相关的SF3B1突变通过促进替代分支点的使用来影响替代剪接。国家公社。710615(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).Article

Darman,R.B。等人。癌症相关的SF3B1热点突变通过使用不同的分支点诱导隐蔽的3'剪接位点选择。Cell Rep.131033–1045(2015)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Brooks, A. N. et al. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS ONE 9, e87361 (2014). This study is one of the first to establish direct associations between splicing factor mutations in cancer and alterations in splicing events.Article .

Brooks,A.N.等人对U2AF1体细胞突变相关转录组变化的泛癌分析揭示了剪接事件的常见改变。PLoS ONE 9,e87361(2014)。这项研究是第一个建立癌症剪接因子突变与剪接事件改变之间直接关联的研究之一。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ilagan, J. O. et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25, 14–26 (2015).Article

Ilagan,J.O.等人,U2AF1突变改变了血液系统恶性肿瘤中剪接位点的识别。基因组研究25,14-26(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015). This study documents the specificity in the downstream effects of splicing factor mutations.Article

Kim,E。等人。SRSF2突变通过突变对外显子识别的特异性影响而导致骨髓增生异常。癌细胞27617-630(2015)。这项研究记录了剪接因子突变下游效应的特异性。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, S., Benbarche, S. & Abdel-Wahab, O. Splicing factor mutations in hematologic malignancies. Blood 138, 599–612 (2021).Article

Chen,S.,Benbarche,S。&Abdel-Wahab,O。血液恶性肿瘤中的剪接因子突变。血液138599-612(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Inoue, D. et al. Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition. Nat. Genet. 53, 707–718 (2021).Article

Inoue,D。等人。较小的内含子保留会导致克隆性造血疾病和多种癌症易感性。纳特·吉内特。53707-718(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chathoth, K. T., Barrass, J. D., Webb, S. & Beggs, J. D. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol. Cell 53, 779–790 (2014).Article

Chathoth,K.T.,Barrass,J.D.,Webb,S。&Beggs,J.D。与前分裂体形成相关的剪接依赖性转录检查点。分子细胞53779-790(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, S., Coutinho-Mansfield, G., Wang, D., Pandit, S. & Fu, X. D. The splicing factor SC35 has an active role in transcriptional elongation. Nat. Struct. Mol. Biol. 15, 819–826 (2008).Article

Lin,S.,Coutinho-Mansfield,G.,Wang,D.,Pandit,S。&Fu,X.D。剪接因子SC35在转录延伸中具有积极作用。自然结构。分子生物学。15819-826(2008)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gama-Carvalho, M., Barbosa-Morais, N. L., Brodsky, A. S., Silver, P. A. & Carmo-Fonseca, M. Genome-wide identification of functionally distinct subsets of cellular mRNAs associated with two nucleocytoplasmic-shuttling mammalian splicing factors. Genome Biol. 7, R113 (2006).Article

Gama Carvalho,M.,Barbosa-Morais,N.L.,Brodsky,A.S.,Silver,P.A。&Carmo Fonseca,M。全基因组鉴定与两种核质穿梭哺乳动物剪接因子相关的功能不同的细胞mRNA亚群。基因组生物学。7,R113(2006)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ujvari, A. & Luse, D. S. Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J. Biol. Chem. 279, 49773–49779 (2004).Article

Ujvari,A。&Luse,D。S。新启动的RNA在从RNA聚合酶II中出现后立即遇到一个参与剪接的因子。J、 生物。化学。27949773–49779(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ma, H. L. et al. SRSF2 plays an unexpected role as reader of m5C on mRNA, linking epitranscriptomics to cancer. Mol. Cell 83, 4239–4254.e10 (2023).Article

。分子细胞834239–4254.e10(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hegazy, Y. A., Fernando, C. M. & Tran, E. J. The balancing act of R-loop biology: the good, the bad, and the ugly. J. Biol. Chem. 295, 905–913 (2020).Article

Hegazy,Y.A.,Fernando,C.M。和Tran,E.J。R环生物学的平衡行为:好的,坏的和丑陋的。J、 生物。化学。295905-913(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Petermann, E., Lan, L. & Zou, L. Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids. Nat. Rev. Mol. Cell Biol. 23, 521–540 (2022).Article

。Nat。Rev。Mol。Cell Biol。23521-540(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhang, Z. & Krainer, A. R. Involvement of SR proteins in mRNA surveillance. Mol. Cell 16, 597–607 (2004).Article

Zhang,Z。&Krainer,A.R。SR蛋白参与mRNA监测。摩尔细胞16597-607(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kurosaki, T., Popp, M. W. & Maquat, L. E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol. 20, 406–420 (2019).Article

Kurosaki,T.,Popp,M.W。&Maquat,L.E。通过无义介导的mRNA衰变对基因表达进行质量和数量控制。Nat。Rev。Mol。Cell Biol。20406-420(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Boddu, P. C. et al. Transcription elongation defects link oncogenic SF3B1 mutations to targetable alterations in chromatin landscape. Mol. Cell 84, 1475–1495.e18 (2024).Article

转录延伸缺陷将致癌SF3B1突变与染色质景观中可靶向的改变联系起来。分子细胞841475-1495.e18(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chen, L. et al. R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol. Cell 68, 745–757.e5 (2017).Article

Chen,L。等人。使用非活性RNase H的R-ChIP揭示了R环与基因启动子转录暂停的动态耦合。分子细胞68745-757.e5(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, L. et al. The augmented R-loop is a unifying mechanism for myelodysplastic syndromes induced by high-risk splicing factor mutations. Mol. Cell 69, 412–425.e6 (2018).Article

Chen,L。等人。增强的R环是由高风险剪接因子突变诱导的骨髓增生异常综合征的统一机制。分子细胞69412-425.e6(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cusan, M. et al. SF3B1 mutation and ATM deletion codrive leukemogenesis via centromeric R-loop dysregulation. J. Clin. Invest. 133, e163325 (2023).Article

。J、 临床。投资。133,e163325(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nguyen, H. D. et al. Spliceosome mutations induce R loop-associated sensitivity to ATR inhibition in myelodysplastic syndromes. Cancer Res. 78, 5363–5374 (2018).Article

Nguyen,H.D.等人。剪接体突变诱导骨髓增生异常综合征中R环相关的ATR抑制敏感性。癌症研究785363-5374(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Singh, S. et al. SF3B1 mutations induce R-loop accumulation and DNA damage in MDS and leukemia cells with therapeutic implications. Leukemia 34, 2525–2530 (2020).Article

Singh,S。等人。SF3B1突变诱导MDS和白血病细胞中的R环积累和DNA损伤,具有治疗意义。白血病342525-2530(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shkreta, L. & Chabot, B. The RNA splicing response to DNA damage. Biomolecules 5, 2935–2977 (2015).Article

Shkreta,L。&Chabot,B。RNA剪接对DNA损伤的反应。生物分子52935-2977(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Rahman, M. A., Lin, K. T., Bradley, R. K., Abdel-Wahab, O. & Krainer, A. R. Recurrent SRSF2 mutations in MDS affect both splicing and NMD. Genes. Dev. 34, 413–427 (2020).Article

Rahman,M.A.,Lin,K.T.,Bradley,R.K.,Abdel-Wahab,O。&Krainer,A.R。MDS中反复发生的SRSF2突变会影响剪接和NMD。基因。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheruiyot, A. et al. Nonsense-mediated RNA decay is a unique vulnerability of cancer cells harboring SF3B1 or U2AF1 mutations. Cancer Res. 81, 4499–4513 (2021).Article

Cheruiyot,A。等人。无义介导的RNA衰变是携带SF3B1或U2AF1突变的癌细胞的独特脆弱性。癌症研究814499-4513(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Palangat, M. et al. The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation. Genes. Dev. 33, 482–497 (2019).Article

Palangat,M。等人。剪接因子U2AF1通过翻译调控中的非典型作用促进癌症进展。基因。德文33482-497(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Choi, P. S. & Thomas-Tikhonenko, A. RNA-binding proteins of COSMIC importance in cancer. J. Clin. Invest. 131, e151627 (2021).Article

Choi,P.S。&Thomas Tikhonenko,A。RNA结合蛋白在癌症中具有宇宙重要性。J、 临床。投资。131,e151627(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).Article

Buccitelli,C。&Selbach,M。mRNA,蛋白质和新兴的基因表达控制原理。Genet自然Rev。21630-644(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shine, M. et al. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat. Rev. Mol. Cell Biol. 25, 534–554 (2024).Article

Shine,M.等人,《真核生物和原核生物中的共转录基因调控》。Nat。Rev。Mol。Cell Biol。25534-554(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mabin, J. W., Lewis, P. W., Brow, D. A. & Dvinge, H. Human spliceosomal snRNA sequence variants generate variant spliceosomes. RNA 27, 1186–1203 (2021).Article

Mabin,J.W.,Lewis,P.W.,Brow,D.A。和Dvinge,H。人类剪接体snRNA序列变体产生变体剪接体。RNA 271186-1203(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Augspach, A. et al. Minor intron splicing is critical for survival of lethal prostate cancer. Mol. Cell 83, 1983–2002.e1911 (2023). This study argues that the processing of a subset of introns by the minor spliceosome is rate-limiting for cancer cell growth and a potential target for cancer therapies.Article .

Augspach,A。等人。次要内含子剪接对于致命性前列腺癌的存活至关重要。分子细胞831983-2002.e1911(2023)。这项研究认为,次要剪接体对内含子子集的处理限制了癌细胞的生长,也是癌症治疗的潜在靶点。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Younis, I. et al. Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. eLife 2, e00780 (2013).Article

Younis,I.等人,《次要内含子是由高度不稳定的U6atac snRNA调控的嵌入分子开关》。eLife 2,e00780(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Berg, M. G. et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell 150, 53–64 (2012).Article

Berg,M.G.等人U1 snRNP决定mRNA长度并调节同工型表达。细胞150,53-64(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010).Article

Kaida,D。等人U1 snRNP保护前mRNA免受过早切割和聚腺苷酸化。《自然》468664-668(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oh, J. M. et al. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat. Commun. 11, 1 (2020).Article

Oh,J.M.等人,U1 snRNP在体外调节癌细胞的迁移和侵袭。国家公社。11,1(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Suzuki, H. et al. Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 574, 707–711 (2019). This study reveals the accumulation of hot-spot mutations of the U1 snRNA in a subset of paediatric medulloblastomas.Article

Suzuki,H。等人。复发性非编码U1 snRNA突变驱动SHH髓母细胞瘤中的隐性剪接。自然574707-711(2019)。这项研究揭示了U1 snRNA热点突变在一部分小儿髓母细胞瘤中的积累。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shuai, S. et al. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 574, 712–716 (2019). This study along with Suzuki et al. demonstrates for the first time that mutations in the RNA components of the spliceosome can contribute to cancer progression.Article

Shuai,S。等人。U1剪接体RNA在多种癌症中反复突变。自然574712-716(2019)。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bousquets-Munoz, P. et al. PanCancer analysis of somatic mutations in repetitive regions reveals recurrent mutations in snRNA U2. NPJ Genom. Med. 7, 19 (2022).Article

Bousquets-Munoz,P。等人。重复区域体细胞突变的PanCancer分析揭示了snRNA U2的复发突变。NPJ基因组。医学杂志7、19(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Busch, A. & Hertel, K. J. Evolution of SR protein and hnRNP splicing regulatory factors. Wiley Interdiscip. Rev. RNA 3, 1–12 (2012).Article

Busch,A。&Hertel,K.J。SR蛋白和hnRNP剪接调控因子的进化。Wiley Interdiscip公司。RNA修订版3,1-12(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Torres-Diz, M. et al. An alternatively spliced gain-of-function NT5C2 isoform contributes to chemoresistance in acute lymphoblastic leukemia. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-23-3804 (2024).Karni, R. et al. The gene encoding the splicing factor SF2/ASF is a proto-oncogene.

Torres-Diz,M。等人。选择性剪接的功能获得性NT5C2亚型有助于急性淋巴细胞白血病的化疗耐药。癌症研究。https://doi.org/10.1158/0008-5472.CAN-23-3804(2024年)。编码剪接因子SF2/ASF的基因是原癌基因。

Nat. Struct. Mol. Biol. 14, 185–193 (2007). This study is the first demonstration of the oncogenic properties of regulatory splicing factors.Article .

