EN
登录

肽介导的植物线粒体基因和蛋白质递送系统,用于修饰线粒体功能

Peptide-mediated gene and protein delivery systems to plant mitochondria for modifying mitochondrial functions

Nature 等信源发布 2024-10-10 14:09

可切换为仅中文


AbstractPlant mitochondria are essential for energy production and male sterility. The genetic transformation of plant mitochondria has attracted attention due to its potential to improve the mitochondrial function and agricultural productivity of energy crops. However, mitochondrial genome editing has been challenging because the delivery of the macromolecules needed for genome engineering to mitochondria has not been established until now.

摘要植物线粒体对于能量产生和雄性不育至关重要。植物线粒体的遗传转化因其改善线粒体功能和能源作物农业生产力的潜力而备受关注。然而,线粒体基因组编辑一直具有挑战性,因为迄今为止尚未建立将基因组工程所需的大分子递送至线粒体的方法。

In addition, the genome editing efficiency in mitochondria needs to be improved as much as possible due to the lack of a selection marker for mitochondria. To achieve mitochondrial modification, the proteins and/or DNA/RNA needed for genome editing should be delivered to mitochondria precisely and efficiently.

此外,由于缺乏线粒体的选择标记,线粒体的基因组编辑效率需要尽可能提高。为了实现线粒体修饰,基因组编辑所需的蛋白质和/或DNA/RNA应该精确有效地传递到线粒体。

Peptides have been utilized to improve delivery efficiency to plant mitochondria. Thus, we herein review advances in delivery technologies related to plant mitochondrial genome engineering using various functional peptides..

肽已被用于提高植物线粒体的传递效率。因此,本文综述了利用各种功能肽进行植物线粒体基因组工程相关传递技术的进展。。

IntroductionMitochondria play many significant roles in organisms. Among them, cellular metabolism is particularly related to mitochondria [1]. Adenosine triphosphate (ATP), which is the energy source for living organisms, is produced in mitochondria by aerobic respiration. In addition, the genomic DNA of mitochondria is different from that of the nucleus and is referred to as mitochondrial DNA (mtDNA).

引言线粒体在生物体中起着许多重要作用。。三磷酸腺苷(ATP)是生物体的能量来源,通过有氧呼吸在线粒体中产生。此外,线粒体的基因组DNA与细胞核的基因组DNA不同,被称为线粒体DNA(mtDNA)。

In plants, mtDNA includes a cytoplasmic male sterility-causing gene [2, 3]. Controlling male sterility is useful in the production of a hybrid variety [4]. However, it is not easy to modify mtDNA by existing genome modification methods, such as particle bombardment [5,6,7,8] and polyethylene glycol-mediated protoplast transformation [9], because mitochondria are small and highly dynamic.

在植物中,mtDNA包括一个细胞质雄性不育基因[2,3]。控制雄性不育在杂交品种的生产中是有用的。然而,通过现有的基因组修饰方法(如粒子轰击(5、6、7、8)和聚乙二醇介导的原生质体转化(9))修饰mtDNA并不容易,因为线粒体很小且高度动态。

Furthermore, genetic modification efficiency should be improved as much as possible due to the lack of selection markers for mitochondria. Efficient delivery of cargo for genome editing to mitochondria has been challenging for mitochondrial genome editing.Many materials have been studied for the delivery of genes and proteins for genome modification.

此外,由于缺乏线粒体的选择标记,应尽可能提高遗传修饰效率。将用于基因组编辑的货物有效递送至线粒体一直是线粒体基因组编辑的挑战。已经研究了许多材料用于递送用于基因组修饰的基因和蛋白质。

Synthesized polymers and peptides are commonly used materials for macromolecule delivery into cells [10, 11]. Precise polymerization technology has made accurate gene delivery possible [12]. An accurate delivery system is critical to prevent side effects and improve delivery efficiency. Additionally, many barriers against exogenous substances, such as cell membranes and endosomes, need to be overcome to increase transfection efficiency.

合成的聚合物和肽是将大分子递送到细胞中的常用材料[10,11]。精确聚合技术使精确的基因传递成为可能。准确的输送系统对于防止副作用和提高输送效率至关重要。此外,需要克服许多针对外源物质(例如细胞膜和内体)的障碍,以提高转染效率。

Furthermore, plant cells have cell walls around their cell membranes, unlike mammalian cells. Cell walls physically protect cells from exogenous substances. In addition to the general barriers of mammalian ce.

此外,与哺乳动物细胞不同,植物细胞的细胞膜周围有细胞壁。细胞壁在物理上保护细胞免受外源物质的侵害。除了哺乳动物ce的一般障碍之外。

ReferencesSpinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018;20:745–54.PubMed

参考Pinelli JB,Haigis MC。线粒体对细胞代谢的多方面贡献。Nat Cell Biol 2018;20: 745-54.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mackenzie SA, Pring DR, Bassett MJ, Chase CD. Mitochondrial DNA rearrangement associated with fertility restoration and cytoplasmic reversion to fertility in cytoplasmic male sterile Phaseolus vulgaris L. Proc Natl Acad Sci USA 1988;85:2714–7.PubMed

Mackenzie SA,Spring DR,Bassett MJ,Chase CD。线粒体DNA重排与细胞质雄性不育菜豆L.Proc Natl Acad Sci USA 1988中的生育力恢复和细胞质回复有关;85:2714–7.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Howad W, Kempken F. Cell type-specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc Natl Acad Sci Usa 1997;94:11090–5.PubMed

Howad W,Kempken F.细胞质雄性不育高粱中atp6 RNA编辑的细胞类型特异性丢失。美国国家科学院院刊1997;94:11090–5.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Islam MS, Studer B, Moller IM, Asp T. Genetics and biology of cytoplasmic male sterility and its applications in forage and turf grass breeding. Plant Breed. 2014;133:299–312.

