EN
登录

猴面包树染色体水平基因组揭示其进化轨迹和环境适应

Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation

Nature 等信源发布 2024-10-12 22:08

可切换为仅中文


AbstractBaobab (Adansonia digitata) is a long-lived tree endemic to Africa with economic, ecological, and cultural importance, yet its genomic features are underexplored. Here, we report a chromosome-level reference genome anchored to 42 chromosomes for A. digitata, alongside draft assemblies for a sibling tree, two trees from distinct locations in Africa, and A.

。在这里,我们报告了一个染色体水平的参考基因组,该基因组锚定在a.digitata的42条染色体上,以及一棵同胞树,两棵来自非洲不同地点的树和a的草图组件。

za from Madagascar. The baobab genome is uniquely rich in DNA transposons, which make up 33%, while LTR retrotransposons account for 10%. A. digitata experienced whole genome multiplication (WGM) around 30 million years ago (MYA), followed by a second WGM event 3–11 MYA, likely linked to autotetraploidy.

来自马达加斯加的za。猴面包树基因组独特地富含DNA转座子,占33%,而LTR反转录转座子占10%。A、 大约3000万年前(MYA),digitata经历了全基因组增殖(WGM),随后发生了第二次WGM事件3-11 MYA,可能与同源四倍体有关。

Resequencing of 25 trees identify three subpopulations, with gene flow across West Africa distinct from East Africa. Gene enrichment and fixation index (Fst) analyses show baobab retained multiple circadian, flowering, and light-responsive genes, which likely support longevity through the UV RESISTANCE LOCUS 8 (UVR8) pathway.

对25棵树的重新测序确定了三个亚群,西非的基因流不同于东非。基因富集和固定指数(Fst)分析表明,猴面包树保留了多个昼夜节律,开花和光响应基因,这些基因可能通过紫外线抗性基因座8(UVR8)途径支持寿命。

In sum, we provide genomic resources and insights for baobab breeding and conservation..

总之,我们为猴面包树的育种和保护提供了基因组资源和见解。。

IntroductionThe African baobab (Adansonia digitata) is a deciduous tree belonging to the Malvaceae family, specifically within the Bombacoideae subfamily. Hereafter, it will be simply referred to as “baobab” with other species like the Australian or Malagasy baobab mentioned as needed in the text. One of the earliest references to baobab was made by Ibn Batuta in the 14th century, who described it as a food and a large, long-living tree in Africa1,2.

简介非洲猴面包树(Adansonia digitata)是属于锦葵科的落叶树,特别是在Bombacoideae亚科中。此后,它将被简单地称为“猴面包树”,文中根据需要提到其他物种,如澳大利亚或马达加斯加猴面包树。14世纪,伊本·巴图塔(IbnBatuta)最早提到了猴面包树,他将其描述为非洲的一种食物和一种大型长寿树1,2。

Colloquially, the baobab is referred to as the ‘upside down tree’ since when it loses its leaves, the branches look like roots; in addition, due to the Hollywood blockbuster “The Lion King”, baobab is also referred to as the “Tree of Life”.Baobab offers various edible parts, i.e., seeds, leaves, roots, flowers, and powdery fruit pulp.

通俗地说,猴面包树被称为“倒立树”,因为当它失去叶子时,树枝看起来像根;此外,由于好莱坞大片《狮子王》,猴面包树也被称为“生命之树”。猴面包提供各种可食用部分,即种子,叶子,根,花和粉状果肉。

The fruit is particularly rich in vitamin C, antioxidants, anti-inflammatory compounds, minerals, and fiber. Beyond its dietary benefits, the bark is used in crafting robes and mats, adding to the economic importance of the baobab tree. Furthermore, the seeds yield oil used in cosmetics3. Baobab seeds contain phytic acids, just like legume seeds; however, proper processing can reduce these acids4.

这种水果特别富含维生素C、抗氧化剂、抗炎化合物、矿物质和纤维。除了对饮食有益外,树皮还用于制作长袍和垫子,增加了猴面包树的经济重要性。此外,种子产生用于化妆品的油3。猴面包树种子含有植酸,就像豆类种子一样;然而,正确的处理可以减少这些酸4。

The recent approval of baobab as a food ingredient by the European Commission and the United States Food and Drug Administration (FDA) has significantly increased demand for baobab products outside of Africa. The estimated value of baobab products was US$8.2 billion in 2022 and is anticipated to reach US$12.1 billion by 20305.

欧洲委员会和美国食品和药物管理局(FDA)最近批准将猴面包树作为食品成分,这大大增加了非洲以外地区对猴面包树产品的需求。2022年,猴面包树产品的估计价值为82亿美元,预计到20305年将达到121亿美元。

Thus, there is economic interest and social need for genomic resources to study, preserve, and increase baobab yields6.Baobabs are among the oldest and largest non-clonal organisms, living over 2400 years with canopies exceeding 500 m3 and trunks about 35 meters wide7. Unlike m.

因此,研究,保存和增加猴面包树产量的基因组资源具有经济利益和社会需求6。猴面包树是最古老和最大的非克隆生物之一,生活了2400多年,树冠超过500立方米,树干约35米宽7。与m不同。

Data availability

数据可用性

The genome assemblies and annotations for Ad77271a, Ad77271b, AdOHT, AdKB, and Aza135 are available through the Michael Lab genome portal [https://resources.michael.salk.edu/baobab/index.html], and are also uploaded to CoGe under ID 67790 – 67801. The raw sequencing reads can be accessed via BioProject 1022505.

Ad77271a、Ad77271b、AdOHT、AdKB和Aza135的基因组组装和注释可通过迈克尔实验室基因组门户网站获得[https://resources.michael.salk.edu/baobab/index.html],并以ID 67790–67801上传到CoGe。。

Source data are provided with this paper and via Figshare [https://doi.org/10.6084/m9.figshare.26039878]115..

