EN
登录

孟德尔随机化验证TYK2和探索PRSS36作为银屑病药物靶点

Validation of TYK2 and exploration of PRSS36 as drug targets for psoriasis using Mendelian randomization

Nature 等信源发布 2024-10-13 04:38

可切换为仅中文


AbstractPsoriasis is a chronic inflammatory skin disorder with multiple causes, including genetic and environmental factors. Despite advances in treatment, there remains a need to identify novel therapeutic targets. A Mendelian randomization (MR) analysis was conducted to identify therapeutic targets for psoriasis.

摘要牛皮癣是一种慢性炎症性皮肤病,有多种原因,包括遗传和环境因素。尽管治疗取得了进展,但仍需要确定新的治疗靶点。进行孟德尔随机化(MR)分析以确定牛皮癣的治疗靶标。

Data on cis-expression quantitative trait loci were obtained from the eQTLGen Consortium (n = 31,684). Summary statistics for psoriasis (outcome) were sourced from the GWAS Catalog with a sample size of 484,598, including 5,427 cases and 479,171 controls. Colocalization analysis was used to assess whether psoriasis risk and gene expression were driven by shared single nucleotide polymorphisms.

顺式表达数量性状基因座的数据来自eQTLGen联盟(n=31684)。牛皮癣的汇总统计数据(结果)来自GWAS目录,样本量为484598,包括5427例病例和479171例对照。共定位分析用于评估牛皮癣风险和基因表达是否由共享的单核苷酸多态性驱动。

Drug prediction and molecular docking were utilized to validate the pharmacological value of the drug targets. The MR analysis found that 81 drug targets were significantly associated, and two (TYK2 and PRSS36) were supported by colocalization analysis (PP.H4 > 0.80). Phenome-wide association studies did not show any associations with other traits at the gene level.

利用药物预测和分子对接来验证药物靶标的药理学价值。MR分析发现,81个药物靶标显着相关,两个(TYK2和PRSS36)得到了共定位分析的支持(PP.H4 > 0.80)。全基因组关联研究未显示与基因水平上的其他性状有任何关联。

Biologically, these genes were closely related to immune function. Molecular docking revealed strong binding with drugs and proteins, as supported by available structural data. This study validated TYK2 as a drug target for psoriasis, in line with its existing clinical use, including the development of decucravacitinib.

生物学上,这些基因与免疫功能密切相关。分子对接揭示了与药物和蛋白质的强结合,这得到了可用结构数据的支持。这项研究验证了TYK2作为牛皮癣的药物靶标,符合其现有的临床应用,包括decucravacitinib的开发。

PRSS36 is a potential novel target requiring further investigation..

PRSS36是一个潜在的新目标,需要进一步研究。。

IntroductionPsoriasis is an inflammatory skin disease characterized by abnormal proliferation of keratin-forming cells and infiltration of the epidermis by immune cells, primarily affecting the skin, nails and joints, manifesting as plaque lesions on the skin1,2. Approximately 60 million people worldwide are affected by psoriasis, with prevalence rates varying geographically and being highest in Oceania, Western and Central Europe and North America3.

引言牛皮癣是一种炎症性皮肤病,其特征是角蛋白形成细胞异常增殖和免疫细胞浸润表皮,主要影响皮肤,指甲和关节,表现为皮肤上的斑块病变1,2。全世界约有6000万人受到牛皮癣的影响,患病率在地理上各不相同,大洋洲,西欧和中欧以及北美的患病率最高3。

The study by Dapeng Li4 indicated that the global age-standardized incidence rate of psoriasis showed a significant upward trend from 1990 to 2019, and the number of people affected is expected to increase further by 2040. Additionally, physical and psychological distress in patients, as well as substantial socioeconomic impacts, are caused by psoriasis.

李大鹏的研究表明,从1990年到2019年,全球银屑病的年龄标准化发病率呈显着上升趋势,预计到2040年,受影响的人数将进一步增加。此外,银屑病引起患者的身体和心理困扰以及重大的社会经济影响。

A study highlighted that the total economic burden of psoriasis in the USA was estimated to be $35.2 billion in 20135.Currently, psoriasis is a treatable but incurable disease. For mild to moderate psoriasis, a combination of topical treatments such as corticosteroids, vitamin D analogs and phototherapy can be used6.