。植物品种。2014年;133:299-312。

Google Scholar

谷歌学者

Klein TM, Wolf ED, Wu R, Sanford JC. High-velocity microprojectiles for delivering nucleic-acids into living cells. Nature. 1987;327:70–3.

克莱恩TM,沃尔夫ED,吴R,桑福德JC。用于将核酸输送到活细胞中的高速微丸。自然。1987年;327:70-3。

Google Scholar

谷歌学者

Klein TM, Gradziel T, Fromm ME, Sanford JC. Factors influencing gene delivery into zea-mays cells by high-velocity microprojectiles. Biotechnology. 1988;6:559–63.

克莱恩TM,格拉齐尔T,弗洛姆ME,桑福德JC。影响高速微丸将基因导入玉米细胞的因素。生物技术。1988年;6: 559-63。

Google Scholar

谷歌学者

Wang YC, Klein TM, Fromm M, Cao J, Sanford JC, Wu R. Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol Biol 1988;11:433–9.PubMed

Wang YC,Klein TM,Fromm M,Cao J,Sanford JC,Wu R.外源基因在水稻,小麦和大豆细胞中的瞬时表达。植物分子生物学1988;11: 433-9.PubMed

Google Scholar

谷歌学者

Klein TM, Arentzen R, Lewis PA, Fitzpatrick-McElligott S. Transformation of microbes, plants and animals by particle bombardment. Biotechnology. 1992;10:286–91.PubMed

Klein TM,Arentzen R,Lewis PA,Fitzpatrick McElligott S.通过粒子轰击转化微生物,植物和动物。生物技术。1992年;10: 286-91.PubMed

Google Scholar

谷歌学者

Gokhale DV, Puntambekar US, Deobagkar DN. Protoplast fusion: a tool for intergeneric gene transfer in bacteria. Biotechnol Adv 1993;11:199–217.PubMed

Gokhale DV,Puntambekar US,Deobagkar DN。;11: 199-217.PubMed

Google Scholar

谷歌学者

Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005;4:581–93.PubMed

Pack DW,Hoffman AS,Pun S,Stayton PS.基因传递聚合物的设计和开发。Nat Rev Drug Discov 2005;4: 581-93.PubMed

Google Scholar

谷歌学者

Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 2006;58:467–86.PubMed

Park TG,Jeong JH,Kim SW。聚合物基因传递系统的现状。Adv Drug Deliv Rev 2006;58:467–86.PubMed

Google Scholar

谷歌学者

Xu FJ, Yang WT. Polymer vectors via controlled/living radical polymerization for gene delivery. Prog Polym Sci 2011;36:1099–131.

Xu FJ,Yang WT。通过受控/活性自由基聚合进行基因传递的聚合物载体。Prog Polym Sci 2011;36:1099年至131年。

Google Scholar

谷歌学者

Jeong JH, Kim SW, Park TG. Molecular design of functional polymers for gene therapy. Prog Polym Sci 2007;32:1239–74.

Jeong JH,Kim SW,Park TG。基因治疗功能聚合物的分子设计。Prog Polym Sci 2007;32:1239-74。

Google Scholar

谷歌学者

Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo - polyethylenimine. Proc Natl Acad Sci USA 1995;92:7297–301.PubMed

Boussif O,Lezoualch F,Zanta MA,Mergny MD,Scherman D,Demenix B等。用于基因和寡核苷酸转移到培养和体内细胞中的多功能载体-聚乙烯亚胺。美国国家科学院院刊1995;92:7297–301.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pei D, Buyanova M. Overcoming endosomal entrapment in drug delivery. Bioconjugate Chem. 2019;30:273–83.

Pei D,Buyanova M.克服药物输送中的内体包裹。生物共轭化学。2019年;30:273-83。

Google Scholar

谷歌学者

Pouton CW. Nuclear import of polypeptides, polynucleotides and supramolecular complexes. Adv Drug Deliv Rev 1998;34:51–64.PubMed

普顿CW。多肽,多核苷酸和超分子复合物的核进口。Adv Drug Deliv Rev 1998;34:51–64.PubMed

Google Scholar

谷歌学者

Torchilin VP. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 2006;8:343–75.PubMed

Torchilin副总裁。细胞内递送药物和DNA以及细胞器靶向的最新方法。Annu Rev Biomed Eng 2006;8: 343-75.PubMed

Google Scholar

谷歌学者

Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion. 2013;13:548–58.PubMed

Niazi AK,Mileshina D,Cosset A,Val R,Weber Lotfi F,Dietrich A.将核酸靶向线粒体:进展和前景。线粒体。2013年;13:

Google Scholar

谷歌学者

Miyamoto T, Toyooka K, Chuah JA, Odahara M, Higuchi-Takeuchi M, Goto Y, et al. A synthetic multidomain peptide that drives a macropinocytosis-like mechanism for cytosolic transport of exogenous proteins into plants. JACS Au. 2022;2:223–33.PubMed

Miyamoto T,Toyooka K,Chuah JA,Odahara M,Higuchi-Takeuchi M,Goto Y等。一种合成的多结构域肽,可驱动外源蛋白胞质转运到植物中的巨胞饮样机制。JACS Au。2022年;2: 223-33.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miyamoto T, Tsuchiya K, Numata K. Endosome-escaping micelle complexes dually equipped with cell-penetrating and endosome-disrupting peptides for efficient DNA delivery into intact plants. Nanoscale. 2021;13:5679–92.PubMed

Miyamoto T,Tsuchiya K,Numata K.内体逃逸胶束复合物,双重配备细胞穿透和内体破坏肽,可将DNA有效递送至完整植物中。纳米级。2021年;13: 5679–92.PubMed

Google Scholar

谷歌学者

Raad M, Teunissen EA, Mastrobattista E. Peptide vectors for gene delivery: from single peptides to multifunctional peptide nanocarriers. Nanomedicine. 2014;9:2217–32.PubMed

Raad M,Teunissen EA,Mastrobattista E.用于基因递送的肽载体:从单肽到多功能肽纳米载体。纳米医学。2014年;9:

Google Scholar

谷歌学者

Harada A, Kataoka K. Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science. 1999;283:65–7.PubMed

Harada A,Kataoka K.链长识别:来自带相反电荷的嵌段共聚物的核-壳超分子组装。科学。1999年;283:65–7.PubMed

Google Scholar

谷歌学者

Tsuchiya K, Gimenez-Dejoz J, Numata K. Molecular dynamics simulation of complexation between plasmid DNA and cationic peptides. Polym J 2023;55:1109–14.

Tsuchiya K,Gimenez-Dejoz J,Numata K.质粒DNA与阳离子肽之间络合的分子动力学模拟。Polym J 2023;55:1109-14。

Google Scholar

谷歌学者

Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:aaf8729.PubMed

Nishida K,Arazoe T,Yachie N,Banno S,Kakimoto M,Tabata M等。使用杂交原核和脊椎动物适应性免疫系统进行靶向核苷酸编辑。科学。2016年;353:aaf8729.PubMed

Google Scholar

谷歌学者

Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 2017;35:441–3.PubMed

。Nat Biotechnol 2017;35:441–3.PubMed

Google Scholar

谷歌学者

Kazama T, Okuno M, Watari Y, Yanase S, Koizuka C, Tsuruta Y, et al. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat Plants. 2019;5:722–30.PubMed

Kazama T,Okuno M,Watari Y,Yanase S,Koizuka C,Tsuruta Y等。通过TALEN介导的线粒体基因组编辑治疗细胞质雄性不育。Nat工厂。2019年;5: 722–30.PubMed

Google Scholar

谷歌学者

Chuah JA, Yoshizumi T, Kodama Y, Numata K. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers. Sci Rep. 2015;5:7751.PubMed

Chuah JA,Yoshizumi T,Kodama Y,Numata K.通过基于肽的载体将基因导入拟南芥的线粒体。Sci代表2015;5: 7751.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

MacMillan T, Ziemienowicz A, Jiang F, Eudes F, Kovalchuk I. Gene delivery into the plant mitochondria via organelle-specific peptides. Plant Biotechnol Rep. 2018;13:11–23.

MacMillan T,Ziemienowicz A,Jiang F,Eudes F,Kovalchuk I.通过细胞器特异性肽将基因传递到植物线粒体中。植物生物技术代表2018;13: 11-23岁。

Google Scholar

谷歌学者

Yoshizumi T, Oikawa K, Chuah JA, Kodama Y, Numata K. Selective gene delivery for integrating exogenous DNA into plastid and mitochondrial genomes using peptide-DNA complexes. Biomacromolecules. 2018;19:1582–91.PubMed

Yoshizumi T,Oikawa K,Chuah JA,Kodama Y,Numata K.使用肽-DNA复合物将外源DNA整合到质体和线粒体基因组中的选择性基因递送。生物大分子。2018年;19: 1582-91.PubMed

Google Scholar

谷歌学者

Law SSY, Liou G, Nagai Y, Gimenez-Dejoz J, Tateishi A, Tsuchiya K, et al. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat Commun 2022;13:2417.PubMed

Law SSY,Liou G,Nagai Y,Gimenez-Dejoz J,Tateishi A,Tsuchiya K等。具有功能肽的聚合物包覆碳纳米管杂化物,用于基因传递到植物线粒体中。Nat Commun 2022;13: 2417.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Abe N, Fujita S, Miyamoto T, Tsuchiya K, Numata K. Plant mitochondrial-targeted gene delivery by peptide/DNA micelles quantitatively surface-modified with mitochondrial targeting and membrane-penetrating peptides. Biomacromolecules. 2023;24:3657–65.PubMed

Abe N,Fujita S,Miyamoto T,Tsuchiya K,Numata K.通过用线粒体靶向和膜穿透肽定量表面修饰的肽/DNA胶束进行植物线粒体靶向基因递送。生物大分子。2023年;24:3657–65.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miyamoto T, Tsuchiya K, Toyooka K, Goto Y, Tateishi A, Numata K. Relaxation of the plant cell wall barrier via zwitterionic liquid pretreatment for micelle-complex-mediated DNa delivery to specific plant organelles. Angew Chem Int Ed 2022;61:e202204234.