本文通过Figshare提供了源数据[https://doi.org/10.6084/m9.figshare.26039878]115。。

ReferencesGibb, H. A. R. & Beckingham, C. F. The Travels of Ibn Battuta, AD 1325–1354 (Routledge, 2017).Baum, D. A. A systematic revision of Adansonia (Bombacaceae). Ann. Mo. Bot. Gard. 82, 440–470 (1995).Article

参考文献Gibb,H.A.R.&Beckingham,C.F.《伊本·巴图塔游记》,公元1325-1354年(Routledge,2017)。Baum,D.A。Adansonia(Bombacaceae)的系统修订。安·莫·博特·加德。82440-470(1995)。文章

Google Scholar

谷歌学者

Asogwa, I. S., Ibrahim, A. N. & Agbaka, J. I. African baobab: its role in enhancing nutrition, health, and the environment. Trees For. People 3, 100043 (2021).Article

Asogwa,I.S.,Ibrahim,A.N。和Agbaka,J.I。非洲猴面包树:它在增强营养、健康和环境方面的作用。树木。人民3100043(2021)。文章

Google Scholar

谷歌学者

Silva, V. M., Putti, F. F., White, P. J. & Reis, A. R. D. Phytic acid accumulation in plants: biosynthesis pathway regulation and role in human diet. Plant Physiol. Biochem. 164, 132–146 (2021).Article

Silva,V.M.,Putti,F.F.,White,P.J。&Reis,A.R.D。植物中植酸的积累:生物合成途径的调节和在人类饮食中的作用。植物生理学。生物化学。164132-146(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Research and Markets. Baobab powder - global strategic business report. https://www.researchandmarkets.com/reports/5029822/baobab-powder-global-strategic-business-report (2024).Offiah, V. O. & Falade, K. O. Potentials of baobab in food systems. Appl. Food Res. 3, 100299 (2023).Article .

研究与市场。猴面包粉-全球战略商业报告。https://www.researchandmarkets.com/reports/5029822/baobab-powder-global-strategic-business-report(2024年)。Offiah,V.O。和Falade,K.O。猴面包树在食品系统中的潜力。应用。食品研究3100299(2023)。文章。

Google Scholar

谷歌学者

Patrut, A. et al. The demise of the largest and oldest African baobabs. Nat. Plants 4, 423–426 (2018).Article

Patrut,A.等人,《最大最古老的非洲猴面包树的消亡》。《自然植物》4423-426(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gebauer, J. et al. Africa’s wooden elephant: the baobab tree (Adansonia digitata L.) in Sudan and Kenya: a review. Genet. Resour. Crop Evol. 63, 377–399 (2016).Article

Gebauer,J.等人,《非洲的木象:苏丹和肯尼亚的猴面包树:综述》。基因。资源。作物进化。63377-399(2016)。文章

MathSciNet

MathSciNet

Google Scholar

谷歌学者

Venter, S. M. & Witkowski, E. T. F. Where are the young baobabs? Factors affecting regeneration of Adansonia digitata L. in a communally managed region of southern Africa. J. Arid Environ. 92, 1–13 (2013).Article

Venter,S.M。和Witkowski,E.T.F。年轻的猴面包树在哪里?影响南部非洲社区管理地区Adansonia digitata L.再生的因素。J、 干旱环境。92,1-13(2013)。文章

ADS

广告

Google Scholar

谷歌学者

Venter, S. M. et al. Baobabs (Adansonia digitata L.) are self-incompatible and ‘male’ trees can produce fruit if hand-pollinated. S. Afr. J. Bot. 109, 263–268 (2017).Article

Venter,S.M.等人,猴面包树(Adansonia digitata L.)是自交不亲和的,如果人工授粉,“雄性”树可以结果实。S、 Afr。J、 Bot.109263–268(2017)。文章

Google Scholar

谷歌学者

Karimi, N. et al. Evidence for hawkmoth pollination in the chiropterophilous African baobab (Adansonia digitata). Biotropica 54, 113–124 (2022).Article

Karimi,N.等人。翼手目非洲猴面包树(Adansonia digitata)中鹰蛾授粉的证据。生物热带54113-124(2022)。文章

Google Scholar

谷歌学者

Start, A. N. Pollination of the baobab (Adansonia digitata L.) by the fruit bat Rousettus aegyptiacus E. Geoffroy. Afr. J. Ecol. 10, 71–72 (1972).Taylor, P. J., Vise, C., Krishnamoorthy, M. A., Kingston, T. & Venter, S. Citizen science confirms the rarity of fruit bat pollination of baobab (Adansonia digitata) flowers in Southern Africa.

首先,A.N.用蝙蝠埃及红蜘蛛(Rousettus aegyptiacus E.Geoffroy)为猴面包树(Adansonia digitata L.)授粉。Afr。J、 Ecol公司。10,71-72(1972)。Taylor,P.J.,Vise,C.,Krishnamoorthy,M.A.,Kingston,T。&Venter,S。《公民科学》证实了猴面包树(Adansonia digitata)花的果蝠授粉在南部非洲的罕见性。

Diversity 12, 106 (2020).Article .

多样性12106(2020)。文章。

Google Scholar

谷歌学者

Coe, M. J. & Isaac, F. M. Pollination of the baobab (Adansonia digitata L.) by the lesser bush baby (Galago crassicaudatus E. Geoffroy). East Afr. Wildl. J. 3, 123–124 (1965).Article

Coe,M.J.和Isaac,F.M.通过小灌木婴儿(Galago crassicaudatus E.Geoffroy)为猴面包树(Adansonia digitata L.)授粉。东部Afr。怀尔德。J、 3123-124(1965)。文章

Google Scholar

谷歌学者

Cron, G. V. et al. One African baobab species or two? Synonymy of Adansonia kilima and A. digitata. Taxon 65, 1037–1049 (2016).Article

Cron,G.V.等人,一两种非洲猴面包树?Adansonia kilima和A.digitata的同义词。分类群651037-1049(2016)。文章

Google Scholar

谷歌学者

Patrut, A. et al. Radiocarbon dating of two old African baobabs from India. PLoS ONE 15, e0227352 (2020).Article