自然结构。分子生物学。14185-193(2007)。这项研究首次证明了调节剪接因子的致癌特性。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Park, S. et al. Differential functions of splicing factors in mammary transformation and breast cancer metastasis. Cell Rep. 29, 2672–2688.e7 (2019).Article

Park,S.等人。剪接因子在乳腺转化和乳腺癌转移中的差异功能。Cell Rep.292672–2688.e7(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cohen-Eliav, M. et al. The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers. J. Pathol. 229, 630–639 (2013).Article

Cohen Eliav,M。等人。剪接因子SRSF6被扩增,是肺癌和结肠癌中的癌蛋白。J、 病理学。229630-639(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sebestyen, E. et al. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res. 26, 732–744 (2016).Article

Sebestyen,E。等人。对多种肿瘤中基因组和转录组改变的大规模分析揭示了新的癌症相关剪接网络。基因组研究26732-744(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hsu, T. Y. et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384–388 (2015).Article

。自然525384-388(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Koh, C. M. et al. MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100 (2015). Together with Hsu et al. (2015), this work uncovers the dependence of MYC-driven cancers on the spliceosome activity and its therapeutic implications.Article .

Koh,C.M.等人,MYC调节核心前mRNA剪接机制,这是淋巴瘤发生的重要步骤。。与Hsu等人(2015)一起,这项工作揭示了MYC驱动的癌症对剪接体活性的依赖性及其治疗意义。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Urbanski, L. et al. MYC regulates a pan-cancer network of co-expressed oncogenic splicing factors. Cell Rep. 41, 111704 (2022).Article

MYC调节共表达致癌剪接因子的泛癌网络。Cell Rep.41111704(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ho, J. S. et al. HNRNPM controls circRNA biogenesis and splicing fidelity to sustain cancer cell fitness. eLife 10, e59654 (2021).Article

Ho,J.S.等人,HNRNPM控制circRNA的生物发生和剪接保真度,以维持癌细胞的适应性。eLife 10,e59654(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reinke, L. M., Xu, Y. & Cheng, C. Snail represses the splicing regulator epithelial splicing regulatory protein 1 to promote epithelial–mesenchymal transition. J. Biol. Chem. 287, 36435–36442 (2012).Article

Reinke,L.M.,Xu,Y。&Cheng,C。Snail抑制剪接调节因子上皮剪接调节蛋白1以促进上皮-间质转化。J、 生物。化学。28736435–36442(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Black, K. L. et al. Aberrant splicing in B-cell acute lymphoblastic leukemia. Nucleic Acids Res. 46, 11357–11369 (2018).CAS

。核酸研究4611357-11369(2018)。中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhou, Y. et al. Posttranslational regulation of the exon skipping machinery controls aberrant splicing in leukemia. Cancer Discov. 10, 1388–1409 (2020).Article

Zhou,Y。等人。外显子跳跃机制的翻译后调控控制白血病中的异常剪接。癌症发现。101388-1409(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Leclair, N. K. et al. Poison exon splicing regulates a coordinated network of SR protein expression during differentiation and tumorigenesis. Mol. Cell 80, 648–665.e9 (2020).Article

Leclair,N.K。等人。毒物外显子剪接在分化和肿瘤发生过程中调节SR蛋白表达的协调网络。分子细胞80648-665.e9(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Thomas, J. D. et al. RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons. Nat. Genet. 52, 84–94 (2020). This study uses large CRISPR-based screens to assess the function of alternative exons and reveals the contribution of open reading frame-disrupting exons to tumour suppression.Article .

Thomas,J.D.等人,《RNA亚型筛选》揭示了超保守毒物外显子的重要性和肿瘤抑制活性。纳特·吉内特。52,84-94(2020)。这项研究使用基于CRISPR的大型筛选来评估替代外显子的功能,并揭示了开放阅读框破坏外显子对肿瘤抑制的贡献。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dhanasekaran, R. et al. The MYC oncogene—the grand orchestrator of cancer growth and immune evasion. Nat. Rev. Clin. Oncol. 19, 23–36 (2022).Article

Dhanasekaran,R。等人。MYC癌基因是癌症生长和免疫逃避的主要协调者。国家修订临床。Oncol公司。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Levine, A. J. Spontaneous and inherited TP53 genetic alterations. Oncogene 40, 5975–5983 (2021).Article

Levine,A.J。自发和遗传的TP53基因改变。癌基因405975-5983(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Escobar-Hoyos, L. F. et al. Altered RNA splicing by mutant p53 activates oncogenic RAS signaling in pancreatic cancer. Cancer Cell 38, 198–211.e8 (2020).Article

Escobar Hoyos,L.F。等人。突变型p53改变的RNA剪接激活胰腺癌中的致癌RAS信号传导。癌细胞38198-211.e8(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Das, S., Anczukow, O., Akerman, M. & Krainer, A. R. Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep. 1, 110–117 (2012).Article

Das,S.,Anczukow,O.,Akerman,M。&Krainer,A.R。致癌剪接因子SRSF1是MYC的关键转录靶标。Cell Rep.1110–117(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anczukow, O. et al. The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat. Struct. Mol. Biol. 19, 220–228 (2012). This study demonstrates for the first time direct links between splicing factor dysregulation and tumour phenotypes.Article .

Anczukow,O。等人。剪接因子SRSF1调节细胞凋亡和增殖,促进乳腺上皮细胞转化。自然结构。分子生物学。19220-228(2012)。这项研究首次证明了剪接因子失调与肿瘤表型之间的直接联系。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

David, C. J., Chen, M., Assanah, M., Canoll, P. & Manley, J. L. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368 (2010). This study demonstrates the existence of an integrated transcriptional–post-transcriptional axis behind the Warburg effect.Article .

David,C.J.,Chen,M.,Assanah,M.,Canoll,P。&Manley,J.L。由C-Myc控制的HnRNP蛋白在癌症中失调丙酮酸激酶mRNA剪接。《自然》463364-368(2010)。这项研究表明,Warburg效应背后存在一个完整的转录-转录后轴。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Fong, J. Y. et al. Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell 36, 194–209.e9 (2019). This study credentials inhibitors of post-translational modifications of splicing factors as novel anti-cancer therapeutics.Article .

Fong,J.Y.等人。通过抑制蛋白质精氨酸甲基化来治疗靶向RNA剪接催化。癌细胞36194-209.e9(2019)。这项研究证明剪接因子翻译后修饰的抑制剂是新型抗癌疗法。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Muhar, M. et al. SLAM-seq defines direct gene-regulatory functions of the BRD4–MYC axis. Science 360, 800–805 (2018).Article

Muhar,M。等人SLAM-seq定义了BRD4-MYC轴的直接基因调控功能。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sabo, A. et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511, 488–492 (2014).Article

。自然511488-492(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).Article

Lin,C.Y.等人。C-Myc升高的肿瘤细胞中的转录扩增。细胞151,56-67(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Blaustein, M. et al. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat. Struct. Mol. Biol. 12, 1037–1044 (2005). This study demonstrates a direct link between cell signalling pathways and the activity of serine–arginine-rich proteins.Article

Blaustein,M。等人。通过AKT协同调节SR蛋白的核和细胞质活性。自然结构。分子生物学。121037-1044(2005)。这项研究表明,细胞信号通路与富含丝氨酸-精氨酸的蛋白质的活性之间存在直接联系。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zhou, Z. et al. The Akt–SRPK–SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol. Cell 47, 422–433 (2012).Article

。分子细胞47422-433(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Claridge, S. E. & Hopkins, B. D. PI3King the environment for growth: PI3K activation drives transcriptome changes that support oncogenic growth. Cancer Res. 82, 2216–2218 (2022).Article

Claridge,S.E。&Hopkins,B.D。PI3K调节生长环境:PI3K激活驱动支持致癌生长的转录组变化。癌症研究822216-2218(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Song, X. et al. RNA splicing analysis deciphers developmental hierarchies and reveals therapeutic targets in adult glioma. J. Clin. Invest. 134, e173789 (2024).Article

Song,X。等人。RNA剪接分析破译了发育层次并揭示了成人胶质瘤的治疗靶点。J、 临床。投资。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Song, X. et al. SRSF3-regulated RNA alternative splicing promotes glioblastoma tumorigenicity by affecting multiple cellular processes. Cancer Res. 79, 5288–5301 (2019).Article

Song,X。等人。SRSF3调节的RNA选择性剪接通过影响多个细胞过程来促进胶质母细胞瘤的致瘤性。癌症研究795288-5301(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wan, L. et al. Splicing factor SRSF1 promotes pancreatitis and KRASG12D-mediated pancreatic cancer. Cancer Discov. 13, 1678–1695 (2023).Article

Wan,L。等人。剪接因子SRSF1促进胰腺炎和KRASG12D介导的胰腺癌。癌症发现。131678-1695(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Z. et al. Splicing factor BUD31 promotes ovarian cancer progression through sustaining the expression of anti-apoptotic BCL2L12. Nat. Commun. 13, 6246 (2022).Article

Wang,Z。等人。剪接因子BUD31通过维持抗凋亡BCL2L12的表达来促进卵巢癌的进展。国家公社。136246(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Nanjo, S. et al. Deficiency of the splicing factor RBM10 limits EGFR inhibitor response in EGFR-mutant lung cancer. J. Clin. Invest. 132, e145099 (2022).Article

Nanjo,S。等人。剪接因子RBM10的缺乏限制了EGFR突变型肺癌中EGFR抑制剂的反应。J、 临床。投资。132,e145099(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Deng, L. et al. SF3A2 promotes progression and cisplatin resistance in triple-negative breast cancer via alternative splicing of MKRN1. Sci. Adv. 10, eadj4009 (2024).Article

Deng,L。等人。SF3A2通过MKRN1的选择性剪接促进三阴性乳腺癌的进展和顺铂耐药性。科学。Adv.10,eadj4009(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Closa, A. et al. A convergent malignant phenotype in B-cell acute lymphoblastic leukemia involving the splicing factor SRRM1. Nar. Cancer 4, zcac041 (2022).Article

Closa,A。等人。涉及剪接因子SRRM1的B细胞急性淋巴细胞白血病的会聚恶性表型。纳尔。癌症4,zcac041(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Y. et al. Evaluating the impact of sequencing depth on transcriptome profiling in human adipose. PLoS ONE 8, e66883 (2013).Article

Liu,Y。等人。评估测序深度对人类脂肪转录组分析的影响。PLoS ONE 8,e66883(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pardo-Palacios, F. J. et al. Systematic assessment of long-read RNA-seq methods for transcript identification and quantification. Nat. Methods 21, 1349–1363 (2024). This study is a comprehensive benchmarking of existing long-read RNA-seq methods and computational tools.Article

Pardo Palacios,F.J.等人。用于转录本鉴定和定量的长读RNA-seq方法的系统评估。自然方法211349-1363(2024)。这项研究是对现有长读RNA-seq方法和计算工具的全面基准测试。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Garcia-Ruiz, S. et al. IntroVerse: a comprehensive database of introns across human tissues. Nucleic Acids Res. 51, D167–D178 (2023).Article

Garcia-Ruiz,S.等人,《IntroVerse:人体组织内含子的综合数据库》。核酸研究51,D167–D178(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Marquez, Y., Hopfler, M., Ayatollahi, Z., Barta, A. & Kalyna, M. Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity. Genome Res. 25, 995–1007 (2015).Article

Marquez,Y.,Hopfler,M.,Ayatollahi,Z.,Barta,A。&Kalyna,M。揭示蛋白质编码外显子内部的可变剪接定义了exitron及其在蛋白质组可塑性中的作用。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, T. Y. et al. A pan-cancer transcriptome analysis of exitron splicing identifies novel cancer driver genes and neoepitopes. Mol. Cell 81, 2246–2260.e12 (2021).Article

。分子细胞812246-2260.e12(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schulz, L. et al. Direct long-read RNA sequencing identifies a subset of questionable exitrons likely arising from reverse transcription artifacts. Genome Biol. 22, 190 (2021).Article

Schulz,L。等人。直接长读RNA测序鉴定了可能由逆转录伪影引起的可疑exitron的子集。基因组生物学。22190(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).Article

Katz,Y.,Wang,E.T.,Airoldi,E.M。&Burge,C.B。用于鉴定同种型调控的RNA测序实验的分析和设计。自然方法71009-1015(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).Article