Miyamoto T,Tsuchiya K,Toyooka K,Goto Y,Tateishi A,Numata K.通过两性离子液体预处理放松植物细胞壁屏障,用于胶束复合物介导的DNa递送至特定植物细胞器。Angew Chem Int Ed 2022;61:e202204234。

Google Scholar

谷歌学者

Numata K, Ohtani M, Yoshizumi T, Demura T, Kodama Y. Local gene silencing in plants via synthetic dsRNA and carrier peptide. Plant Biotechnol J 2014;12:1027–34.PubMed

Numata K,Ohtani M,Yoshizumi T,Demura T,Kodama Y.通过合成dsRNA和载体肽在植物中进行局部基因沉默。植物生物技术J 2014;12: 1027–34.PubMed

Google Scholar

谷歌学者

Fukaya Y, Tsukamoto A, Kuroda K, Ohno H. High performance “ionic liquid” chromatography. Chem Commun 2011;47:1994–6.

Fukaya Y,Tsukamoto A,Kuroda K,Ohno H.高效“离子液体”色谱法。化学公社2011;47:1994年至6月。

Google Scholar

谷歌学者

Li Y, Wang J, Liu X, Zhang S. Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects. Chem Sci 2018;9:4027–43.PubMed

。化学科学2018;9: 4027–43.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tsuchiya K, Yilmaz N, Miyamoto T, Masunaga H, Numata K. Zwitterionic polypeptides: chemoenzymatic synthesis and loosening function for cellulose crystals. Biomacromolecules. 2020;21:1785–94.PubMed

Tsuchiya K,Yilmaz N,Miyamoto T,Masunaga H,Numata K.两性离子多肽:化学酶合成和纤维素晶体的松弛功能。生物大分子。2020年;21:1785-94.PubMed

Google Scholar

谷歌学者

Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res. 2009;344:1879–1900.PubMed

Caffall KH,Mohnen D.植物细胞壁果胶多糖的结构,功能和生物合成。Carbohydr Res.2009;344:1879-1900.PubMed

Google Scholar

谷歌学者

Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci 2000;21:99–103.PubMed

Lindgren M,Hallbrink M,Prochiantz A,Langel U.细胞穿透肽。趋势药理学科学2000;21:99–103.PubMed

Google Scholar

谷歌学者

Copolovici DM, Langel K, Eriste E, Langel U. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8:1972–94.PubMed

。ACS纳米。2014年;8: 1972-94.PubMed

Google Scholar

谷歌学者

Numata K, Horii Y, Oikawa K, Miyagi Y, Demura T, Ohtani M. Library screening of cell-penetrating peptide for BY-2 cells, leaves of Arabidopsis, tobacco, tomato, poplar, and rice callus. Sci Rep. 2018;8:10966.PubMed

Numata K,Horii Y,Oikawa K,Miyagi Y,Demura T,Ohtani M.文库筛选BY-2细胞,拟南芥叶片,烟草,番茄,杨树和水稻愈伤组织的细胞穿透肽。Sci代表2018;8: 10966.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yilmaz N, Kodama Y, Numata K. Lipid membrane interaction of peptide/DNA complexes designed for gene delivery. Langmuir. 2021;37:1882–93.PubMed

Yilmaz N,Kodama Y,Numata K.设计用于基因递送的肽/DNA复合物的脂质膜相互作用。朗缪尔。2021年;37:1882-93.PubMed

Google Scholar

谷歌学者

Tanaka M. Design and synthesis of chiral α,α-disubstituted amino acids and conformational study of their oligopeptides. Chem Pharm Bull. 2007;55:349–58.

。化学制药公牛。2007年;55:349-58。

Google Scholar

谷歌学者

Yamashita H, Misawa T, Oba M, Tanaka M, Naito M, Kurihara M, et al. Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters. Bioorg Med Chem 2017;25:1846–51.PubMed

Yamashita H,Misawa T,Oba M,Tanaka M,Naito M,Kurihara M等。含有阳离子α,α-二取代氨基酸作为螺旋启动子的螺旋稳定细胞穿透肽的开发。Bioorg Med Chem 2017;25:1846-51.PubMed

Google Scholar

谷歌学者

Terada K, Gimenez-Dejoz J, Miyagi Y, Oikawa K, Tsuchiya K, Numata K. Artificial cell-penetrating peptide containing periodic alpha-aminoisobutyric acid with long-term internalization efficiency in human and plant cells. ACS Biomater Sci Eng 2020;6:3287–98.PubMed

Terada K,Gimenez-Dejoz J,Miyagi Y,Oikawa K,Tsuchiya K,Numata K.含有周期性α-氨基异丁酸的人工细胞穿透肽,在人和植物细胞中具有长期内在化效率。ACS Biomater Sci Eng 2020;6: 3287–98.PubMed

Google Scholar

谷歌学者

Gimenez-Dejoz J, Numata K. Molecular dynamics study of the internalization of cell-penetrating peptides containing unnatural amino acids across membranes. Nanoscale Adv. 2022;4:397–407.PubMed

Gimenez-Dejoz J,Numata K.含有非天然氨基酸的细胞穿透肽跨膜内化的分子动力学研究。纳米级Adv.2022;4: 397–407.PubMed

Google Scholar

谷歌学者

Zielonka J, Joseph J, Sikora A, Harby M, Ouari O, Vasquez-Vivar J, et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev 2017;117:10043–120.PubMed

Zielonka J,Joseph J,Sikora A,Harby M,Ouari O,Vasquez Vivar J等。线粒体靶向的三苯基鏻基化合物:合成,作用机制以及治疗和诊断应用。Chem Rev 2017;117:10043–120.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Muratovska A, Lightowlers RN, Taylor RW, Turnbull DM, Smith RAJ, Wilce JA, et al. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res.