Patrut,A。等人。来自印度的两种古老非洲猴面包树的放射性碳年代测定。PLoS ONE 15,e0227352(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Swanepoel, C. M. Notes and records baobab phenology and growth in the Zambezi Valley, Zimbabwe. Afr. J. Ecol. 31, 84–86 (1993).Article

Swanepoel,C.M。注意并记录了津巴布韦赞比西河谷猴面包树的物候和生长。Afr。J、 Ecol公司。31,84-86(1993)。文章

Google Scholar

谷歌学者

Kitony, J. K. Nested association mapping population in crops: current status and future prospects. J. Crop Sci. Biotechnol. 26, 1–12 (2022).Article

Kitony,J.K。嵌套关联映射作物种群:现状和未来前景。J、 作物科学。生物技术。26,1-12(2022)。文章

Google Scholar

谷歌学者

Levin, D. A. The Role of Chromosomal Change in Plant Evolution (Oxford Univ. Press, Oxford, 2002).Wickens, G. E. The Baobabs: Pachycauls of Africa, Madagascar and Australia (Springer Science & Business Media, 2008).Chan, E. K. F. et al. Human origins in a southern African palaeo-wetland and first migrations.

Levin,D.A。染色体变化在植物进化中的作用(牛津大学出版社,牛津,2002)。Wickens,G.E.《猴面包树:非洲、马达加斯加和澳大利亚的Pachycauls》(Springer Science&Business Media,2008)。Chan,E.K.F.等人。人类起源于南部非洲古湿地和首次迁徙。

Nature 575, 185–189 (2019).Article .

自然575185-189(2019)。文章。

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Sanchez, A. C., Osborne, P. E. & Haq, N. Climate change and the African baobab (Adansonia digitata L.): the need for better conservation strategies. Afr. J. Ecol. 49, 234–245 (2011).Article

Sanchez,A.C.,Osborne,P.E。&Haq,N。气候变化和非洲猴面包树(Adansonia digitata L.):需要更好的保护策略。Afr。J、 Ecol公司。49234-245(2011)。文章

Google Scholar

谷歌学者

Woods, S., O’Neill, K. & Pirro, S. The complete genome sequence of (Malvaceae, Malvales), the African baobab. Biodivers. Genomes https://doi.org/10.56179/001c.72789 (2023).Wan, J.-N. et al. The rise of baobab trees in Madagascar. Nature 629, 1091–1099 (2024).Article

Woods,S.,O'Neill,K。&Pirro,S。非洲猴面包树(Malvaceae,Malvales)的完整基因组序列。生物潜水员。基因组https://doi.org/10.56179/001c.72789(2023年)。Wan,J.-N.等人,《猴面包树在马达加斯加的兴起》。。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Islam-Faridi, N., Sakhanokho, H. F. & Dana Nelson, C. New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - ‘The Tree of Life’. Sci. Rep. 10, 13174 (2020).Article

Islam Faridi,N.,Sakhanko,H。F。和Dana Nelson,C。非洲猴面包树(Adansonia digitata L.)的新染色体数目和细胞分子表征-“生命树”。科学。代表1013174(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Costa, L., Oliveira, Á., Carvalho-Sobrinho, J. & Souza, G. Comparative cytomolecular analyses reveal karyotype variability related to biogeographic and species richness patterns in Bombacoideae (Malvaceae). Plant Syst. Evol. 303, 1131–1144 (2017).Article

科斯塔,L.,奥利维拉,Á。,Carvalho Sobrinho,J。&Souza,G。比较细胞分子分析揭示了与Bombacoideae(锦葵科)生物地理和物种丰富度模式相关的核型变异性。工厂系统。进化。3031131-1144(2017)。文章

Google Scholar

谷歌学者

Baum, D. A. & Oginuma, K. A review of chromosome numbers in Bombacaceae with new counts for Adansonia. Taxon 43, 1 (1994).Article

Baum,D.A。和Oginuma,K。对Bombacaceae染色体数量的回顾,以及Adansonia的新计数。分类群43,1(1994)。文章

Google Scholar

谷歌学者

Pettigrew FRS, J. D. et al. Morphology, ploidy and molecular phylogenetics reveal a new diploid species from Africa in the baobab genus Adansonia (Malvaceae: Bombacoideae). Taxon 61, 1240–1250 (2012).Bennett, M. D. & Leitch, I. J. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow.

Pettigrew FRS,J.D.等人的形态学,倍性和分子系统发育揭示了来自非洲的猴面包树属Adansonia(锦葵科:Bombacoideae)的一个新的二倍体物种。分类单元611240-1250(2012)。Bennett,M.D。和Leitch,I.J。被子植物中的核DNA量:目标,趋势和未来。

Ann. Bot. 107, 467–590 (2011).Article .

《安·博特》107467-590(2011)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Henniges, M. C. et al. The plant DNA C-values database: a one-stop shop for plant genome size data. Methods Mol. Biol. 2703, 111–122 (2023).Article

植物DNA C值数据库:植物基因组大小数据的一站式商店。方法分子生物学。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Leong Pock Tsy, J.-M. et al. Nuclear microsatellite variation in Malagasy baobabs (Adansonia, Bombacoideae, Malvaceae) reveals past hybridization and introgression. Ann. Bot. 112, 1759–1773 (2013).Article

Leong Pock Tsy,J.-M.等人。马达加斯加猴面包树(Adansonia,Bombacoideae,Malvaceae)的核微卫星变异揭示了过去的杂交和基因渗入。安·博特1121759-1773(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Sun, H. et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat. Genet. 54, 342–348 (2022).Article

Sun,H.等人。染色体规模和单倍型解析了四倍体马铃薯品种的基因组组装。纳特·吉内特。54342-348(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aklilu, B. B. et al. Functional diversification of replication protein A paralogs and telomere length maintenance in Arabidopsis. Genetics 215, 989–1002 (2020).Article