Li,Y.I.等人。使用LeafCutter对RNA剪接进行无注释定量。纳特·吉内特。50151-158(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vaquero-Garcia, J. et al. A new view of transcriptome complexity and regulation through the lens of local splicing variations. eLife 5, e11752 (2016).Article

Vaquero-Garcia,J.等人。通过局部剪接变异的角度对转录组复杂性和调控的新观点。eLife 5,e11752(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Trincado, J. L. et al. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 19, 40 (2018).Article

Trincado,J.L.等人,SUPPA2:跨多种条件的快速,准确和不确定性感知差异剪接分析。基因组生物学。19,40(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Alamancos, G. P., Pages, A., Trincado, J. L., Bellora, N. & Eyras, E. Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA 21, 1521–1531 (2015).Article

Alamancos,G.P.,Pages,A.,Trincado,J.L.,Bellora,N。&Eyras,E。利用转录本定量快速计算可变剪接谱。RNA 211521-1531(2015)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).Article

Shen,S。等人。rMATS:从复制的RNA-seq数据中稳健而灵活地检测差异选择性剪接。程序。国家科学院。科学。美国111,E5593–E5601(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gohr, A. et al. Computational analysis of alternative splicing using VAST-TOOLS and the VastDB framework. Methods Mol. Biol. 2537, 97–128 (2022).Article

Gohr,A。等人。使用VAST-TOOLS和VastDB框架对选择性剪接进行计算分析。方法Mol。Biol。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Vaquero-Garcia, J. et al. RNA splicing analysis using heterogeneous and large RNA-seq datasets. Nat. Commun. 14, 1230 (2023).Article

Vaquero-Garcia,J。等人。使用异质和大型RNA-seq数据集进行RNA剪接分析。国家公社。141230(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mehmood, A. et al. Systematic evaluation of differential splicing tools for RNA-seq studies. Brief. Bioinform 21, 2052–2065 (2020).Article

Mehmood,A。等人。用于RNA-seq研究的差异剪接工具的系统评估。简介。Bioinform 212052-2065(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Byrne, A. et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun. 8, 16027 (2017).Article

Byrne,A。等人。Nanopore long read RNAseq揭示了单个B细胞表面受体之间广泛的转录变异。国家公社。816027(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gazave, E., Marques-Bonet, T., Fernando, O., Charlesworth, B. & Navarro, A. Patterns and rates of intron divergence between humans and chimpanzees. Genome Biol. 8, R21 (2007).Article

Gazave,E.,Marques Bonet,T.,Fernando,O.,Charlesworth,B。&Navarro,A。人类和黑猩猩之间内含子差异的模式和速率。基因组生物学。8,R21(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Slaff, B. et al. MOCCASIN: a method for correcting for known and unknown confounders in RNA splicing analysis. Nat. Commun. 12, 3353 (2021).Article

Slaff,B。等人。MOCCASIN:一种校正RNA剪接分析中已知和未知混杂因素的方法。国家公社。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, Q. et al. Long-read sequencing reveals the landscape of aberrant alternative splicing and novel therapeutic target in colorectal cancer. Genome Med. 15, 76 (2023).Article

Sun,Q。等人。长读测序揭示了结直肠癌异常选择性剪接和新治疗靶点的前景。基因组医学15,76(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Oka, M. et al. Aberrant splicing isoforms detected by full-length transcriptome sequencing as transcripts of potential neoantigens in non-small cell lung cancer. Genome Biol. 22, 9 (2021).Article

Oka,M。等人。通过全长转录组测序检测异常剪接同种型,作为非小细胞肺癌中潜在新抗原的转录本。基因组生物学。22,9(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Veiga, D. F. T. et al. A comprehensive long-read isoform analysis platform and sequencing resource for breast cancer. Sci. Adv. 8, eabg6711 (2022).Article

Veiga,D.F.T.等人。乳腺癌的综合长读异构体分析平台和测序资源。科学。Adv.8,eabg6711(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen, H. et al. Long-read RNA sequencing identifies alternative splice variants in hepatocellular carcinoma and tumor-specific isoforms. Hepatology 70, 1011–1025 (2019).Article

Chen,H。等人。长读RNA测序鉴定肝细胞癌和肿瘤特异性同种型中的替代剪接变体。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gao, Y. et al. ESPRESSO: robust discovery and quantification of transcript isoforms from error-prone long-read RNA-seq data. Sci. Adv. 9, eabq5072 (2023).Article

Gao,Y.等人,《浓缩咖啡:从容易出错的长读RNA-seq数据中稳健地发现和定量转录本同工型》。科学。Adv.9,eabq5072(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020). This study contains the first long-read characterization of transcriptomes in chronic lymphocytic leukaemia in relation to SF3B1 mutations.Article .

Tang,A.D.等人。慢性淋巴细胞白血病中SF3B1突变的全长转录本表征揭示了保留内含子的下调。国家公社。111438(2020)。这项研究首次对慢性淋巴细胞白血病中与SF3B1突变相关的转录组进行了长读表征。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, S. W., Jewell, S., Thomas-Tikhonenko, A. & Barash, Y. Contrasting and combining transcriptome complexity captured by short and long RNA sequencing reads. Genome Res. https://doi.org/10.1101/gr.278659.123 (2024).Irimia, M. et al. A highly conserved program of neuronal microexons is misregulated in autistic brains.

Han,S.W.,Jewell,S.,Thomas Tikhonenko,A。&Barash,Y。对比并结合短RNA和长RNA测序读数捕获的转录组复杂性。基因组研究。https://doi.org/10.1101/gr.278659.123(2024年)。Irimia,M。等人。自闭症患者大脑中一个高度保守的神经元微离子程序被错误调节。

Cell 159, 1511–1523 (2014). This study identifies an extensive network of very short alternatively spliced exons regulated in the nervous system by the SRRM4 splicing factor, which also might have a role in central nervous system tumours.Article .

细胞1591511-1523(2014)。这项研究确定了由SRRM4剪接因子在神经系统中调节的非常短的可变剪接外显子的广泛网络,这也可能在中枢神经系统肿瘤中起作用。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Raj, B. et al. A global regulatory mechanism for activating an exon network required for neurogenesis. Mol. Cell 56, 90–103 (2014).Article

Raj,B。等人。激活神经发生所需外显子网络的全球调节机制。分子细胞56,90-103(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, S. et al. A widespread length-dependent splicing dysregulation in cancer. Sci. Adv. 8, eabn9232 (2022).Article

Zhang,S.等人。癌症中广泛存在的长度依赖性剪接失调。科学。Adv.8,eabn9232(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pan, Y. et al. IRIS: discovery of cancer immunotherapy targets arising from pre-mRNA alternative splicing. Proc. Natl Acad. Sci. USA 120, e2221116120 (2023).Article

Pan,Y。等人。IRIS:发现由前mRNA选择性剪接产生的癌症免疫治疗靶标。程序。国家科学院。科学。美国120,e2221116120(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mochizuki, Y. et al. Alternative microexon splicing by RBFOX2 and PTBP1 is associated with metastasis in colorectal cancer. Int. J. Cancer 149, 1787–1800 (2021).Article

Mochizuki,Y。等人。RBFOX2和PTBP1的替代性微离子剪接与结直肠癌的转移有关。《国际癌症杂志》1491787-1800(2021)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Head, S. A. et al. Silencing of SRRM4 suppresses microexon inclusion and promotes tumor growth across cancers. PLoS Biol. 19, e3001138 (2021).Article

Head,S.A。等人。沉默SRRM4抑制微离子包涵体并促进癌症中的肿瘤生长。《公共科学图书馆·生物学》。19,e3001138(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Conn, V. M. et al. SRRM4 expands the repertoire of circular RNAs by regulating microexon inclusion. Cells 9, 2488 (2020).Article

Conn,V.M.等人,SRRM4通过调节微离子包涵体来扩展环状RNA的库。细胞92488(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Parada, G. E. et al. MicroExonator enables systematic discovery and quantification of microexons across mouse embryonic development. Genome Biol. 22, 43 (2021).Article

Parada,G.E.等人的微离子发生器能够在小鼠胚胎发育过程中系统地发现和定量微离子。基因组生物学。22,43(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, Z., Zhu, C., Steinmetz, L. M. & Wei, W. Identification and quantification of small exon-containing isoforms in long-read RNA sequencing data. Nucleic Acids Res. 51, e104 (2023).Article

Liu,Z.,Zhu,C.,Steinmetz,L.M。&Wei,W。在长读RNA测序数据中鉴定和定量含有小外显子的同种型。核酸研究51,e104(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, F. et al. TEQUILA-seq: a versatile and low-cost method for targeted long-read RNA sequencing. Nat. Commun. 14, 4760 (2023).Article

Wang,F。等人。TEQUILA-seq:一种用于靶向长读RNA测序的多功能且低成本的方法。国家公社。144760(2023)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 20, 303–322 (2020).Article

Barbieri,I。&Kouzarides,T。RNA修饰在癌症中的作用。《国家癌症评论》2033-322(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gao, Y. et al. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m6A modification-mediated RNA stability control. Cell Rep. 42, 113163 (2023).Article

Gao,Y.等人,ALKBH5通过m6A修饰介导的RNA稳定性控制调节造血干细胞和祖细胞的能量代谢。细胞代表42113163(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xiao, W. et al. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61, 507–519 (2016).Article

Xiao,W。等人。核m6A读取器YTHDC1调节mRNA剪接。分子细胞61507-519(2016)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pendleton, K. E. et al. The U6 snRNA m6A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell 169, 824–835.e14 (2017).Article

Pendleton,K.E。等人。U6 snRNA m6A甲基转移酶METTL16调节SAM合成酶内含子保留。细胞169824-835.e14(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Barbieri, I. et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131 (2017).Article

Barbieri,I。等人。启动子结合的METTL3通过m6A依赖性翻译控制维持髓样白血病。自然552126-131(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yankova, E. et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593, 597–601 (2021).Article

Yankova,E。等人。METTL3的小分子抑制作为抗髓系白血病的策略。自然593597-601(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martinez, N. M. et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82, 645–659.e9 (2022).Article

。分子细胞82645-659.e9(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Acera Mateos, P. et al. Prediction of m6A and m5C at single-molecule resolution reveals a transcriptome-wide co-occurrence of RNA modifications. Nat. Commun. 15, 3899 (2024).Article

Acera Mateos,P。等人。以单分子分辨率预测m6A和m5C揭示了RNA修饰在转录组范围内的共存。国家公社。153899(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Arzalluz-Luque, A. & Conesa, A. Single-cell RNAseq for the study of isoforms—how is that possible? Genome Biol. 19, 110 (2018).Article

?基因组生物学。19110(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fu, Y. et al. Single cell and spatial alternative splicing analysis with long read sequencing. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2674892/v1 (2023).Buen Abad Najar, C. F., Yosef, N. & Lareau, L. F. Coverage-dependent bias creates the appearance of binary splicing in single cells.