Muratovska A,Lightowlers RN,Taylor RW,Turnbull DM,Smith RAJ,Wilce JA等。通过与亲脂性阳离子结合将肽核酸(PNA)寡聚体靶向细胞内的线粒体:对线粒体DNA复制,表达和疾病的影响。核酸研究。

2001;29:1852–63.PubMed .

2001;29:1852-63.PubMed。

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sharma A, Soliman GM, Al-Hajaj N, Sharma R, Maysinger D, Kakkar A. Design and evaluation of multifunctional nanocarriers for selective delivery of coenzyme Q10 to mitochondria. Biomacromolecules. 2012;13:239–52.PubMed

Sharma A,Soliman GM,Al-Hajaj N,Sharma R,Maysinger D,Kakkar A.用于选择性将辅酶Q10递送至线粒体的多功能纳米载体的设计和评估。生物大分子。2012年;13: 239-52.PubMed

Google Scholar

谷歌学者

Wang X, Shao N, Zhang Q, Cheng Y. Mitochondrial targeting dendrimer allows efficient and safe gene delivery. J Mater Chem B. 2014;2:2546–53.PubMed

Wang X,Shao N,Zhang Q,Cheng Y.线粒体靶向树枝状大分子可实现高效安全的基因传递。J Mater Chem B.2014;2: 2546-53.PubMed

Google Scholar

谷歌学者

Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, et al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B. 2018;8:862–80.PubMed

Battogtokh G,Choi YS,Kang DS,Park SJ,Shim MS,Huh KM等。用于细胞毒性,抗氧化和传感目的的线粒体靶向药物缀合物:当前策略和未来前景。Acta Pharm Sin B.2018;8: 862-80.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhao Q, Liu J, Deng H, Ma R, Liao JY, Liang H, et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell. 2020;183:76–93 e22.PubMed

Zhao Q,Liu J,Deng H,Ma R,Liao JY,Liang H等。靶向线粒体定位的circRNA瘢痕通过减少mROS输出来缓解NASH。细胞。2020年;183:76–93 e22.PubMed

Google Scholar

谷歌学者

Lang W, Tan W, Zhou B, Zhuang Y, Zhang B, Jiang L, et al. Mitochondria-targeted gene silencing facilitated by mito-CPDs. Chem Eur J 2023;29:e202204021.PubMed

Lang W,Tan W,Zhou B,Zhuang Y,Zhang B,Jiang L,et al。mito-CPD促进线粒体靶向基因沉默。化学Eur J 2023;29:e202204021.PubMed

Google Scholar

谷歌学者

Xu R, Huang L, Liu J, Zhang Y, Xu Y, Li R, et al. Remodeling of mitochondrial metabolism by a mitochondria-targeted RNAi nanoplatform for effective cancer therapy. Small. 2023;20:e2305923.PubMed

Xu R,Huang L,Liu J,Zhang Y,Xu Y,Li R等。线粒体靶向RNAi纳米平台对线粒体代谢的重塑,用于有效的癌症治疗。小。2023年;20: e2305923.PubMed

Google Scholar

谷歌学者

Trnka J, Elkalaf M, Andel M. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS ONE. 2015;10:e0121837.PubMed

Trnka J,Elkalaf M,Andel M.亲脂性三苯基鏻阳离子抑制线粒体电子传递链并诱导线粒体质子泄漏。PLoS ONE。2015年;10: e0121837.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138:628–44.PubMed

Chacinska A,Koehler CM,Milenkovic D,Lithgow T,Pfanner N.导入线粒体蛋白:机制和机制。细胞。2009年;138:628-44.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Pfanner N. Mitochondrial import: crossing the aqueous intermembrane space. Curr Biol 1998;8:R262–265.PubMed

Pfanner N.线粒体导入:穿过水性膜间隙。Curr Biol 1998;8: R262–265.PubMed

Google Scholar

谷歌学者

Pfanner N, Douglas MG, Endo T, Hoogenraad NJ, Jensen RE, Meijer M, et al. Uniform nomenclature for the protein transport machinery of the mitochondrial membranes. Trends Biochem Sci 1996;21:51–2.PubMed

Pfanner N,Douglas MG,Endo T,Hoogenraad NJ,Jensen RE,Meijer M等。线粒体膜蛋白质转运机制的统一命名法。趋势生物化学科学1996;21:51–2.PubMed

Google Scholar

谷歌学者

Sjöling S, Glaser E. Mitochondrial targeting peptides in plants. Trends Plant Sci. 1998;3:136–40.