Aklilu,B.B.等人。拟南芥中复制蛋白A旁系同源物的功能多样化和端粒长度维持。遗传学215989-1002(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Aklilu, B. B., Soderquist, R. S. & Culligan, K. M. Genetic analysis of the replication protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication. Nucleic Acids Res. 42, 3104–3118 (2014).Article

Aklilu,B.B.,Soderquist,R.S。&Culligan,K.M。拟南芥中复制蛋白A大亚基家族的遗传分析揭示了DNA修复,减数分裂和DNA复制中独特且重叠的作用。核酸研究423104-3118(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ishibashi, T. et al. Two types of replication protein A in seed plants. FEBS J. 272, 3270–3281 (2005).Article

Ishibashi,T。等人。种子植物中的两种复制蛋白A。FEBS J.2723270–3281(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Takashi, Y., Kobayashi, Y., Tanaka, K. & Tamura, K. Arabidopsis replication protein A 70a is required for DNA damage response and telomere length homeostasis. Plant Cell Physiol. 50, 1965–1976 (2009).Article

。植物细胞生理学。501965-1976(2009)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Colt, K. et al. Telomere length in plants estimated with long read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.03.27.586973 (2024).Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C. & Blasco, M. A. Telomere shortening rate predicts species life span. Proc. Natl Acad.

Colt,K。等人。通过长读测序估计植物的端粒长度。bioRxiv预印本https://doi.org/10.1101/2024.03.27.586973(2024年)。Whittemore,K.,Vera,E.,Martínez-Nevado,E.,Sanpera,C。&Blasco,M.A。端粒缩短率预测物种寿命。程序。国家科学院。

Sci. USA 116, 15122–15127 (2019).Article .

科学。美国11615122-15127(2019)。文章。

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Han, Y. et al. Chromosome-level genome assembly of Welwitschia mirabilis, a unique Namib Desert species. Mol. Ecol. Resour. 22, 391–403 (2022).Article

Han,Y.等人。奇异威茨西亚的染色体水平基因组组装,奇异威茨西亚是一种独特的纳米布沙漠物种。摩尔Ecol。资源。。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wan, T. et al. The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts. Nat. Commun. 12, 4247 (2021).Article

Welwitschia基因组揭示了支持沙漠极端长寿的独特生物学。国家公社。124247(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Patrut, A. et al. AMS radiocarbon dating of large Za baobabs (Adansonia za) of Madagascar. PLoS ONE 11, e0146977 (2016).Article

Patrut,A.等人,《马达加斯加大型Za猴面包树(Adansonia Za)的AMS放射性碳测年》。PLoS ONE 11,e0146977(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Scott, A. D., Stenz, N. W. M., Ingvarsson, P. K. & Baum, D. A. Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. N. Phytol. 211, 186–193 (2016).Article

Scott,A.D.,Stenz,N.W.M.,Ingvarsson,P.K。&Baum,D.A。海岸红杉(Sequoia sempervirens)的全基因组复制及其对解释针叶树多倍体稀有性的意义。N、 植物醇。211186-193(2016)。文章

Google Scholar

谷歌学者

Ernst, E. et al. The genomes and epigenomes of aquatic plants (Lemnaceae) promote triploid hybridization and clonal reproduction. Preprint at bioRxiv https://doi.org/10.1101/2023.08.02.551673 (2023).VanBuren, R. et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff.

水生植物(柠檬科)的基因组和表观基因组促进三倍体杂交和克隆繁殖。bioRxiv预印本https://doi.org/10.1101/2023.08.02.551673(2023年)。VanBuren,R.等人。异源四倍体埃塞俄比亚谷物teff的特殊亚基因组稳定性和功能差异。

Nat. Commun. 11, 884 (2020).Article .

Nat.普通。11884(2020)。文章。

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).Article

Bell,C.G.等人,《DNA甲基化衰老时钟:挑战与建议》。基因组生物学。20249(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wilkinson, G. S. et al. DNA methylation predicts age and provides insight into exceptional longevity of bats. Nat. Commun. 12, 1615 (2021).Article

Wilkinson,G.S。等人,DNA甲基化可预测年龄,并提供蝙蝠异常长寿的见解。国家公社。121615(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Mira, S., Pirredda, M., Martín-Sánchez, M., Marchessi, J. E. & Martín, C. DNA methylation and integrity in aged seeds and regenerated plants. Seed Sci. Res. 30, 92–100 (2020).Article

Mira,S.,Pirredda,M.,Martín-Sánchez,M.,Marchessi,J.E。&Martín,C。老化种子和再生植物中的DNA甲基化和完整性。种子科学。第30、92-100号决议(2020年)。文章

Google Scholar

谷歌学者

Gallego-Bartolomé, J. DNA methylation in plants: mechanisms and tools for targeted manipulation. N. Phytol. 227, 38–44 (2020).Article

Gallego Bartolomé,J。植物中的DNA甲基化:靶向操作的机制和工具。N、 植物醇。227,38-44(2020)。文章

Google Scholar

谷歌学者

Naish, M. et al. The genetic and epigenetic landscape of the centromeres. Science 374, eabi7489 (2021).Article

Naish,M。等人。着丝粒的遗传和表观遗传景观。科学374,eabi7489(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016).Article

Niederhuth,C.E.等人。被子植物中DNA甲基化的广泛自然变异。基因组生物学。17194(2016)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Michael, T. P. Plant genome size variation: bloating and purging DNA. Brief. Funct. Genom. 13, 308–317 (2014).Article

Michael,T.P。植物基因组大小变异:膨胀和清除DNA。简介。函数。基因组。13308-317(2014)。文章

Google Scholar

谷歌学者

Comai, L., Maheshwari, S. & Marimuthu, M. P. A. Plant centromeres. Curr. Opin. Plant Biol. 36, 158–167 (2017).Article