Fu,Y。等人。长读测序的单细胞和空间选择性剪接分析。研究广场预印本https://doi.org/10.21203/rs.3.rs-2674892/v1(2023年)。Buen Abad-Najar,C.F.,Yosef,N。&Lareau,L.F。覆盖依赖性偏倚在单细胞中产生了二元剪接的外观。

eLife 9, e54603 (2020).Article .

eLife 9,e54603(2020)。第条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Olivieri, J. E., Dehghannasiri, R. & Salzman, J. The SpliZ generalizes ‘percent spliced in’ to reveal regulated splicing at single-cell resolution. Nat. Methods 19, 307–310 (2022).Article

Olivieri,J.E.,Dehghannasiri,R。&Salzman,J。SpliZ概括了“剪接百分比”,以揭示单细胞分辨率下受调控的剪接。自然方法19307-310(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ramskold, D. et al. Full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).Article

Ramskold,D。等人。来自单细胞水平的RNA和单个循环肿瘤细胞的全长mRNA-seq。美国国家生物技术公司。30777-782(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).Article

Picelli,S。等人。Smart-seq2用于单细胞中敏感的全长转录组分析。自然方法101096-1098(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).Article

Hagemann-Jensen,M.等人。使用Smart-seq3在等位基因和同工型分辨率下进行单细胞RNA计数。美国国家生物技术公司。38708-714(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Gupta, I. et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat. Biotechnol. 36, 1197–1202 (2018).Article

Gupta,I。等人。单细胞同工型RNA测序表征了数千个小脑细胞中的同工型。美国国家生物技术公司。361197-1202(2018)。文章

CAS

中科院

Google Scholar

谷歌学者

Philpott, M. et al. Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq. Nat. Biotechnol. 39, 1517–1520 (2021).Article

Philpott,M。等人。使用scCOLOR-seq对单细胞转录组进行纳米孔测序。美国国家生物技术公司。391517-1520(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shiau, C. K. et al. High throughput single cell long-read sequencing analyses of same-cell genotypes and phenotypes in human tumors. Nat. Commun. 14, 4124 (2023).Article

Shiau,C.K.等人。人类肿瘤中相同细胞基因型和表型的高通量单细胞长读测序分析。国家公社。144124(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cortes-Lopez, M. et al. Single-cell multi-omics defines the cell-type-specific impact of splicing aberrations in human hematopoietic clonal outgrowths. Cell Stem Cell 30, 1262–1281.e8 (2023).Article

。细胞干细胞301262–1281.e8(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dondi, A. et al. Detection of isoforms and genomic alterations by high-throughput full-length single-cell RNA sequencing in ovarian cancer. Nat. Commun. 14, 7780 (2023).Article

Dondi,A。等人。通过高通量全长单细胞RNA测序检测卵巢癌中的同种型和基因组改变。国家公社。147780(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat. Commun. 12, 463 (2021).Article

Joglekar,A。等人。出生后小鼠大脑的空间分辨大脑区域和细胞类型特异性同工型图谱。国家公社。12463(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hardwick, S. A. et al. Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue. Nat. Biotechnol. 40, 1082–1092 (2022).Article

Hardwick,S.A。等人。单核同工型RNA测序解开冷冻脑组织中条形码外显子的连接。美国国家生物技术公司。401082-1092(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmed cDNA concatenation. Nat. Biotechnol. 42, 582–586 (2024).Article

Al'Khafaji,A.M.等人。使用程序化cDNA连接的高通量RNA同工型测序。美国国家生物技术公司。42582-586(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).Article

Christofk,H.R。等人。丙酮酸激酶的M2剪接亚型对癌症代谢和肿瘤生长很重要。自然452230-233(2008)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Chaffer, C. L. et al. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res. 66, 11271–11278 (2006).Article

Chaffer,C.L.等。间充质向上皮的转化促进膀胱癌转移:成纤维细胞生长因子受体-2的作用。癌症研究6611271-11278(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012).Article

Ellis,J.D.等人。组织特异性选择性剪接重塑蛋白质-蛋白质相互作用网络。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tress, M. L., Abascal, F. & Valencia, A. Alternative splicing may not be the key to proteome complexity. Trends Biochem. Sci. 42, 98–110 (2017).Article

Tress,M.L.,Abascal,F。&Valencia,A。选择性剪接可能不是蛋白质组复杂性的关键。趋势生物化学。科学。42,98-110(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sinitcyn, P. et al. Global detection of human variants and isoforms by deep proteome sequencing. Nat. Biotechnol. 41, 1776–1786 (2023).Article

Sinitcyn,P。等人。通过深度蛋白质组测序对人类变体和同种型进行全面检测。美国国家生物技术公司。411776-1786(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Brown, R. L. et al. CD44 splice isoform switching in human and mouse epithelium is essential for epithelial–mesenchymal transition and breast cancer progression. J. Clin. Invest. 121, 1064–1074 (2011). This study reveals the essentiality of splicing isoform switching in the control of cell states and tumour progression.Article .

。J、 临床。投资。1211064-1074(2011)。这项研究揭示了剪接同工型转换在控制细胞状态和肿瘤进展中的重要性。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, J. et al. An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. eLife 7, e37184 (2018).Article

Li,J。等人。FLNB中的可变剪接开关促进人乳腺癌中的间充质细胞状态。eLife 7,e37184(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang, H. et al. CD44 splice isoform switching determines breast cancer stem cell state. Genes. Dev. 33, 166–179 (2019).Article

Zhang,H。等人。CD44剪接同种型转换决定乳腺癌干细胞状态。基因。第33166-179页(2019年)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hu, X. et al. The RNA-binding protein AKAP8 suppresses tumor metastasis by antagonizing EMT-associated alternative splicing. Nat. Commun. 11, 486 (2020).Article

Hu,X。等人。RNA结合蛋白AKAP8通过拮抗EMT相关的选择性剪接来抑制肿瘤转移。国家公社。11486(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jbara, A. et al. RBFOX2 modulates a metastatic signature of alternative splicing in pancreatic cancer. Nature 617, 147–153 (2023).Article

Jbara,A。等人,RBFOX2调节胰腺癌中选择性剪接的转移特征。自然617147-153(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dewaele, M. et al. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J. Clin. Invest. 126, 68–84 (2016).Article

Dewaele,M。等人。反义寡核苷酸介导的MDM4外显子6跳跃损害肿瘤生长。J、 临床。投资。126,68-84(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ma, W. K. et al. ASO-based PKM splice-switching therapy inhibits hepatocellular carcinoma growth. Cancer Res. 82, 900–915 (2022).Article

Ma,W.K.等。基于ASO的PKM剪接转换疗法抑制肝细胞癌的生长。癌症研究82900-915(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

de la Fuente, L. et al. tappAS: a comprehensive computational framework for the analysis of the functional impact of differential splicing. Genome Biol. 21, 119 (2020).Article

de la Fuente,L.等人,《tappAS:分析差异剪接功能影响的综合计算框架》。基因组生物学。21119(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, K., Yu, D., Hyung, D., Cho, S. Y. & Park, C. ASpediaFI: functional interaction analysis of alternative splicing events. Genomics Proteom. Bioinforma. 20, 466–482 (2022).Article

Lee,K.,Yu,D.,Hyung,D.,Cho,S.Y。&Park,C。ASpediaFI:替代剪接事件的功能相互作用分析。。生物信息学。20466-482(2022)。文章

Google Scholar

谷歌学者

Miller, R. M. et al. Enhanced protein isoform characterization through long-read proteogenomics. Genome Biol. 23, 69 (2022).Article

Miller,R.M.等人通过长读蛋白质基因组学增强了蛋白质同工型的表征。基因组生物学。23,69(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pozo, F. et al. Assessing the functional relevance of splice isoforms. Nar. Genom. Bioinform 3, lqab044 (2021).Article

Pozo,F.等人评估剪接同工型的功能相关性。纳尔。基因组。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Quesnel-Vallieres, M., Jewell, S., Lynch, K. W., Thomas-Tikhonenko, A. & Barash, Y. MAJIQlopedia: an encyclopedia of RNA splicing variations in human tissues and cancer. Nucleic Acids Res. 52, D213–D221 (2024).Article

Quesnel Valliers,M.,Jewell,S.,Lynch,K.W.,Thomas Tikhonenko,A。&Barash,Y。Majiklopedia:人体组织和癌症中RNA剪接变异的百科全书。核酸研究52,D213–D221(2024)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. Detection of proteome diversity resulted from alternative splicing is limited by trypsin cleavage specificity. Mol. Cell Proteom. 17, 422–430 (2018).Article

Wang,X。等人。由选择性剪接产生的蛋白质组多样性的检测受到胰蛋白酶切割特异性的限制。分子细胞蛋白质组学。17422-430(2018)。文章

CAS

中科院

Google Scholar

谷歌学者

Tran, J. C. et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480, 254–258 (2011).Article

Tran,J.C.等人。使用自上而下的蛋白质组学在发现模式下绘制完整的蛋白质同工型。自然480254-258(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Calviello, L., Hirsekorn, A. & Ohler, U. Quantification of translation uncovers the functions of the alternative transcriptome. Nat. Struct. Mol. Biol. 27, 717–725 (2020).Article

Calviello,L.,Hirsekorn,A。&Ohler,U。翻译的定量揭示了替代转录组的功能。自然结构。分子生物学。27717-725(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Weatheritt, R. J., Sterne-Weiler, T. & Blencowe, B. J. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23, 1117–1123 (2016).Article

Weatheritt,R.J.,Sterne Weiler,T。&Blencowe,B.J。核糖体参与选择性剪接的前景。自然结构。分子生物学。231117-1123(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Reixachs-Sole, M., Ruiz-Orera, J., Alba, M. M. & Eyras, E. Ribosome profiling at isoform level reveals evolutionary conserved impacts of differential splicing on the proteome. Nat. Commun. 11, 1768 (2020).Article

Reixachs Sole,M.,Ruiz-Orera,J.,Alba,M。M。&Eyras,E。异构体水平的核糖体分析揭示了差异剪接对蛋白质组的进化保守影响。国家公社。11768(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zheng, S. et al. Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: implications for CD22-directed immunotherapies. Blood Cancer Discov. 3, 103–115 (2022).Article

Zheng,S.等人。通过普遍剪接畸变调节儿童白血病中CD22蛋白的表达:对CD22定向免疫疗法的影响。血癌Discov。3103-115(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Inoue, D. et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574, 432–436 (2019). This study identifies alterations in splicing of BRD9, a component of the BAF chromatin remodelling complex, as key downstream effectors of mutant SF3B1.Article

Inoue,D.等人。癌症中非经典BAF复合物的剪接体破坏。自然574432-436(2019)。这项研究确定了BRD9剪接的改变,BRD9是BAF染色质重塑复合物的一个组成部分,是突变SF3B1的关键下游效应子

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bennett, C. F., Krainer, A. R. & Cleveland, D. W. Antisense oligonucleotide therapies for neurodegenerative diseases. Annu. Rev. Neurosci. 42, 385–406 (2019).Article

Bennett,C.F.,Krainer,A.R。&Cleveland,D.W。用于神经退行性疾病的反义寡核苷酸疗法。年。神经科学牧师。42385-406(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Collotta, D., Bertocchi, I., Chiapello, E. & Collino, M. Antisense oligonucleotides: a novel frontier in pharmacological strategy. Front. Pharmacol. 14, 1304342 (2023).Article

Collotta,D.,Bertocchi,I.,Chiapello,E。&Collino,M。反义寡核苷酸:药理学策略的新前沿。正面。药理学。141304342(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gapinske, M. et al. CRISPR–SKIP: programmable gene splicing with single base editors. Genome Biol. 19, 107 (2018).Article

Gapinske,M。等人。CRISPR–SKIP:使用单碱基编辑器进行可编程基因剪接。基因组生物学。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yuan, J. et al. Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase. Mol. Cell 72, 380–394.e7 (2018).Article

Yuan,J。等人。用CRISPR引导的胞苷脱氨酶对RNA剪接的遗传调节。分子细胞72380–394.e7(2018)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Du, M., Jillette, N., Zhu, J. J., Li, S. & Cheng, A. W. CRISPR artificial splicing factors. Nat. Commun. 11, 2973 (2020).Article

Du,M.,Jillette,N.,Zhu,J.J.,Li,S。&Cheng,A.W。CRISPR人工剪接因子。国家公社。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, J. D., Taipale, M. & Blencowe, B. J. Efficient, specific, and combinatorial control of endogenous exon splicing with dCasRx–RBM25. Mol. Cell 84, 2573–2589.e5 (2024).Article

Li,J.D.,Taipale,M。&Blencowe,B.J。使用dCasRx-RBM25对内源性外显子剪接进行有效,特异和组合控制。分子细胞842573-2589.e5(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Recinos, Y. et al. CRISPR–dCas13d-based deep screening of proximal and distal splicing-regulatory elements. Nat. Commun. 15, 3839 (2024).Article

Recinos,Y。等人。基于CRISPR-dCas13d的近端和远端剪接调控元件的深度筛选。国家公社。153839(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Qiu, Y., Lyu, J., Dunlap, M., Harvey, S. E. & Cheng, C. A combinatorially regulated RNA splicing signature predicts breast cancer EMT states and patient survival. RNA 26, 1257–1267 (2020).Article

Qiu,Y.,Lyu,J.,Dunlap,M.,Harvey,S.E。&Cheng,C。组合调节的RNA剪接特征预测乳腺癌EMT状态和患者存活。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jun, Y. et al. Comprehensive analysis of alternative splicing in gastric cancer identifies epithelial–mesenchymal transition subtypes associated with survival. Cancer Res. 82, 543–555 (2022).Article