一项研究强调,2013年美国牛皮癣的总经济负担估计为352亿美元。目前,牛皮癣是一种可治疗但无法治愈的疾病。。

Patients with moderate to severe psoriasis typically require systemic treatment. Although there have been advances in understanding the pathogenesis of psoriasis, a definitive cure for the disease remains elusive7. The current therapeutic challenges for psoriasis include drug delivery through psoriatic skin, which is often hardened, the physicochemical properties of some drugs, leading to poor absorption and efficacy8.

中度至重度牛皮癣患者通常需要全身治疗。尽管在了解牛皮癣的发病机制方面取得了进展,但该疾病的确切治愈方法仍然难以捉摸7。目前银屑病的治疗挑战包括通过银屑病皮肤递送药物,银屑病皮肤通常会变硬,一些药物的理化性质,导致吸收和疗效差8。

Therefore, the discovery of new protein targets for treating psoriasis is crucial.Randomized clinical trials are effective methods for assessing drug treatment strategies9. However, they require extensive planning, design and execution time, as w.

因此,发现用于治疗牛皮癣的新蛋白质靶标至关重要。随机临床试验是评估药物治疗策略的有效方法9。然而,它们需要大量的规划、设计和执行时间,因为w。

Data availability

数据可用性

The datasets analyzed during the current study are available in the in the following repositories: eQTLs data were obtained from eQTLGen Consortium (https://eqtlgen.org/); Psoriasis data was from a previous study and downloaded on GWAS Catalog (https://www.ebi.ac.uk/gwas/studies/GCST90038681).

当前研究期间分析的数据集可在以下存储库中获得:eQTLs数据来自eQTLGen Consortium(https://eqtlgen.org/);牛皮癣数据来自先前的研究,并下载到GWAS目录中(https://www.ebi.ac.uk/gwas/studies/GCST90038681)。

ReferencesGreb, J. E. et al. Psoriasis Nat. Rev. Dis. Primers 2, 16082 (2016).Article

参考文献Greb,J.E.等人,《银屑病自然评论》。《入门2》,16082(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Griffiths, C. E. M., Armstrong, A. W., Gudjonsson, J. E. & Barker Psoriasis. J. Lancet 397, 1301–1315 (2021).Article

Griffiths,C.E.M.,Armstrong,A.W.,Gudjonsson,J.E.和Barker银屑病。《柳叶刀杂志》3971301–1315(2021)。文章

Google Scholar

谷歌学者

Parisi, R. et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 369, m1590 (2020).Article

Parisi,R.等人,《银屑病的国家、地区和全球流行病学:系统分析和建模研究》。英国医学杂志。369,m1590(2020)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Li, D. P. et al. A global assessment of incidence trends of autoimmune diseases from 1990 to 2019 and predicted changes to 2040. Autoimmun. Rev. 22, 103407 (2023).Article

Li,D.P.等人,《1990年至2019年自身免疫性疾病发病趋势的全球评估》,并预测2040年的变化。自身免疫。修订版22103407(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Vanderpuye-Orgle, J. et al. Evaluating the economic burden of psoriasis in the United States. J. Am. Acad. Dermatol. 72, 961–967e965 (2015).Article

Vanderpuye Orgle,J.等人,《评估美国牛皮癣的经济负担》。J、 美国科学院。皮肤病。72961–967e965(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Rendon, A. & Schakel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 20 (2019).Rapalli, V. K. et al. Psoriasis: pathological mechanisms, current pharmacological therapies, and emerging drug delivery systems. Drug Discov Today. 25, 2212–2226 (2020).Article

Rendon,A。&Schakel,K。牛皮癣的发病机制和治疗。Int.J.Mol.Sci。20(2019)。Rapalli,V.K.等人,《牛皮癣:病理机制,当前药物治疗和新兴药物输送系统》。今天发现了毒品。252212-2226(2020)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Todke, P. & Shah, V. H. Psoriasis: implication to disease and therapeutic strategies, with an emphasis on drug delivery approaches. Int. J. Dermatol. 57, 1387–1402 (2018).Article

Todke,P。&Shah,V。H。牛皮癣:对疾病和治疗策略的影响,重点是药物输送方法。国际皮肤病杂志。571387-1402(2018)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Chen, Y. et al. Genetic insights into therapeutic targets for aortic aneurysms: A mendelian randomization study. EBioMedicine. 83, 104199 (2022).Article