Comai,L.,Maheshwari,S。和Marimuthu,M.P.A。植物着丝粒。货币。奥平。植物生物学。36158-167(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Tilbrook, K. et al. The UVR8 UV-B photoreceptor: perception, signaling and response. Arabidopsis Book 11, e0164 (2013).Article

Tilbrook,K。等人。UVR8 UV-B感光器:感知,信号传导和反应。拟南芥第11卷,e0164(2013)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Tossi, V. E. et al. Beyond Arabidopsis: differential UV-B response mediated by UVR8 in diverse species. Front. Plant Sci. 10, 780 (2019).Article

Tossi,V.E.等人,《超越拟南芥:UVR8在不同物种中介导的差异UV-B反应》。正面。植物科学。10780(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Liu, W. et al. Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation. Nat. Commun. 15, 1221 (2024).Article

Liu,W。等人。拟南芥UVR8光感受器的磷酸化调节蛋白质相互作用和对UV-B辐射的反应。国家公社。151221(2024)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Jenkins, G. I. The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26, 21–37 (2014).Article

Jenkins,G.I。UV-B光感受器UVR8:从结构到生理学。植物细胞26,21-37(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Bourbousse, C., Barneche, F. & Laloi, C. Plant chromatin catches the sun. Front. Plant Sci. 10, 1728 (2019).Article

Bourbousse,C.,Barneche,F。&Laloi,C。植物染色质捕捉阳光。正面。植物科学。101728(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science 342, 1241089 (2013).Article

Amborella基因组计划。。科学3421241089(2013)。文章

Google Scholar

谷歌学者

Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).Article

Jaillon,O。等人。葡萄基因组序列表明主要被子植物门的祖先六倍体化。《自然》449463-467(2007)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Karimi, N. et al. Reticulate evolution helps explain apparent homoplasy in floral biology and pollination in baobabs (Adansonia; Bombacoideae; Malvaceae). Syst. Biol. 69, 462–478 (2020).Article

。系统。生物学69462-478(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, M. et al. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol. Biol. Evol. 38, 3621–3636 (2021).Article

Wang,M.等人。比较基因组分析突出了转座子介导的基因组扩增和棉花3D基因组折叠的进化结构。分子生物学。进化。383621-3636(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Conover, J. L. et al. A Malvaceae mystery: a mallow maelstrom of genome multiplications and maybe misleading methods? J. Integr. Plant Biol. 61, 12–31 (2019).Article

科诺弗(Conover,J.L.)等人,《锦葵科之谜:基因组增殖的锦葵漩涡,也许还有误导性的方法?J、 整数。植物生物学。61,12-31(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Argout, X. et al. The genome of Theobroma cacao. Nat. Genet. 43, 101–108 (2010).Article

Argout,X.等人。可可树的基因组。Nat.Genet。43, 101-108 (2010).文章

PubMed

PubMed

Google Scholar

谷歌学者

Wang, X. et al. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. N. Phytol. 209, 1252–1263 (2016).Article

Wang,X。等人。棉花基因组的比较基因组去卷积揭示了十倍体祖先和广泛的染色体分馏。N、 植物醇。2091252-1263(2016)。文章

Google Scholar

谷歌学者

Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423–427 (2012).Article

Paterson,A.H.等人,《棉花基因组的重复多倍体化和可纺棉纤维的进化》。自然492423-427(2012)。文章

ADS

广告

PubMed

PubMed

Google Scholar

谷歌学者

Sun, P. et al. Subgenome-aware analyses reveal the genomic consequences of ancient allopolyploid hybridizations throughout the cotton family. Proc. Natl Acad. Sci. USA 121, e2313921121 (2024).Article

Sun,P。等人。亚基因组感知分析揭示了整个棉花家族中古代异源多倍体杂交的基因组后果。程序。国家科学院。科学。美国121,e2313921121(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shao, L. et al. High-quality genomes of Bombax ceiba and Ceiba pentandra provide insights into the evolution of Malvaceae species and differences in their natural fiber development. Plant Commun. 5, 100832 (2024).Article

Shao,L。等人。木棉和木棉的高质量基因组提供了对锦葵科物种进化及其天然纤维发育差异的见解。。5100832(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cheng, F. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 4, 258–268 (2018).Article

Cheng,F。等人。多倍体植物中的基因保留,分馏和亚基因组差异。《自然植物》4258-268(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Raju, S. K. K. Gene dosage balance immediately following whole-genome duplication in Arabidopsis. Plant cell 32, 1344–1345 (2020).Article

Raju,S.K.K。拟南芥全基因组复制后立即进行基因剂量平衡。植物细胞321344-1345(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Michael, T. P. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. Plant Physiol. 190, 1037–1056 (2022).Article

Michael,T.P。核心生物钟和光信号基因在绿色谱系中引入了遗传联系。植物生理学。1901037-1056(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lou, P. et al. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell 24, 2415–2426 (2012).Article

Lou,P.等人。甘蓝型油菜全基因组三倍体后二倍体化过程中生物钟基因的优先保留。植物细胞242415-2426(2012)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Wickell, D. et al. Underwater CAM photosynthesis elucidated by Isoetes genome. Nat. Commun. 12, 6348 (2021).Article

Wickell,D。等人。水韭基因组阐明的水下CAM光合作用。国家公社。126348(2021)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yang, X. et al. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat. Commun. 8, 1–15 (2017).Article

Yang,X。等人。Kalanchoë基因组提供了对趋同进化和景天酸代谢构建模块的见解。国家公社。8,1-15(2017)。文章

ADS

广告

Google Scholar

谷歌学者

Wai, C. M. et al. Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. PLoS Genet. 15, e1008209 (2019).Article

Wai,C.M.等人,《干旱诱导景天CAM光合作用过程中的时间和网络重编程》。PLoS Genet。15,e1008209(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015).Article

Ming,R。等人。菠萝基因组和CAM光合作用的进化。纳特·吉内特。471435-1442(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Greenham, K. et al. Geographic variation of plant circadian clock function in natural and agricultural settings. J. Biol. Rhythms 32, 26–34 (2017).Article