Jun,Y.等人对胃癌选择性剪接的综合分析确定了与生存相关的上皮-间质转化亚型。癌症研究82543-555(2022)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ruta, V. et al. An alternative splicing signature defines the basal-like phenotype and predicts worse clinical outcome in pancreatic cancer. Cell Rep. Med. 5, 101411 (2024).Article

Ruta,V。等人。选择性剪接标记定义了基底样表型,并预测胰腺癌的临床预后较差。Cell Rep.Med.5101411(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, Y. et al. Prognostic alternative mRNA splicing signature in non-small cell lung cancer. Cancer Lett. 393, 40–51 (2017).Article

Li,Y。等。非小细胞肺癌的预后替代mRNA剪接特征。癌症Lett。393,40-51(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ouyang, Y. et al. Alternative splicing acts as an independent prognosticator in ovarian carcinoma. Sci. Rep. 11, 10413 (2021).Article

欧阳,Y。等。选择性剪接作为卵巢癌的独立预后因子。科学。代表1110413(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shen, S., Wang, Y., Wang, C., Wu, Y. N. & Xing, Y. SURVIV for survival analysis of mRNA isoform variation. Nat. Commun. 7, 11548 (2016).Article

Shen,S.,Wang,Y.,Wang,C.,Wu,Y.N。&Xing,Y。SURVIV用于mRNA同种型变异的存活分析。国家公社。711548(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Trincado, J. L., Sebestyen, E., Pages, A. & Eyras, E. The prognostic potential of alternative transcript isoforms across human tumors. Genome Med. 8, 85 (2016).Article

Trincado,J.L.,Sebestyen,E.,Pages,A。&Eyras,E。替代转录物同种型在人类肿瘤中的预后潜力。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).Article

Jaiswal,S。等人。与不良结局相关的年龄相关克隆性造血。N、 。J、 医学杂志3712488-2498(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).Article

Genovese,G。等人。从血液DNA序列推断克隆造血和血癌风险。N、 。J、 医学杂志3712477-2487(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020).Article

Lawson,A.R.J.等人,《人类膀胱中体细胞突变和选择的广泛异质性》。科学370,75-82(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Angarola, B. L. & Anczukow, O. Splicing alterations in healthy aging and disease. Wiley Interdiscip. Rev. RNA 12, e1643 (2021).Article

Angarola,B.L。和Anczukow,O。健康衰老和疾病中的剪接改变。Wiley Interdiscip公司。RNA版本12,e1643(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Schmauck-Medina, T. et al. New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary. Aging 14, 6829–6839 (2022).Article

Schmauck-Medina,T.等人,《老龄化的新标志:2022年哥本哈根老龄化会议摘要》。年龄146829-6839(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Harries, L. W. Dysregulated RNA processing and metabolism: a new hallmark of ageing and provocation for cellular senescence. FEBS J. 290, 1221–1234 (2023).Article

Harries,L.W。失调的RNA加工和代谢:衰老和激发细胞衰老的新标志。FEBS J.2901221–1234(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Pabis, K. et al. A concerted increase in readthrough and intron retention drives transposon expression during aging and senescence. eLife 12, RP87811 (2024).Article

Pabis,K。等人。通读和内含子保留的协同增加在衰老和衰老过程中驱动转座子表达。eLife 12,RP87811(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Adusumalli, S., Ngian, Z. K., Lin, W. Q., Benoukraf, T. & Ong, C. T. Increased intron retention is a post-transcriptional signature associated with progressive aging and Alzheimer’s disease. Aging Cell 18, e12928 (2019).Article

Adusumalli,S.,Ngian,Z.K.,Lin,W.Q.,Benoukraf,T。&Ong,C.T。内含子保留增加是与进行性衰老和阿尔茨海默病相关的转录后特征。衰老细胞18,e12928(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Heintz, C. et al. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature 541, 102–106 (2017).Article

Heintz,C。等人。剪接因子1调节秀丽隐杆线虫的饮食限制和TORC1途径寿命。自然541102-106(2017)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, K. et al. Comprehensive map of age-associated splicing changes across human tissues and their contributions to age-associated diseases. Sci. Rep. 8, 10929 (2018).Article

Wang,K.等人。人体组织中与年龄相关的剪接变化及其对年龄相关疾病的贡献的综合图谱。科学。众议员810929(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Dvinge, H. & Bradley, R. K. Widespread intron retention diversifies most cancer transcriptomes. Genome Med. 7, 45 (2015).Article

Dvinge,H。&Bradley,R.K。广泛的内含子保留使大多数癌症转录组多样化。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Curran, S. P. & Ruvkun, G. Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet. 3, e56 (2007).Article

Curran,S.P。&Ruvkun,G。通过对生存力至关重要的进化保守基因进行寿命调节。PLoS Genet。3,e56(2007)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Holly, A. C. et al. Changes in splicing factor expression are associated with advancing age in man. Mech. Ageing Dev. 134, 356–366 (2013).Article

Holly,A.C。等人。剪接因子表达的变化与人类年龄的增长有关。Mech。老龄化发展134356-366(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, B. P. et al. Changes in the expression of splicing factor transcripts and variations in alternative splicing are associated with lifespan in mice and humans. Aging Cell 15, 903–913 (2016).Article

Lee,B.P.等人。剪接因子转录本表达的变化和选择性剪接的变化与小鼠和人类的寿命有关。衰老细胞15903-913(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tabrez, S. S., Sharma, R. D., Jain, V., Siddiqui, A. A. & Mukhopadhyay, A. Differential alternative splicing coupled to nonsense-mediated decay of mRNA ensures dietary restriction-induced longevity. Nat. Commun. 8, 306 (2017).Article

Tabrez,S.S.,Sharma,R.D.,Jain,V.,Siddiqui,A.A。&Mukhopadhyay,A。与无义介导的mRNA衰变相结合的差异选择性剪接确保了饮食限制诱导的寿命。国家公社。8306(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).Article

Tshrenak,A。等人定义癌症依赖图。细胞170564-576.e16(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011). This study is the first report of a splicing-mediated mechanism of resistance to an approved cancer therapy.Article

Poulikakos,P.I。等人,RAF抑制剂抗性是由异常剪接的BRAF(V600E)的二聚化介导的。《自然》480387–390(2011)。这项研究是剪接介导的对已批准的癌症治疗耐药机制的首次报道。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Castiglioni, F. et al. Role of exon-16-deleted HER2 in breast carcinomas. Endocr. Relat. Cancer 13, 221–232 (2006).Article

Castiglioni,F。等人。外显子16缺失的HER2在乳腺癌中的作用。内分泌。相关。癌症13221-232(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Crooke, S. T., Liang, X. H., Baker, B. F. & Crooke, R. M. Antisense technology: a review. J. Biol. Chem. 296, 100416 (2021).Article

Crooke,S.T.,Liang,X.H.,Baker,B.F。和Crooke,R.M。反义技术:综述。J、 生物。化学。296100416(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lyu, J. & Cheng, C. Regulation of alternative splicing during epithelial–mesenchymal transition. Cell Tissues Organs 211, 238–251 (2022).Article

Lyu,J。&Cheng,C。上皮-间质转化过程中选择性剪接的调节。细胞组织器官211238-251(2022)。文章

CAS

中科院

Google Scholar

谷歌学者

Savagner, P., Valles, A. M., Jouanneau, J., Yamada, K. M. & Thiery, J. P. Alternative splicing in fibroblast growth factor receptor 2 is associated with induced epithelial–mesenchymal transition in rat bladder carcinoma cells. Mol. Biol. Cell 5, 851–862 (1994).Article

Savagner,P.,Valles,A.M.,Jouanneau,J.,Yamada,K.M。&Thiery,J.P。成纤维细胞生长因子受体2中的选择性剪接与大鼠膀胱癌细胞中诱导的上皮-间质转化有关。分子生物学。细胞5851-862(1994)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005).Article

Radisky,D.C。等人Rac1b和活性氧介导MMP-3诱导的EMT和基因组不稳定性。自然436123-127(2005)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Melchionna, R. et al. The pattern of hMENA isoforms is regulated by TGF-β1 in pancreatic cancer and may predict patient outcome. Oncoimmunology 5, e1221556 (2016).Article

。肿瘤免疫学5,e1221556(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheng, C., Yaffe, M. B. & Sharp, P. A. A positive feedback loop couples Ras activation and CD44 alternative splicing. Genes. Dev. 20, 1715–1720 (2006).Article

Cheng,C.,Yaffe,M.B。&Sharp,P.A。正反馈环将Ras激活和CD44选择性剪接结合起来。基因。德文201715-1720(2006)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao, P. et al. The CD44s splice isoform is a central mediator for invadopodia activity. J. Cell Sci. 129, 1355–1365 (2016).Article

Zhao,P。等人。CD44s剪接同种型是invadopodia活性的中枢介质。J、 细胞科学。1291355-1365(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, S. & Cheng, C. Akt signaling is sustained by a CD44 splice isoform-mediated positive feedback loop. Cancer Res. 77, 3791–3801 (2017).Article

Liu,S。&Cheng,C。Akt信号传导由CD44剪接同种型介导的正反馈环维持。癌症研究773791-3801(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Braeutigam, C. et al. The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene 33, 1082–1092 (2014).Article

Braeutigam,C。等人。RNA结合蛋白Rbfox2:EMT驱动的选择性剪接的重要调节剂和细胞侵袭的介质。癌基因331082-1092(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Xu, Y. et al. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating alternative splicing. Genes. Dev. 28, 1191–1203 (2014).Article

Xu,Y。等人。hnRNPM的细胞类型限制性活性通过调节选择性剪接促进乳腺癌转移。基因。德文281191-1203(2014)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pillman, K. A. et al. miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein Quaking. EMBO J. 37, e99016 (2018).Article

Pillman,K.A。等人miR-200/375通过抑制RNA结合蛋白的震动来控制上皮可塑性相关的选择性剪接。EMBO J.37,e99016(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B. & Carstens, R. P. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell 33, 591–601 (2009).Article

Warzecha,C.C.,Sato,T.K.,Nabet,B.,Hogenesch,J.B。&Carstens,R.P。ESRP1和ESRP2是FGFR2剪接的上皮细胞类型特异性调节剂。分子细胞33591-601(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Huang, H., Zhang, J., Harvey, S. E., Hu, X. & Cheng, C. RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF. Genes. Dev. 31, 2296–2309 (2017).Article

Huang,H.,Zhang,J.,Harvey,S.E.,Hu,X。&Cheng,C。RNA G-四链体二级结构通过RNA结合蛋白hnRNPF促进选择性剪接。基因。德文312296-2309(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Malard, F. et al. The diversity of splicing modifiers acting on A-1 bulged 5′-splice sites reveals rules for rational drug design. Nucleic Acids Res. 52, 4124–4136 (2024).Article

Malard,F。等人。作用于A-1凸起的5'剪接位点的剪接修饰剂的多样性揭示了合理药物设计的规则。核酸研究524124-4136(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Naryshkin, N. A. et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).Article

Naryshkin,N.A。等人。运动神经元疾病。SMN2剪接修饰剂可改善脊髓性肌萎缩症小鼠的运动功能和寿命。科学345688-693(2014)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ratni, H. et al. Discovery of risdiplam, a selective survival of motor neuron-2 (SMN2) gene splicing modifier for the treatment of spinal muscular atrophy (SMA). J. Med. Chem. 61, 6501–6517 (2018).Article

Ratni,H.等人发现了risdiplam,一种选择性存活的运动神经元-2(SMN2)基因剪接修饰剂,用于治疗脊髓性肌萎缩症(SMA)。J、 医学化学。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Childs-Disney, J. L. et al. Targeting RNA structures with small molecules. Nat. Rev. Drug. Discov. 21, 736–762 (2022).Article

Childs Disney,J.L.等人,用小分子靶向RNA结构。Nat.Rev.Drug公司。迪斯科。21736-762(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Seiler, M. et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat. Med. 24, 497–504 (2018).Article

Seiler,M。等人H3B-8800是一种口服小分子剪接调节剂,可诱导剪接体突变癌症的致死性。《自然医学》24497-504(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hong, D. S. et al. A phase I, open-label, single-arm, dose-escalation study of E7107, a precursor messenger ribonucleic acid (pre-mRNA) splicesome inhibitor administered intravenously on days 1 and 8 every 21 days to patients with solid tumors. Invest. N. Drugs 32, 436–444 (2014).Article .