Sjöling S,Glaser E.植物中的线粒体靶向肽。趋势植物科学。1998年;3: 136-40岁。

Google Scholar

谷歌学者

Murphy MP, Smith RA. Drug delivery to mitochondria: the key to mitochondrial medicine. Adv Drug Deliv Rev 2000;41:235–50.PubMed

墨菲议员,史密斯RA。药物输送到线粒体:线粒体医学的关键。Adv Drug Deliv Rev 2000;41:235–50.PubMed

Google Scholar

谷歌学者

Arimura SI, Ayabe H, Sugaya H, Okuno M, Tamura Y, Tsuruta Y, et al. Targeted gene disruption of ATP synthases 6-1 and 6-2 in the mitochondrial genome of Arabidopsis thaliana by mitoTALENs. Plant J. 2020;104:1459–71.PubMed

Arimura SI,Ayabe H,Sugaya H,Okuno M,Tamura Y,Tsuruta Y等。线粒体对拟南芥线粒体基因组中ATP合酶6-1和6-2的靶向基因破坏。工厂J.2020;104:1459–71.PubMed

Google Scholar

谷歌学者

Nakazato I, Okuno M, Zhou C, Itoh T, Tsutsumi N, Takenaka M, et al. Targeted base editing in the mitochondrial genome of Arabidopsis thaliana. Proc Natl Acad Sci USA 2022;119:e2121177119.PubMed

Nakazato I,Okuno M,Zhou C,Itoh T,Tsutsumi N,Takenaka M等。拟南芥线粒体基因组中的靶向碱基编辑。美国国家科学院院刊2022;119:e2121177119.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Takatsuka A, Kazama T, Arimura SI, Toriyama K. TALEN-mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. Plant J. 2022;110:994–1004.PubMed

Takatsuka A,Kazama T,Arimura SI,Toriyama K.TALEN介导的线粒体基因orf312的消耗证明它是水稻中的Tadukan型细胞质雄性不育致病基因。工厂J.2022;110:994–1004.PubMed

Google Scholar

谷歌学者

Zhou C, Okuno M, Nakazato I, Tsutsumi N, Arimura SI. Targeted A-to-G base editing in the organellar genomes of Arabidopsis with monomeric programmable deaminases. Plant Physiol. 2024;194:2278–87.PubMed

Zhou C,Okuno M,Nakazato I,Tsutsumi N,Arimura SI。用单体可编程脱氨酶在拟南芥的细胞器基因组中靶向A到G碱基编辑。植物生理学。2024年;

Google Scholar

谷歌学者

Nicolia A, Scotti N, D’Agostino N, Festa G, Sannino L, Aufiero G, et al. Mitochondrial DNA editing in potato through mitoTALEN and mitoTALECD: molecular characterization and stability of editing events. Plant Methods. 2024;20:4.PubMed

Nicolia A,Scotti N,D'Agostino N,Festa G,Sannino L,Aufiero G等。通过mitoTALEN和mitoTALECD在马铃薯中编辑线粒体DNA:分子表征和编辑事件的稳定性。工厂方法。2024年;20: 4.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu F, Su T, Zhang X, Qiu L, Yang X, Koizuka N, et al. Editing of ORF138 restores fertility of Ogura cytoplasmic male sterile broccoli via mitoTALENs. Plant Biotechnol J. 2024;22:1325–34.PubMed

Xu F,Su T,Zhang X,Qiu L,Yang X,Koizuka N等。ORF138的编辑通过线粒体恢复Ogura细胞质雄性不育西兰花的育性。植物生物技术J.2024;22:1325–34.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Terada K, Gimenez-Dejoz J, Kurita T, Oikawa K, Uji H, Tsuchiya K, et al. Synthetic mitochondria-targeting peptides incorporating alpha-aminoisobutyric acid with a stable amphiphilic helix conformation in plant cells. ACS Biomater Sci Eng 2021;7:1475–84.PubMed

Terada K,Gimenez-Dejoz J,Kurita T,Oikawa K,Uji H,Tsuchiya K等。在植物细胞中掺入α-氨基异丁酸并具有稳定的两亲螺旋构象的合成线粒体靶向肽。ACS Biomater Sci Eng 2021;7: 1475-84.PubMed

Google Scholar

谷歌学者

Lamla M, Seliger H, Kaufmann D. Differences in uptake, localization, and processing of PNAs modified by COX VIII pre-sequence peptide and by triphenylphoshonium cation into mitochondria of tumor cells. Drug Deliv. 2010;17:263–71.PubMed

Lamla M,Seliger H,Kaufmann D.由COX VIII前序列肽和三苯基膦阳离子修饰的PNA在肿瘤细胞线粒体中的摄取,定位和加工差异。药物输送。2010年;17: 263-71.PubMed

Google Scholar

谷歌学者

Law SSY, Miyamoto T, Numata K. Organelle-targeted gene delivery in plants by nanomaterials. Chem Commun 2023;59:7166–81.