Greenham,K。等人。自然和农业环境中植物生物钟功能的地理变异。J、 生物。节奏32,26-34(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).Article

Condamine,F.L.,Silvestro,D.,Koppelhus,E.B。和Antonelli,A。被子植物的兴起促使针叶树在全球降温期间下降。程序。国家科学院。科学。美国11728867–28875(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Soltis, P. S., Folk, R. A. & Soltis, D. E. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B. 286, 20190099 (2019).Article

Soltis,P.S.,Folk,R.A。&Soltis,D.E。达尔文评论:被子植物系统发育和进化辐射。程序。R、 Soc.B.28620190099(2019)。文章

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chetty, A., Glennon, K. L., Venter, S. M., Cron, G. V. & Witkowski, E. T. F. Reproductive ecology of the African baobab: floral features differ among individuals with different fruit production. Ecol. Manag. 489, 119077 (2021).Article

Chetty,A.,Glennon,K.L.,Venter,S.M.,Cron,G.V。&Witkowski,E.T.F。非洲猴面包树的生殖生态学:不同果实产量的个体的花特征不同。Ecol公司。管理。489119077(2021)。文章

Google Scholar

谷歌学者

Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along the genome. Genetics 211, 289–304 (2019).Article

Li,H。&Ralph,P。Local PCA显示了种群结构的影响如何沿基因组不同。遗传学211289-304(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Wild, S. Africa’s majestic baobab trees are mysteriously dying. Nature 558, 529–529 (2018).

南非壮丽的野生猴面包树正在神秘死亡。自然558529-529(2018)。

Google Scholar

谷歌学者

Birchler, J. A. & Veitia, R. A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl Acad. Sci. USA 109, 14746–14753 (2012).Article

Birchler,J.A。&Veitia,R.A。基因平衡假说:将剂量敏感性问题与生物学学科联系起来。程序。国家科学院。科学。美国10914746-14753(2012)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Feng, X. et al. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat. Commun. 15, 1635 (2024).Article

Feng,X。等人。全基因组三倍化后再倍化和适应性进化的基因组证据。国家公社。151635(2024)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Marshall, C. M., Thompson, V. L., Creux, N. M. & Harmer, S. L. The circadian clock controls temporal and spatial patterns of floral development in sunflower. eLife 12, e80984 (2023).Fenske, M. P., Nguyen, L. P., Horn, E. K., Riffell, J. A. & Imaizumi, T. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta.

Marshall,C.M.,Thompson,V.L.,Creux,N.M。和Harmer,S.L。生物钟控制向日葵花发育的时间和空间模式。eLife 12,e80984(2023)。Fenske,M.P.,Nguyen,L.P.,Horn,E.K.,Riffell,J.A。和Imaizumi,T。植物和传粉者的生物钟都影响传粉者鹰蛾Manduca sexta的寻花行为。

Sci. Rep. 8, 2842 (2018).Article .

科学。。文章。

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Garsmeur, O. et al. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol. 31, 448–454 (2014).Article

Garsmeur,O.等人。古多倍体的两个进化上不同的类别。分子生物学。进化。31448-454(2014)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Fehér, B. et al. Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8-controlled UV-B signaling pathways in Arabidopsis thaliana. Plant J. 67, 37–48 (2011).Article

Fehér,B。等人。拟南芥生物钟和紫外线抗性基因座8控制的UV-B信号通路的功能相互作用。植物J.67,37-48(2011)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Monnahan, P. et al. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat. Ecol. Evol. 3, 457–468 (2019).Article

Monnahan,P。等人。拟南芥基因组复制的普遍群体基因组后果。自然生态。进化。3457-468(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160256 (2017).Fenske, M. P. & Imaizumi, T. Circadian rhythms in floral scent emission.

Bloch,G.,Bar Shai,N.,Cytter,Y。&Green,R。时间就是蜂蜜:蜜蜂和花朵的生物钟以及它们的相互作用如何影响生态群落。菲洛斯。。R、 社会责任。生物科学学士。37220160256(2017)。Fenske,M.P。和Imaizumi,T。花香排放的昼夜节律。

Front. Plant Sci. 7, 462 (2016).Article .

正面。植物科学。7462(2016)。文章。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Klein, S. J. & O’Neill, R. J. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res. 26, 5–23 (2018).Article

Klein,S.J。&O'Neill,R.J。转座因子:基因组创新,染色体多样性和着丝粒冲突。染色体研究26,5-23(2018)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Korbo, A. et al. Comparison of East and West African populations of baobab (Adansonia digitata L.). Agrofor. Syst. 85, 505–518 (2011).Article

Korbo,A.等人,《东非和西非猴面包树种群的比较》(Adansonia digitata L.)。Agrofor公司。系统。85505-518(2011)。文章

Google Scholar

谷歌学者

Liao, N. et al. Chromosome-level genome assembly of bunching onion illuminates genome evolution and flavor formation in Allium crops. Nat. Commun. 13, 6690 (2022).Article

Liao,N。等人。丛生洋葱的染色体水平基因组组装阐明了葱类作物的基因组进化和风味形成。国家公社。136690(2022年)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Budhlakoti, N. et al. Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Front. Genet. 13, 832153 (2022).Article

Budhlakoti,N.等人,《基因组选择:加速分子育种效率以开发气候适应性作物的工具》。正面。基因。13832153(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lutz, K. A., Wang, W., Zdepski, A. & Michael, T. P. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing. BMC Biotechnol. 11, 54 (2011).Article

Lutz,K.A.,Wang,W.,Zdepski,A。&Michael,T.P。分离和分析具有减少的细胞器DNA的高质量核DNA,用于植物基因组测序和重测序。BMC生物技术。11,54(2011)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).Article

Kolmogorov,M.,Yuan,J.,Lin,Y。&Pevzner,P.A。使用重复图组装长而容易出错的读物。美国国家生物技术公司。37540-546(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).Article