Hong,D.S.等人对实体瘤患者每21天静脉注射前体信使核糖核酸(pre-mRNA)剪接体抑制剂E7107的I期开放标签单臂剂量递增研究。投资。N、 药物32436-444(2014)。文章。

CAS

中科院

Google Scholar

谷歌学者

Steensma, D. P. et al. Phase I first-in-human dose escalation study of the oral SF3B1 modulator H3B-8800 in myeloid neoplasms. Leukemia 35, 3542–3550 (2021).Article

Steensma,D.P.等人,口服SF3B1调节剂H3B-8800在骨髓肿瘤中的第一阶段人体剂量递增研究。白血病353542-3550(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vanzyl, E. J. et al. The spliceosome inhibitors isoginkgetin and pladienolide B induce ATF3-dependent cell death. PLoS ONE 15, e0224953 (2020).Article

。PLoS ONE 15,e0224953(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Darrigrand, R. et al. Isoginkgetin derivative IP2 enhances the adaptive immune response against tumor antigens. Commun. Biol. 4, 269 (2021).Article

Darrigrand,R。等人。异银杏黄酮衍生物IP2增强针对肿瘤抗原的适应性免疫应答。Commun公司。生物学4269(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoon, S. O., Shin, S., Lee, H. J., Chun, H. K. & Chung, A. S. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression. Mol. Cancer Ther. 5, 2666–2675 (2006).Article

Yoon,S.O.,Shin,S.,Lee,H.J.,Chun,H.K。&Chung,A.S。异银杏素通过调节磷脂酰肌醇3-激酶/Akt依赖性基质金属蛋白酶-9的表达来抑制肿瘤细胞的侵袭。分子癌症治疗。52666-2675(2006)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017). This study reports splicing-mediated anti-cancer effects of sulfonamides and identifies their targets in the splicing machinery.Article

Han,T。等人。抗癌磺酰胺通过募集到DCAF15诱导RBM39降解来靶向剪接。科学356,eaal3755(2017)。这项研究报告了磺胺类药物的剪接介导的抗癌作用,并确定了它们在剪接机制中的靶标。文章

PubMed

PubMed

Google Scholar

谷歌学者

Denichenko, P. et al. Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nat. Commun. 10, 1590 (2019).Article

Denichenko,P。等人。诱饵RNA寡核苷酸对剪接因子活性的特异性抑制。国家公社。101590(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Uzor, S. et al. CDC2-like (CLK) protein kinase inhibition as a novel targeted therapeutic strategy in prostate cancer. Sci. Rep. 11, 7963 (2021).Article

Uzor,S。等人。CDC2样(CLK)蛋白激酶抑制作为前列腺癌的新型靶向治疗策略。科学。代表117963(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, E. et al. Modulation of RNA splicing enhances response to BCL2 inhibition in leukemia. Cancer Cell 41, 164–180.e168 (2023). This study highlights the importance of splicing in modulating the response to cancer therapies.Article

Wang,E。等人。RNA剪接的调节增强了白血病对BCL2抑制的反应。癌细胞41164-180.e168(2023)。这项研究强调了剪接在调节对癌症治疗反应中的重要性。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Tam, B. Y. et al. The CLK inhibitor SM08502 induces anti-tumor activity and reduces Wnt pathway gene expression in gastrointestinal cancer models. Cancer Lett. 473, 186–197 (2020).Article

Tam,B.Y.等人。CLK抑制剂SM08502在胃肠道癌症模型中诱导抗肿瘤活性并降低Wnt途径基因表达。癌症Lett。473186-197(2020)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Bezzi, M. et al. Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes. Dev. 27, 1903–1916 (2013).Article

Bezzi,M。等人。PRMT5对组成型和选择性剪接的调节揭示了Mdm4前mRNA在感知剪接体机制缺陷中的作用。基因。Dev.271903–1916(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Radzisheuskaya, A. et al. PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nat. Struct. Mol. Biol. 26, 999–1012 (2019).Article

Radzisheuskaya,A。等人的PRMT5甲基化组分析揭示了与急性髓性白血病剪接调控的直接联系。自然结构。分子生物学。26999-1012(2019)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jin, P. et al. Mutant U2AF1-induced mis-splicing of mRNA translation genes confers resistance to chemotherapy in acute myeloid leukemia. Cancer Res. 84, 1583–1596 (2024).Article

Jin,P。等人。突变U2AF1诱导的mRNA翻译基因的错误剪接赋予急性骨髓性白血病对化疗的抗性。癌症研究841583-1596(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Lee, S. C. et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat. Med. 22, 672–678 (2016).Article

Lee,S.C.等人。通过编码剪接体蛋白的基因突变,调节剪接催化作用以治疗白血病。《自然医学》22672-678(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bewersdorf, J. P. et al. E7820, an anti-cancer sulfonamide, degrades RBM39 in patients with splicing factor mutant myeloid malignancies: a phase II clinical trial. Leukemia 37, 2512–2516 (2023).Article

Bewersdorf,J.P。等人E7820是一种抗癌磺酰胺,可降解剪接因子突变型髓系恶性肿瘤患者的RBM39:II期临床试验。白血病372512-2516(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, S. C. et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34, 225–241.e8 (2018).Article

Lee,S.C.等人。癌症相关剪接体基因突变的合成致死和会聚生物学效应。癌细胞34225-241.e8(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wheeler, E. C. et al. Splicing modulators impair DNA damage response and induce killing of cohesin-mutant MDS and AML. Sci. Transl. Med. 16, eade2774 (2024).Article

剪接调节剂损害DNA损伤反应并诱导粘着蛋白突变MDS和AML的杀伤。科学。翻译。医学杂志16,eade2774(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

North, K. et al. Synthetic introns enable splicing factor mutation-dependent targeting of cancer cells. Nat. Biotechnol. 40, 1103–1113 (2022).Article

North,K。等人。合成内含子使剪接因子突变依赖性靶向癌细胞成为可能。美国国家生物技术公司。401103-1113(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Asnani, M. et al. Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia 34, 1202–1207 (2020).Article

Asnani,M。等人。CD19内含子2的保留有助于CD19亚克隆移码突变的白血病中的CART-19抗性。白血病341202-1207(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Sotillo, E. et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 5, 1282–1295 (2015). This study is the first demonstration that aberrant splicing of CD19 contributes to acquired resistance to the CD19-directed CAR T cell immunotherapy in paediatric patients with acute leukaemia.Article .

Sotillo,E。等人。获得性突变和CD19选择性剪接的融合使其能够抵抗CART-19免疫疗法。癌症发现。51282-1295(2015)。这项研究首次证明CD19的异常剪接有助于在急性白血病儿科患者中获得对CD19指导的CAR T细胞免疫疗法的抗性。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cortes-Lopez, M. et al. High-throughput mutagenesis identifies mutations and RNA-binding proteins controlling CD19 splicing and CART-19 therapy resistance. Nat. Commun. 13, 5570 (2022).Article

Cortes-Lopez,M。等人。高通量诱变鉴定控制CD19剪接和CART-19治疗抗性的突变和RNA结合蛋白。国家公社。135570(2022)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Fischer, J. et al. CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J. Immunother. 40, 187–195 (2017).Article

Fischer,J。等人。在初始诊断时,B-ALL患者中表达了能够抵抗CART-19免疫疗法的CD19亚型。J、 免疫疗法。40187-195(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ang, Z. et al. Alternative splicing of its 5′-UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies. Blood 142, 1724–1739 (2023).Article

Ang,Z。等人。其5'-UTR的可变剪接限制了CD20 mRNA的翻译,并使其能够抵抗CD20定向的免疫疗法。血液1421724-1739(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lamba, J. K. et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III children’s oncology group trial AAML0531. J. Clin. Oncol. 35, 2674–2682 (2017).Article

Lamba,J.K.等人,CD33剪接多态性决定了吉珠单抗奥佐米星在新生急性髓细胞白血病中的反应:来自随机III期儿童肿瘤组试验AAML0531的报告。J、 临床。Oncol公司。352674-2682(2017)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lu, S. X. et al. Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell 184, 4032–4047.e31 (2021). This study documents the emergence of MHC class I-associated neoantigens in cancer cells following treatment with splicing inhibitors.Article

Lu,S.X.等人。RNA剪接的药理学调节增强了抗肿瘤免疫力。细胞1844032-4047.e31(2021)。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, G. et al. Splicing neoantigen discovery with SNAF reveals shared targets for cancer immunotherapy. Sci. Transl. Med. 16, eade2886 (2024).Article

Li,G。等人。用SNAF剪接新抗原发现揭示了癌症免疫治疗的共同目标。科学。翻译。医学杂志16,eade2886(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.e216 (2018). This study provides evidence for extensive splicing alterations across cancer types even in the absence of splicing factor mutations.Article

Kahles,A.等人,对8705例患者肿瘤选择性剪接的综合分析。癌细胞34211-224.e216(2018)。这项研究为即使在没有剪接因子突变的情况下,跨癌症类型的广泛剪接改变提供了证据。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Merlotti, A. et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci. Immunol. 8, eabm6359 (2023).Article

Merlotti,A。等人。外显子和转座因子之间的非经典剪接连接代表了肺癌患者免疫原性复发新抗原的来源。科学。免疫。8,eabm6359(2023)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Trincado, J. L. et al. ISOTOPE: ISOform-guided prediction of epiTOPEs in cancer. PLoS Comput. Biol. 17, e1009411 (2021).Article

Trincado,J.L.等人,《同位素:癌症表位的同工型指导预测》。PLoS计算机。生物学17,e1009411(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shaw, T. I. et al. Discovery of immunotherapy targets for pediatric solid and brain tumors by exon-level expression. Nat. Commun. 15, 3732 (2024).Article

Shaw,T.I.等人。通过外显子水平表达发现小儿实体瘤和脑肿瘤的免疫治疗靶点。国家公社。153732(2024)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

O’Connor, B. P. et al. Regulation of toll-like receptor signaling by the SF3a mRNA splicing complex. PLoS Genet. 11, e1004932 (2015).Article

O'Connor,B.P.等人。通过SF3a mRNA剪接复合物调节toll样受体信号传导。PLoS Genet。11,e1004932(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240 (2013).Article

Shalek,A.K.等人,《单细胞转录组学》揭示了免疫细胞中表达和剪接的双峰性。《自然》498236-240(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hoss, F. et al. Alternative splicing regulates stochastic NLRP3 activity. Nat. Commun. 10, 3238 (2019).Article

Hoss,F。等人。选择性剪接调节随机NLRP3活性。国家公社。103238(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Martinez, N. M. et al. Alternative splicing networks regulated by signaling in human T cells. RNA 18, 1029–1040 (2012).Article

Martinez,N.M.等人。由人类T细胞中的信号调节的可变剪接网络。RNA 181029-1040(2012)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

McNeill, L. et al. CD45 isoforms in T cell signalling and development. Immunol. Lett. 92, 125–134 (2004).Article

McNeill,L。等人。T细胞信号传导和发育中的CD45亚型。免疫。利特。92125-134(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Martinez, N. M. & Lynch, K. W. Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol. Rev. 253, 216–236 (2013).Article

Martinez,N.M。和Lynch,K.W。控制免疫反应中的选择性剪接:许多监管机构,许多预测,还有很多需要学习。免疫。第253216–236版(2013年)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ner-Gaon, H., Peleg, R., Gazit, R., Reiner-Benaim, A. & Shay, T. Mapping the splicing landscape of the human immune system. Front. Immunol. 14, 1116392 (2023).Article

Ner Gaon,H.,Peleg,R.,Gazit,R.,Reiner Benaim,A。&Shay,T。绘制人类免疫系统的剪接景观。正面。免疫。14116392(2023)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, X., Yan, L., Guo, J. & Jia, R. An anti-PD-1 antisense oligonucleotide promotes the expression of soluble PD-1 by blocking the interaction between SRSF3 and an exonic splicing enhancer of PD-1 exon 3. Int. Immunopharmacol. 126, 111280 (2024).Article

Wang,X.,Yan,L.,Guo,J。&Jia,R。抗PD-1反义寡核苷酸通过阻断SRSF3与PD-1外显子3的外显子剪接增强子之间的相互作用来促进可溶性PD-1的表达。国际免疫药理学。126111280(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wahid, M. et al. Targeting alternative splicing as a new cancer immunotherapy-phosphorylation of serine arginine-rich splicing factor (SRSF1) by SR protein kinase 1 (SRPK1) regulates alternative splicing of PD1 to generate a soluble antagonistic isoform that prevents T cell exhaustion.