Law SSY,Miyamoto T,Numata K.细胞器通过纳米材料在植物中靶向基因传递。化学通讯2023;59:7166-81。

Google Scholar

谷歌学者

Logan DC. Mitochondrial fusion, division and positioning in plants. Biochem Soc Trans. 2010;38:789–95.PubMed

洛根特区。线粒体在植物中的融合,分裂和定位。生物化学Soc Trans。2010年;38:789–95.PubMed

Google Scholar

谷歌学者

Oikawa K, Imai T, Thagun C, Toyooka K, Yoshizumi T, Ishikawa K, et al. Mitochondrial movement during its association with chloroplasts in Arabidopsis thaliana. Commun Biol. 2021;4:292.PubMed

Oikawa K,Imai T,Thagun C,Toyooka K,Yoshizumi T,Ishikawa K等。线粒体在与拟南芥叶绿体结合过程中的运动。社区生物。2021年;4: 292.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–61.PubMed

Christian M,Cermak T,Doyle EL,Schmidt C,Zhang F,Hummel A等。用TAL效应核酸酶靶向DNA双链断裂。遗传学。2010年;186:757-61.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Ariotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 2011;29:149–53.PubMed

Zhang F,Cong L,Lodato S,Kosuri S,Church GM,Ariotta P.有效构建用于调节哺乳动物转录的序列特异性TAL效应子。Nat Biotechnol 2011;29:149–53.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011;29:143–8.PubMed

Miller JC,Tan S,Qiao G,Barlow KA,Wang J,Xia DF等。用于有效基因组编辑的TALE核酸酶结构。Nat Biotechnol 2011;29:143–8.PubMed

Google Scholar

谷歌学者

Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39:9283–93.PubMed

墨索里诺C,Morbitzer R,Lutge F,Dannemann N,Lahaye T,Cathomen T.一种新型TALE核酸酶支架能够实现高基因组编辑活性和低毒性。核酸Res.2011;39:9283–93.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med 2013;19:1111–3.PubMed

Bacman SR,Williams SL,Pinto M,Peralta S,Moraes CT。通过线粒体特异性消除患者来源细胞中的突变线粒体基因组。Nat Med 2013;19: 1111-3.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Seibel P, Trappe J, Villani G, Klopstock T, Papa S, Reichmann H. Transfection of mitochondria: strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res. 1995;23:10–7.PubMed

Seibel P,Trappe J,Villani G,Klopstock T,Papa S,Reichmann H.线粒体的转染:线粒体DNA疾病基因治疗的策略。核酸研究1995;23:10–7.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chinnery PF, Taylor RW, Diekert K, Lill R, Turnbull DM, Lightowlers RN. Peptide nucleic acid delivery to human mitochondria. Gene Ther. 1999;6:1919–28.PubMed

Chinnery PF,Taylor RW,Diekert K,Lill R,Turnbull DM,Lightowlers RN。肽核酸递送至人线粒体。基因治疗。1999年;6: 1919-28.PubMed

Google Scholar

谷歌学者

Erbacher P, Bettinger T, Belguise-Valladier P, Zou SM, Coll JL, Behr JP, et al. Transfection and physical properties of various saccharide, poly(ethylene glycol), and antibody-derivatized polyethylenimines (PEI). J Gene Med 1999;1:210–22.PubMed

Erbacher P,Bettinger T,Belguise-Valladier P,Zou SM,Coll JL,Behr JP等。各种糖,聚乙二醇和抗体衍生的聚乙烯亚胺(PEI)的转染和物理性质。J Gene Med 1999;1: 210-22.PubMed

Google Scholar

谷歌学者

Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 2005;7:657–63.PubMed

Akinc A,Thomas M,Klibanov AM,Langer R.探索聚乙烯亚胺介导的DNA转染和质子海绵假说。J Gene Med 2005;7: 657–63.PubMed

Google Scholar

谷歌学者

Sonawane ND, Szoka FC Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003;278:44826–31.PubMed

Sonawane ND,Szoka FC Jr,Verkman AS。内体中的氯化物积累和溶胀增强了多胺-DNA复合物的DNA转移。J Biol Chem 2003;278:44826–31.PubMed

Google Scholar

谷歌学者

Brus C, Petersen H, Aigner A, Czubayko F, Kissel T. Efficiency of polyethylenimines and polyethylenimine-graft-poly (ethylene glycol) block copolymers to protect oligonucleotides against enzymatic degradation. Eur J Pharm Biopharm 2004;57:427–30.PubMed

Brus C,Petersen H,Aigner A,Czubayko F,Kissel T.聚乙烯亚胺和聚乙烯亚胺接枝聚(乙二醇)嵌段共聚物保护寡核苷酸免受酶促降解的效率。Eur J Pharm Biopharm 2004;57:427–30.PubMed

Google Scholar

谷歌学者

Laemmli UK. Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proc Natl Acad Sci USA 1975;72:4288–92.PubMed

Laemmli UK。由聚(环氧乙烷)和聚赖氨酸诱导的DNA缩合物的表征。美国国家科学院院刊1975;72:4288–92.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wolfert M, Dash PR, Nazarova O, Oupicky D, Seymour LW, Smart S, et al. Polyelectrolyte vectors for gene delivery: Influence of cationic polymer on biophysical properties of complexes formed with DNA. Bioconjugate Chem. 1999;10:993–1004.