Vaser,R.,Sović,I.,Nagarajan,N。&Šikić,M。从长时间未校正的读数中快速准确地从头组装基因组。基因组研究27737-746(2017)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).Article

Walker,B.J.等人。Pilon:用于全面微生物变异检测和基因组组装改进的综合工具。PLoS ONE 9,e112963(2014)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).Article

Manni,M.,Berkeley,M.R.,Seppey,M.,Simão,F.A.&Zdobnov,E.M.BUSCO更新:新颖而简化的工作流程,以及更广泛和更深入的系统发育覆盖范围,用于真核,原核和病毒基因组的评分。分子生物学。进化。384647-4654(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).Article

Ranallo Benavidez,T.R.,Jaron,K.S。&Schatz,M.C。GenomeScope 2.0和Smudgeplot用于多倍体基因组的无参考分析。国家公社。111432(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinforma. 19, 122 (2018).Article

Weiß,C.L.,Pais,M.,Cano,L.M.,Kamoun,S。&Burbano,H.A.nQuire:使用下一代测序进行倍性估计的统计框架。。19122(2018)。文章

Google Scholar

谷歌学者

Ou, S. et al. Author correction: Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 23, 76 (2022).Article

Ou,S.等人。作者更正:基准转座因子注释方法,用于创建简化的综合管道。基因组生物学。23,76(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).Article

Benson,G。Tandem repeats finder:一个分析DNA序列的程序。核酸研究27573-580(1999)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).Article

Cantalapiedra,C.P.,Hernández Plaza,A.,Letunic,I.,Bork,P。&Huerta Cepas,J。eggNOG mapper v2:宏基因组规模的功能注释,正畸分配和域预测。分子生物学。进化。385825-5829(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lynch, R. C. et al. Domesticated cannabinoid synthases amid a wild mosaic cannabis pangenome. Preprint at bioRxiv https://doi.org/10.1101/2024.05.21.595196 (2024).Cossu, R. M., Buti, M., Giordani, T., Natali, L. & Cavallini, A. A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome.

Lynch,R.C.等人在野生马赛克大麻泛基因组中驯化了大麻素合酶。bioRxiv预印本https://doi.org/10.1101/2024.05.21.595196(2024年)。。

Tree Genet. Genomes 8, 61–75 (2011).Article .

三个基因。基因组8,61-75(2011)。第[UNK]条。

Google Scholar

谷歌学者

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).Article

Emms,D。M。和Kelly,S。OrthoFinder:比较基因组学的系统发育正交推断。基因组生物学。20238(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).Article

Goodstein,D.M.等人,《植物群落:绿色植物基因组学的比较平台》。核酸研究40,D1178–D1186(2012)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36, 5516–5518 (2021).Article

Mendes,F.K.,Vanderpool,D.,Fulton,B。&Hahn,M.W。CAFE 5模型基因家族之间进化率的变化。生物信息学365516-5518(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Padgitt-Cobb, L. K., Pitra, N. J., Matthews, P. D., Henning, J. A. & Hendrix, D. A. An improved assembly of the ‘Cascade’ hop (Humulus lupulus) genome uncovers signatures of molecular evolution and refines time of divergence estimates for the Cannabaceae family. Hortic. Res 10, uhac281 (2023).Article .

Padgitt-Cobb,L.K.,Pitra,N.J.,Matthews,P.D.,Henning,J.A。&Hendrix,D.A.“级联”啤酒花(Humulus lupulus)基因组的改进组装揭示了分子进化的特征,并改进了美人蕉科家族的分歧时间估计。霍特语。第10号决议,uhac281(2023)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 20, 277 (2019).Article

Goel,M.,Sun,H.,Jiao,W.-B.&Schneeberger,K.SyRI:从全基因组组装中发现基因组重排和局部序列差异。基因组生物学。20277(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA 93, 10274–10279 (1996).Article

Gaut,B.S.,Morton,B.R.,McCaig,B.C。&Clegg,M.T。草和棕榈之间的替代率比较:核基因Adh的同义率差异质体基因rbcL的平行率差异。程序。国家科学院。科学。美国9310274–10279(1996)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Klopfenstein, D. V. et al. GOATOOLS: a Python library for gene ontology analyses. Sci. Rep. 8, 10872 (2018).Article

Klopfenstein,D.V。等人。GOATOOLS:用于基因本体分析的Python库。科学。代表810872(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).Article

Supek,F.,Bošnjak,M.,Škunca,N。和Šmuc,T。REVIGO总结并可视化了基因本体术语的长列表。《公共科学图书馆·综合》第6期,第21800页(2011年)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Kitony, J. K. et al. Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation. Figshare, https://doi.org/10.6084/m9.figshare.26039878 (2024).Download referencesAcknowledgementsWe thank members of the Michael Lab for their comments on the genome work and manuscript.

Kitony,J.K.等人。染色体水平的猴面包树基因组阐明了其进化轨迹和环境适应。Figshare公司,https://doi.org/10.6084/m9.figshare.26039878(2024年)。下载参考文献致谢我们感谢迈克尔实验室成员对基因组工作和手稿的评论。

We also thank the genome sequencing team at Monsanto for the initial genome size survey of the Adansonia species funded by the Illumina Greater Good program awarded to T.P.M. Additionally, we are grateful to Mike Winterstein, USDA, GRIN for sending seed and leaf material from A. digitata tree PI77271 for genome sequencing.

我们还感谢孟山都基因组测序团队对Adansonia物种进行了初步的基因组大小调查,该调查由授予T.P.M.的Illumina Greater Good计划资助。此外,我们感谢美国农业部Mike Winterstein,GRIN从A.digitata树PI77271发送种子和叶片材料进行基因组测序。

This work was supported by the Tang Genome Fund to T.P.M., a Global Challenges Research Fund (GCRF), Nottingham Interdisciplinary Research Award, and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme [grant number ERC-StG 679056 HOTSPOT], via a grant to L.Y.