Wahid,M.等。靶向选择性剪接作为一种新的癌症免疫疗法SR蛋白激酶1(SRPK1)对富含丝氨酸精氨酸的剪接因子(SRSF1)的磷酸化调节PD1的选择性剪接,以产生可防止T细胞耗竭的可溶性拮抗同工型。

Cancer Immunol. Immunother. 72, 4001–4014 (2023).Article .

癌症免疫。免疫疗法。724001-4014(2023)。文章。

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kennedy, P. T. et al. Soluble CTLA-4 attenuates T cell activation and modulates anti-tumor immunity. Mol. Ther. 32, 457–468 (2024).Article

Kennedy,P.T。等人。可溶性CTLA-4减弱T细胞活化并调节抗肿瘤免疫力。摩尔热。32457-468(2024)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Hajaj, E. et al. Alternative splicing of the inhibitory immune checkpoint receptor SLAMF6 generates a dominant positive form, boosting T-cell effector functions. Cancer Immunol. Res. 9, 637–650 (2021).Article

抑制性免疫检查点受体SLAMF6的选择性剪接产生显性阳性形式,增强T细胞效应功能。癌症免疫。。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ceccarello, E. et al. Splice-switching antisense oligonucleotides as a targeted intrinsic engineering tool for generating armored redirected T cells. Nucleic Acid. Ther. 31, 145–154 (2021).Article

Ceccarello,E。等人。剪接转换反义寡核苷酸作为产生铠装重定向T细胞的靶向内在工程工具。核酸。他们。31145-154(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Revenko, A. et al. Direct targeting of FOXP3 in Tregs with AZD8701, a novel antisense oligonucleotide to relieve immunosuppression in cancer. J. Immunother. Cancer 10, e003892 (2022).Article

Revenko,A。等人。用AZD8701直接靶向Tregs中的FOXP3,AZD8701是一种新型反义寡核苷酸,可缓解癌症的免疫抑制。J、 免疫疗法。癌症10,e003892(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).Article

Wang,Z.,Gerstein,M。&Snyder,M。RNA-seq:转录组学的革命性工具。Genet自然Rev。10,57-63(2009)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Eskens, F. A. et al. Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin. Cancer Res. 19, 6296–6304 (2013).Article

Eskens,F.A.等人。第一类剪接体抑制剂E7107在晚期实体瘤患者中的I期药代动力学和药效学研究。。癌症研究196296-6304(2013)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Feustel, K. & Falchook, G. S. Protein arginine methyltransferase 5 (PRMT5) inhibitors in oncology clinical trials: a review. J. Immunother. Precis. Oncol. 5, 58–67 (2022).Article

Feustel,K。&Falchook,G.S。肿瘤临床试验中的蛋白质精氨酸甲基转移酶5(PRMT5)抑制剂:综述。J、 免疫疗法。精确。Oncol公司。5,58-67(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chatrikhi, R. et al. A synthetic small molecule stalls pre-mRNA splicing by promoting an early-stage U2AF2–RNA complex. Cell Chem. Biol. 28, 1145–1157.e6 (2021).Article

Chatrikhi,R。等人。一种合成的小分子通过促进早期U2AF2-RNA复合物来阻止前mRNA剪接。细胞化学。生物学281145-1157.e6(2021)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, L. et al. Targeting the ERG oncogene with splice-switching oligonucleotides as a novel therapeutic strategy in prostate cancer. Br. J. Cancer 123, 1024–1032 (2020).Article

Li,L。等人。用剪接转换寡核苷酸靶向ERG癌基因作为前列腺癌的新型治疗策略。Br.J.Cancer 1231024-1032(2020)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bruno, I. G., Jin, W. & Cote, G. J. Correction of aberrant FGFR1 alternative RNA splicing through targeting of intronic regulatory elements. Hum. Mol. Genet. 13, 2409–2420 (2004).Article

Bruno,I.G.,Jin,W。&Cote,G.J。通过靶向内含子调控元件校正异常的FGFR1替代RNA剪接。嗯,摩尔·吉内特。132409-2420(2004)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Shieh, J. J., Liu, K. T., Huang, S. W., Chen, Y. J. & Hsieh, T. Y. Modification of alternative splicing of Mcl-1 pre-mRNA using antisense morpholino oligonucleotides induces apoptosis in basal cell carcinoma cells. J. Invest. Dermatol. 129, 2497–2506 (2009).Article

Shieh,J.J.,Liu,K.T.,Huang,S.W.,Chen,Y.J。&Hsieh,T.Y。使用反义吗啉代寡核苷酸修饰Mcl-1前体mRNA的可变剪接诱导基底细胞癌细胞凋亡。J、 投资。皮肤病。1292497-2506(2009)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Ghigna, C. et al. Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: therapeutic potential of bifunctional oligonucleotides and indole derivatives. RNA Biol. 7, 495–503 (2010).Article

。RNA生物学。7495-503(2010)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Zammarchi, F. et al. Antitumorigenic potential of STAT3 alternative splicing modulation. Proc. Natl Acad. Sci. USA 108, 17779–17784 (2011).Article

Zammarchi,F。等人。STAT3选择性剪接调节的抗肿瘤发生潜力。程序。国家科学院。科学。美国10817779–17784(2011)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Izaguirre, D. I. et al. PTBP1-dependent regulation of USP5 alternative RNA splicing plays a role in glioblastoma tumorigenesis. Mol. Carcinog. 51, 895–906 (2012).Article

Izaguirre,D.I.等人。USP5替代RNA剪接的PTBP1依赖性调节在胶质母细胞瘤肿瘤发生中起作用。分子癌症。51895-906(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Nielsen, T. O., Sorensen, S., Dagnaes-Hansen, F., Kjems, J. & Sorensen, B. S. Directing HER4 mRNA expression towards the CYT2 isoform by antisense oligonucleotide decreases growth of breast cancer cells in vitro and in vivo. Br. J. Cancer 108, 2291–2298 (2013).Article

Nielsen,T.O.,Sorensen,S.,Dagnaes-Hansen,F.,Kjems,J。&Sorensen,B.S。通过反义寡核苷酸将HER4 mRNA表达导向CYT2同种型可降低乳腺癌细胞在体外和体内的生长。Br.J.Cancer 1082291–2298(2013)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shiraishi, T., Eysturskarth, J. & Nielsen, P. E. Modulation of mdm2 pre-mRNA splicing by 9-aminoacridine–PNA (peptide nucleic acid) conjugates targeting intron–exon junctions. BMC Cancer 10, 342 (2010).Article

Shiraishi,T.,Eysturskarth,J。和Nielsen,P。E。通过靶向内含子-外显子连接的9-氨基吖啶-PNA(肽核酸)缀合物调节mdm2前mRNA剪接。BMC癌症10342(2010)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kralovicova, J., Moreno, P. M., Cross, N. C., Pego, A. P. & Vorechovsky, I. Antisense oligonucleotides modulating activation of a nonsense-mediated RNA decay switch exon in the ATM gene. Nucleic Acid. Ther. 26, 392–400 (2016).Article

Kralovicova,J.,Moreno,P.M.,Cross,N.C.,Pego,A.P。&Vorechovsky,I。反义寡核苷酸调节ATM基因中无义介导的RNA衰变开关外显子的激活。核酸。他们。26392-400(2016)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Anczukow, O. et al. BRCA2 deep intronic mutation causing activation of a cryptic exon: opening toward a new preventive therapeutic strategy. Clin. Cancer Res. 18, 4903–4909 (2012).Article

Anczukow,O。等人。BRCA2深度内含子突变导致隐性外显子的激活:为新的预防性治疗策略打开了大门。。《癌症研究》184903-4909(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Mogilevsky, M. et al. Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res. 46, 11396–11404 (2018).Article

Mogilevsky,M。等人。通过剪接转换寡核苷酸调节MKNK2选择性剪接作为胶质母细胞瘤治疗的新方法。核酸研究4611396-11404(2018)。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mercatante, D. R., Bortner, C. D., Cidlowski, J. A. & Kole, R. Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. Analysis of apoptosis and cell death. J. Biol. Chem. 276, 16411–16417 (2001). This study provides the initial evidence that modulation of specific alternative splicing events using ASOs can induce cancer cell death.Article .

Mercatante,D.R.,Bortner,C.D.,Cidlowski,J.A。&Kole,R。前列腺癌和乳腺癌细胞中Bcl-x前体mRNA选择性剪接的修饰。细胞凋亡和细胞死亡的分析。J、 生物。化学。27616411-16417(2001)。这项研究提供了初步证据,表明使用ASO调节特定的选择性剪接事件可以诱导癌细胞死亡。文章。

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Liu, J. et al. Overcoming imatinib resistance conferred by the BIM deletion polymorphism in chronic myeloid leukemia with splice-switching antisense oligonucleotides. Oncotarget 8, 77567–77585 (2017).Article

Liu,J.等。用剪接转换反义寡核苷酸克服慢性粒细胞白血病中BIM缺失多态性赋予的伊马替尼耐药性。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lin, J. et al. Induced-decay of glycine decarboxylase transcripts as an anticancer therapeutic strategy for non-small-cell lung carcinoma. Mol. Ther. Nucleic Acids 9, 263–273 (2017).Article

Lin,J.等人诱导甘氨酸脱羧酶转录物衰变作为非小细胞肺癌的抗癌治疗策略。摩尔热。。文章

CAS

中科院

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Karras, J. G., McKay, R. A., Lu, T., Dean, N. M. & Monia, B. P. Antisense inhibition of membrane-bound human interleukin-5 receptor-ɑ chain does not affect soluble receptor expression and induces apoptosis in TF-1 cells. Antisense Nucleic Acid. Drug. Dev. 10, 347–357 (2000).Article

Karras,J.G.,McKay,R.A.,Lu,T.,Dean,N.M。&Monia,B.P。反义抑制膜结合的人白细胞介素-5受体-α链不影响可溶性受体表达并诱导TF-1细胞凋亡。反义核酸。药物。德文10347-357(2000)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Wang, Z. et al. Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons. J. Mol. Cell Biol. 4, 79–87 (2012).Article

Wang,Z.等人。通过互斥外显子对丙酮酸激酶M选择性剪接的外显子中心调控。J、 。4,79-87(2012)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Sun, Y., Yan, L., Guo, J., Shao, J. & Jia, R. Downregulation of SRSF3 by antisense oligonucleotides sensitizes oral squamous cell carcinoma and breast cancer cells to paclitaxel treatment. Cancer Chemother. Pharmacol. 84, 1133–1143 (2019).Article

Sun,Y.,Yan,L.,Guo,J.,Shao,J。&Jia,R。通过反义寡核苷酸下调SRSF3使口腔鳞状细胞癌和乳腺癌细胞对紫杉醇治疗敏感。癌症化疗。药理学。841133-1143(2019)。文章

CAS

中科院

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsThe authors thank the Forbeck Foundation for supporting the Forbeck Forum on Therapeutic Targeting of mRNA Splicing in Cancer (co-chairs: A.T.-T. and O.A.). Relevant research in the authors’ laboratories was supported by National Institutes of Health (NIH) grants (R01HL167071 and R01GM140735 to K.M.N.; K08CA245242 to S.X.L.; U01CA232563 to A.T.-T.; R01CA248317, R01GM138541, R21AG080243 and P30CA034196 to O.A.; R35GM136426 to D.B.; R01CA249204 and P30CA196521 to E.G.; R35GM131876 and R01CA182467 to C.C.), CureSearch For Children’s Cancer Acceleration Initiative Grant (to A.T.T.), Emerson Collective Grant (to A.T.T.), Doris Duke Clinical Scientist Development Award (to S.X.L.), Scott R.