Wolfert M,Dash PR,Nazarova O,Oupicky D,Seymour LW,Smart S等。用于基因递送的聚电解质载体:阳离子聚合物对与DNA形成的复合物的生物物理性质的影响。生物共轭化学。1999年;10: 993年至1004年。

Google Scholar

谷歌学者

Pack DW, Putnam D, Langer R. Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnol Bioeng 2000;67:217–23.PubMed

。生物技术生物能源2000;67:217–23.PubMed

Google Scholar

谷歌学者

Patchornik A, Berger A, Katchalski E. Poly-L-Histidine. J Am Chem Soc 1957;79:5227–30.

Patchornik A,Berger A,Katchalski E.聚-L-组氨酸。J Am Chem Soc 1957;79:5227-30。

Google Scholar

谷歌学者

Midoux P, Monsigny M. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjugate Chem. 1999;10:406–11.

Midoux P,Monsigny M.通过组氨酸化聚赖氨酸/pDNA复合物进行有效的基因转移。生物共轭化学。1999年;10: 406年至11年。

Google Scholar

谷歌学者

Putnam D. Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci USA 2001;98:1200–5.PubMed

Putnam D.基于聚合物的基因递送,通过侧链末端的独特平衡具有低细胞毒性。美国国家科学院院刊2001;98:1200–5.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chen QR, Zhang L, Stass SA, Mixson AJ. Co-polymer of histidine and lysine markedly enhances transfection efficiency of liposomes. Gene Ther. 2000;7:1698–705.PubMed

陈QR,张L,斯塔斯SA,米克森AJ。组氨酸和赖氨酸的共聚物显着提高脂质体的转染效率。基因疗法。;7: 1698-705.PubMed

Google Scholar

谷歌学者

Lakshmanan M, Kodama Y, Yoshizumi T, Sudesh K, Numata K. Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules. 2013;14:10–6.PubMed

Lakshmanan M,Kodama Y,Yoshizumi T,Sudesh K,Numata K.使用设计的肽载体快速有效地将基因递送到植物细胞中。生物大分子。2013年;14: 10-6.PubMed

Google Scholar

谷歌学者

Zu X, Luo L, Wang Z, Gong J, Yang C, Wang Y, et al. A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice. Nat Commun 2023;14:6789.PubMed

Zu X,Luo L,Wang Z,Gong J,Yang C,Wang Y,et al。线粒体五肽重复蛋白通过调节水稻线粒体超氧化物来增强耐寒性。纳特公社2023;14: 6789.PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wang Y, Ying Y, Chen J, Wang X. Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 2004;167:671–7.

Wang Y,Ying Y,Chen J,Wang X.过表达Mn-SOD的转基因拟南芥增强了耐盐性。植物科学。2004年;167:671-7。

Google Scholar

谷歌学者

Download referencesAcknowledgementsThis work was supported by JST-COI-NEXT (Grant Number JPMJPF2114), MEXT Data Creation and Utilization-type MaTerial R&D project, Grant-in-Aid for Transformative Research Areas (A) (Grant Number 24H02272), Grant-in-Aid for Scientific Research (S) (22H04975), and JST the establishment of university fellowships toward the creation of science technology innovation (Grant Number JPMJFS2123).Author informationAuthors and AffiliationsDepartment of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, JapanNaoya Abe & Keiji NumataBiomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, JapanKeiji NumataAuthorsNaoya AbeView author publicationsYou can also search for this author in.

下载参考文献致谢这项工作得到了JST-COI-NEXT(资助号JPMJPF2114),MEXT数据创建和利用型材料研发项目,转化研究领域资助(A)(资助号24H02272),科学研究资助(S)(22H04975)和JST设立大学研究金以创造科学技术创新(资助号JPMJPS2123)。作者信息作者和附属机构京都大学工程研究生院材料化学系,京都西京区Katsura,615-8510,JapanNaoya Abe&Keiji NumataBiomacromolecules研究团队,理研可持续资源科学中心,2-1 Hirosawa,Wako,Saitama,351-0198,JapanKeiji NumataAuthorsNaoya AbeView作者出版物您也可以在中搜索这位作者。

PubMed Google ScholarKeiji NumataView author publicationsYou can also search for this author in

PubMed Google ScholarKeiji NumataView作者出版物您也可以在

PubMed Google ScholarContributionsN.A. and K.N. wrote the manuscript.Corresponding authorCorrespondence to

PubMed谷歌学术贡献。A、 K.N.写了手稿。对应作者对应

Keiji Numata.Ethics declarations

。道德宣言

Conflict of interest

利益冲突

The authors declare no competing interests.

作者声明没有利益冲突。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissions

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。权限和权限

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可证中,并且您的预期用途未被法律法规允许或超出允许的用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleAbe, N., Numata, K. Peptide-mediated gene and protein delivery systems to plant mitochondria for modifying mitochondrial functions.

转载和许可本文引用本文Abe,N.,Numata,K。肽介导的基因和蛋白质递送系统来植物线粒体以修饰线粒体功能。

Polym J (2024). https://doi.org/10.1038/s41428-024-00973-yDownload citationReceived: 16 August 2024Revised: 11 September 2024Accepted: 12 September 2024Published: 10 October 2024DOI: https://doi.org/10.1038/s41428-024-00973-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

Polym J(2024)。https://doi.org/10.1038/s41428-024-00973-yDownload引文收到日期:2024年8月16日修订日期:2024年9月11日接受日期:2024年9月12日发布日期:2024年10月10日OI:https://doi.org/10.1038/s41428-024-00973-yShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供