这项工作得到了T.P.M.的Tang Genome基金,全球挑战研究基金(GCRF),诺丁汉跨学科研究奖以及欧盟地平线2020研究与创新计划(授权号ERC StG 679056 HOTSPOT)下的欧洲研究理事会(ERC)的支持。

The 25 samples used for resequencing were prepared with financial support from the National Science Foundation award DEB-1354268 to N.K. and field collecting from Diana Mayne, Sarah M. Venter, and Achille E. Assogbadjo. Finally, we are very grateful to David Baum for his constructive suggestions during the writing of the manuscript.Author informationAuthor notesBradley W.

用于重测序的25个样品是在英国国家科学基金会奖DEB-1354268的资助下制备的,并从Diana Mayne,Sarah M.Venter和Achille E.Assogbadjo进行了现场采集。最后,我们非常感谢David Baum在撰写手稿期间提出的建设性建议。作者信息作者注释Bradley W。

AbramsonPresent address: Noblis, Inc., Washington, DC, USASemar PetrusPresent address: Cepheid, Sunnyvale, CA, USAAuthors and AffiliationsPlant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USAJustine K. Kitony, Kelly Colt, Bradley W. Abramson, Nolan T.

Abramson目前的地址:美国华盛顿特区Noblis公司Semar PetrusPresent地址:美国加利福尼亚州桑尼维尔的造父变星作者和附属机构加利福尼亚州拉荷亚索尔克生物研究所分子和细胞生物学实验室,USAJustine K.Kitony,Kelly Colt,Bradley W.Abramson,Nolan T。

Hartwick, Semar Petrus & Todd P. MichaelBiomedical and Clinical Research Centre (BCRC), College of Health and Allied Sciences, University of Cape Co.

哈特威克(Hartwick),塞马尔·佩特鲁斯(SemarPetrus)和托德·P·迈克尔·生物医学与临床研究中心(BCRC),开普大学健康与联合科学学院。

PubMed Google ScholarKelly ColtView author publicationsYou can also search for this author in

PubMed Google ScholarKelly ColtView作者出版物您也可以在

PubMed Google ScholarBradley W. AbramsonView author publicationsYou can also search for this author in

PubMed Google ScholarBradley W.AbramsonView作者出版物您也可以在

PubMed Google ScholarNolan T. HartwickView author publicationsYou can also search for this author in

PubMed Google ScholarNolan T.HartwickView作者出版物您也可以在

PubMed Google ScholarSemar PetrusView author publicationsYou can also search for this author in

PubMed Google ScholarSemar PetrusView作者出版物您也可以在

PubMed Google ScholarEmadeldin H. E. KonozyView author publicationsYou can also search for this author in

PubMed Google ScholarEmadeldin H.E.KonozyView作者出版物您也可以在

PubMed Google ScholarNisa KarimiView author publicationsYou can also search for this author in

PubMed Google ScholarNisa KarimiView作者出版物您也可以在

PubMed Google ScholarLevi YantView author publicationsYou can also search for this author in

PubMed Google ScholarLevi YantView作者出版物您也可以在

PubMed Google ScholarTodd P. MichaelView author publicationsYou can also search for this author in

PubMed Google ScholarTodd P.MichaelView作者出版物您也可以在

PubMed Google ScholarContributionsT.P.M. and L.Y. designed the research; J.K.K., T.P.M., K.C., B.W.A., N.T.H., S.P., and N.K. performed research or analyzed data; E.H.E.K. and N.K. contributed materials and/or tools; J.K.K. and T.P.M. wrote the manuscript. All authors revised the manuscript.Corresponding authorCorrespondence to.

PubMed谷歌学术贡献者。P、 M.和L.Y.设计了这项研究;J、 K.K.,T.P.M.,K.C.,B.W.A.,N.T.H.,S.P。和N.K.进行了研究或分析数据;E、 H.E.K.和N.K.提供了材料和/或工具;J、 K.K.和T.P.M.写了手稿。所有作者都修改了手稿。对应作者对应。

Todd P. Michael.Ethics declarations

托德·P·迈克尔。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Peer review

同行评审

Peer review information

同行评审信息

Nature Communications thanks Bohdan Lojka, Tao Wan, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Nature Communications感谢Bohdan Lojka,Tao Wan和另一位匿名审稿人对这项工作的同行评审做出的贡献。同行评审文件可用。

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationPeer Review FileDescription of Additional Supplementary FilesSupplementary Data 1Supplementary Data 2Supplementary Data 3Supplementary Data 4Supplementary Data 5Supplementary Data 6Supplementary Data 7Supplementary Data 8Supplementary Data 9Supplementary Data 10Supplementary Data 11Supplementary Data 12Supplementary Data 13Reporting SummarySource dataSource DataRights and permissions.

Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。补充信息补充信息同行评审文件其他补充文件的描述补充数据1补充数据2补充数据3补充数据4补充数据5补充数据6补充数据7补充数据8补充数据9补充数据10补充数据11补充数据12补充数据13报告摘要源数据源数据权限。

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

开放获取本文是根据知识共享署名4.0国际许可证授权的,该许可证允许以任何媒体或格式使用,共享,改编,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出是否进行了更改。

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/..

Reprints and permissionsAbout this articleCite this articleKitony, J.K., Colt, K., Abramson, B.W. et al. Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation.

转载和许可本文引用本文Kitony,J.K.,Colt,K.,Abramson,B.W。等人。染色体水平的猴面包树基因组阐明了其进化轨迹和环境适应。

Nat Commun 15, 8833 (2024). https://doi.org/10.1038/s41467-024-53157-wDownload citationReceived: 14 April 2024Accepted: 03 October 2024Published: 12 October 2024DOI: https://doi.org/10.1038/s41467-024-53157-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

《国家公社》158833(2024)。https://doi.org/10.1038/s41467-024-53157-wDownload引文收到日期:2024年4月14日接受日期:2024年10月3日发布日期:2024年10月12日OI:https://doi.org/10.1038/s41467-024-53157-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供