下载参考文献致谢作者感谢福贝克基金会支持福贝克癌症mRNA剪接治疗靶向论坛(联合主席:A.T.-T.和O.A.)。作者实验室的相关研究得到了美国国立卫生研究院(NIH)的资助(R01HL167071和R01GM140735授予K.M.N.;K08CA245242授予S.X.L.;U01CA232563授予A.T.-T.;R01CA248317,R01GM138541,R21AG080243和P30CA034196授予O.A.;R35GM136426授予D.B.;R01CA249204和P30CA196521授予E.G.;R35GM131876和R01CA182467授予C.C.)癌症加速计划拨款(给A.T.T.),艾默生集体拨款(给A.T.T.),多丽丝·杜克临床科学家发展奖(给S.X.L.),斯科特·R。

MacKenzie Foundation Grant (to O.A.), JAX Brooks Scholar award (to B.L.A.), European Innovation Council (to J.V.), European Research Council (to J.V.), Asociación Española Contra el Cáncer (to J.V.) and Australian National Health and Medical Research Council Grant (2018833 to E.E.). C.C. is a CPRIT Scholar in Cancer Research (RR160009).Author informationAuthors and AffiliationsThe Jackson Laboratory for Genomic Medicine, Farmington, CT, USAOlga Anczukow & Brittany L.

麦肯齐基金会拨款(授予O.A.)、JAX布鲁克斯学者奖(授予B.L.A.)、欧洲创新委员会(授予J.V.)、欧洲研究委员会(授予J.V.)、Asociación Española Contra el Cáncer(授予J.V.)和澳大利亚国家卫生与医学研究委员会拨款(授予E.E.2018833)。C、 C.是CPRIT癌症研究学者(RR160009)。作者信息作者和附属机构杰克逊基因组医学实验室,法明顿,康涅狄格州,USAOlga Anczukow&Brittany L。

AngarolaDepartment of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, SwitzerlandFrédéric H.-T. AllainDepartment of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USADouglas L. BlackDepartment of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USAAngela N.

AngarolaDepartment of Biology,Eidgenössiche Technische Hochschule(ETH),Zürich,SwitzerlandFrédéric H.-T.AllainDepartment of Microbiology,Immunology,and Molecular Genetics,University of California Los Angeles,Los Angeles,CA,USADouglas L.Black加州大学圣克鲁斯分校生物分子工程系,加利福尼亚州圣克鲁斯。

BrooksDepartment of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USAChonghui ChengInstitute for Integrative Systems Biology, Spanish National Research Council, Paterna, S.

布鲁克斯分子与人类遗传学系,德克萨斯州休斯顿贝勒医学院Lester&Sue乳房中心,USAChonghui Chengui综合系统生物学研究所,西班牙国家研究委员会,帕特纳,S。

PubMed Google ScholarFrédéric H.-T. AllainView author publicationsYou can also search for this author in

PubMed Google ScholarFrédéric H.-T.AllainView作者出版物您也可以在

PubMed Google ScholarBrittany L. AngarolaView author publicationsYou can also search for this author in

PubMed Google ScholarBrittany L.AngarolaView作者出版物您也可以在

PubMed Google ScholarDouglas L. BlackView author publicationsYou can also search for this author in

PubMed Google ScholarDouglas L.BlackView作者出版物您也可以在

PubMed Google ScholarAngela N. BrooksView author publicationsYou can also search for this author in

PubMed Google ScholarAngela N.BrooksView作者出版物您也可以在

PubMed Google ScholarChonghui ChengView author publicationsYou can also search for this author in

PubMed Google ScholarChonghui ChengView作者出版物您也可以在

PubMed Google ScholarAna ConesaView author publicationsYou can also search for this author in

PubMed Google ScholarAna ConesaView作者出版物您也可以在

PubMed Google ScholarEdie I. CrosseView author publicationsYou can also search for this author in

PubMed Google ScholarEdie I.CrosseView作者出版物您也可以在

PubMed Google ScholarEduardo EyrasView author publicationsYou can also search for this author in

PubMed Google ScholarEduardo EyrasView作者出版物您也可以在

PubMed Google ScholarErnesto GuccioneView author publicationsYou can also search for this author in

PubMed谷歌学术网站GuccioneView作者出版物您也可以在

PubMed Google ScholarSydney X. LuView author publicationsYou can also search for this author in

PubMed Google ScholarKarla M. NeugebauerView author publicationsYou can also search for this author in

PubMed Google ScholarKarla M.NeugebauerView作者出版物您也可以在

PubMed Google ScholarPriyanka SehgalView author publicationsYou can also search for this author in

PubMed Google ScholarPriyanka SehgalView作者出版物您也可以在

PubMed Google ScholarXiao SongView author publicationsYou can also search for this author in

PubMed Google ScholarXiao SongView作者出版物您也可以在

PubMed Google ScholarZuzana TothovaView author publicationsYou can also search for this author in

PubMed Google ScholarZuzana TothovaView作者出版物您也可以在

PubMed Google ScholarJuan ValcárcelView author publicationsYou can also search for this author in

PubMed Google ScholarJuan ValcárcelView作者出版物您也可以在

PubMed Google ScholarKevin M. WeeksView author publicationsYou can also search for this author in

PubMed Google ScholarKevin M.WeeksView作者出版物您也可以在

PubMed Google ScholarGene W. YeoView author publicationsYou can also search for this author in

PubMed Google ScholarGene W.YeoView作者出版物您也可以在

PubMed Google ScholarAndrei Thomas-TikhonenkoView author publicationsYou can also search for this author in

PubMed Google ScholarAndrei Thomas TikhonenkoView作者出版物您也可以在

PubMed Google ScholarContributionsAll authors researched data for the article and contributed substantially to discussion of the content. O.A. and A.T.-T. wrote the article. All authors reviewed and/or edited the manuscript before submission.Corresponding authorsCorrespondence to.

PubMed谷歌学术贡献所有作者都研究了文章的数据,并为内容的讨论做出了重大贡献。O、 。所有作者在提交前都对稿件进行了审查和/或编辑。通讯作者通讯。

Olga Anczukow or Andrei Thomas-Tikhonenko.Ethics declarations

Olga Anczukow或Andrei Thomas Tikhonenko。道德宣言

Competing interests

相互竞争的利益

J.V. is a member of the Advisory Boards of Remix Therapeutics, Stoke Therapeutics and IntronX. K.M.W. is an adviser to and holds equity in Ribometrix, ForagR Medicines and A-Form Solutions. O.A. is a member of the Advisory Boards of Caeruleus Genomics.

J、 V.是Remix Therapeutics,Stoke Therapeutics和IntronX咨询委员会的成员。K、 M.W.是Ribometrix、ForagR Medicines和A-Form Solutions的顾问并持有其股权。O、 A.是Caeruleus Genomics咨询委员会的成员。

Peer review

同行评审

Peer review information

同行评审信息

Nature Reviews Cancer thanks Zefeng Wang, Yeun-Jun Chung and Reini Luco for their contribution to the peer review of this work.

Nature Reviews Cancer感谢王泽峰,钟延军和鲁科为这项工作的同行评审做出的贡献。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Related linksForbeck Forum on Therapeutic Targeting of mRNA Splicing in Cancer: https://www.forbeckforums.org/forums/therapeutic-targeting-of-mrna-splicing-in-cancerSupplementary informationSupplementary informationGlossaryAntisense oligonucleotides.

Additional informationPublisher的注释Springer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。癌症中mRNA剪接治疗靶向的相关链接Forbeck论坛:https://www.forbeckforums.org/forums/therapeutic-targeting-of-mrna-splicing-in-cancerSupplementary信息补充信息词汇反义寡核苷酸。

(ASOs) Short synthetic chemically modified single-stranded RNA molecules that can bind to specific RNA sequences and alter their splicing, structure, and expression.

(ASO)短的合成化学修饰的单链RNA分子,可以与特定的RNA序列结合并改变其剪接,结构和表达。

Branch point site

分支点站点

A nucleotide that performs a nucleophilic attack on the 5′ splice site in the first step of splicing.

在剪接的第一步中对5'剪接位点进行亲核攻击的核苷酸。

Exitrons

出口

Non-constitutive introns located within annotated protein-coding exons.

位于注释的蛋白质编码外显子内的非组成型内含子。

Exon junction complex (EJC)

外显子连接复合体(EJC)

A protein complex assembled on the spliced mRNA at the junction of two exons.

在两个外显子连接处的剪接mRNA上组装的蛋白质复合物。

Falsitrons

假髋关节

Artefactual alternative splicing events characterized by missing exonic fragments, which are only detected by reverse transcription-based protocols.

人工替代剪接事件的特征是缺少外显子片段,只有基于逆转录的协议才能检测到。

Heterogeneous nuclear ribonucleoprotein

异质核核糖核蛋白

(hnRNP) A member of a large family of RNA-binding proteins that regulate multiple RNA processing steps including alternative splicing.

(hnRNP)RNA结合蛋白大家族的成员,可调节多个RNA加工步骤,包括选择性剪接。

Microexons

微电

A class of exons shorter than 30 nucleotides.

一类短于30个核苷酸的外显子。

Nonsense-mediated mRNA decay

无义介导的mRNA衰变

(NMD) A translation-coupled quality control mechanism that removes mRNAs with premature termination codons.

Poison exon

An exon that introduces a premature termination codon when included in the spliced mRNA.

当包含在剪接的mRNA中时,引入过早终止密码子的外显子。

Poly(A) tails

Poly(A)尾巴

Long chains of adenine nucleotides added to the 3′ end of mRNA molecules to increase stability, export and contribute to their translation.

腺嘌呤核苷酸的长链添加到mRNA分子的3'端,以增加稳定性,输出并有助于其翻译。

Polypyrimidine tract

聚嘧啶束

A pyrimidine (C or T)-rich motif upstream of many 3′ splice sites that is bound by U2 small nuclear RNA auxiliary factor 2 (U2AF2) to facilitate 3′ splice site recognition.

Proteoforms

蛋白质形态

Variants of a protein, including variation due to alternative splicing.

蛋白质的变体,包括由于选择性剪接引起的变体。

R-loops

R形回路

Three-stranded nucleic acid structures consisting of an RNA molecule that has invaded duplex DNA.

由侵入双链DNA的RNA分子组成的三链核酸结构。

Serine–arginine-rich proteins

富含丝氨酸-精氨酸的蛋白质

A large family of RNA-binding proteins that contain one or two serine/arginine-rich domains and regulate multiple RNA processing steps including alternative splicing.

一大类RNA结合蛋白,包含一个或两个富含丝氨酸/精氨酸的结构域,并调节多个RNA加工步骤,包括选择性剪接。

Single guide RNA (sgRNA)

单引导RNA(sgRNA)

A short sequence of RNA used for genome editing, which acts as a guide for Cas9 endonucleases or other Cas proteins to cleave double stranded DNA.

用于基因组编辑的短RNA序列,可作为Cas9核酸内切酶或其他Cas蛋白切割双链DNA的指导。

Small nuclear ribonucleoprotein

小核核糖核蛋白

(snRNP) An RNA–protein complex that is part of the spliceosome.

(snRNP)是剪接体的一部分的RNA-蛋白质复合物。

Small nuclear RNA

小核RNA

(snRNA) An RNA component of the spliceosome.

(snRNA)剪接体的RNA成分。

Sm proteins

Sm蛋白

A family of small proteins that bind to RNA and are part of the spliceosome.

与RNA结合的小蛋白质家族,是剪接体的一部分。

Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleAnczukow, O., Allain, F.HT., Angarola, B.L.

权利和许可Pringer Nature或其许可人(例如协会或其他合作伙伴)根据与作者或其他权利持有人的出版协议对本文拥有专有权;本文接受稿件版本的作者自行存档仅受此类出版协议和适用法律的条款管辖。转载和许可本文引用本文Anczukow,O.,Allain,F.HT.,Angarola,B.L。

et al. Steering research on mRNA splicing in cancer towards clinical translation..

等人。将癌症中mRNA剪接的研究转向临床翻译。。

Nat Rev Cancer (2024). https://doi.org/10.1038/s41568-024-00750-2Download citationAccepted: 27 August 2024Published: 09 October 2024DOI: https://doi.org/10.1038/s41568-024-00750-2Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Nat Rev Cancer(2024)。https://doi.org/10.1038/s41568-024-00750-2Download引文接受日期:2024年8月27日发布日期:2024年10月9日OI:https://doi.org/10.1038/s41568-024-00750-2Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供