Chen,Y.等人。主动脉瘤治疗靶点的遗传学见解:孟德尔随机研究。EBioMedicine。83104199(2022)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Chauquet, S. et al. Association of antihypertensive drug target genes with psychiatric disorders: A mendelian randomization study. JAMA Psychiatry. 78, 623–631 (2021).Article

抗高血压药物靶基因与精神疾病的关联:孟德尔随机研究。JAMA精神病学。78623-631(2021)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).Article

Nelson,M.R.等人。人类遗传学证据对已批准药物适应症的支持。纳特·吉内特。47856-860(2015)。文章

PubMed

PubMed

Google Scholar

谷歌学者

King, E. A., Davis, J. W. & Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 15, e1008489 (2019).Article

King,E.A.,Davis,J.W。&Degner,J.F。具有遗传支持的药物靶标被批准的可能性是两倍吗?药物机制的遗传支持对药物批准概率的影响的修订估计。PLoS Genet。15,e1008489(2019)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hingorani, A. D. et al. Improving the odds of drug development success through human genomics: modelling study. Sci. Rep. 9, 18911 (2019).Article

Hingorani,A.D.等人,《通过人类基因组学提高药物开发成功几率:建模研究》。科学。众议员918911(2019)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl. J. Med. 354, 1264–1272 (2006).Article

。英格兰。J、 医学3541264-1272(2006)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ference, B. A. et al. Using mendelian randomization to improve the design of Randomized trials. Cold Spring Harb Perspect. Med. 11, a040980 (2021).Article

Ference,B.A.等人使用孟德尔随机化改进随机试验的设计。冷泉Harb Perspect。。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Smith, G. D. & Ebrahim, S. Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).Article

Smith,G.D.&Ebrahim,S.Mendelian随机化:遗传流行病学有助于理解疾病的环境决定因素吗?国际流行病学杂志。32,1-22(2003)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Gupta, V. et al. Mendelian randomization’: An approach for exploring causal relations in epidemiology. Public. Health. 145, 113–119 (2017).Article

。公众。健康。145113-119(2017)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Hingorani, A. & Humphries, S. Nature’s randomised trials. Lancet. 366, 1906–1908 (2005).Article

Hingorani,A。&Humphries,S。Nature的随机试验。柳叶刀。3661906-1908(2005)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Schmidt, A. F. et al. Genetic drug target validation using mendelian randomisation. Nat. Commun. 11, 3255 (2020).Article

Schmidt,A.F.等人。使用孟德尔随机化进行遗传药物靶标验证。国家公社。113255(2020)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).Article

Zhu,Z.等人。GWAS和eQTL研究总结数据的整合预测了复杂的性状基因靶标。纳特·吉内特。48481-487(2016)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Storm, C. S. et al. Finding genetically-supported drug targets for Parkinson’s disease using mendelian randomization of the druggable genome. Nat. Commun. 12, 7342 (2021).Article

Storm,C.S.等人使用可药用基因组的孟德尔随机化寻找帕金森病的遗传支持药物靶标。国家公社。127342(2021年)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Vosa, U. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 53, 1300–1310 (2021).Article

大规模的顺式和反式eQTL分析确定了数千个调节血液基因表达的基因位点和多基因评分。纳特·吉内特。531300–1310(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Finan, C. et al. The druggable genome and support for target identification and validation in drug development. Sci. Transl Med. 9 (2017).Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 562, 203–209 (2018).Article

Finan,C.等人。药物基因组和药物开发中靶标鉴定和验证的支持。科学。Transl Med。9(2017)。Bycroft,C。等人。具有深度表型和基因组数据的英国生物库资源。自然。562203-209(2018)。文章

ADS

广告

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Donertas, H. M., Fabian, D. K., Valenzuela, M. F., Partridge, L. & Thornton, J. M. Common genetic associations between age-related diseases. Nat. Aging. 1, 400–412 (2021).Article

Donertas,H.M.,Fabian,D.K.,Valenzuela,M.F.,Partridge,L。和Thornton,J.M。年龄相关疾病之间的常见遗传关联。自然衰老。1400–412(2021)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7 (2018).Burgess, S., Thompson, S. G. & Collaboration, C. C. G. avoiding bias from weak instruments in mendelian randomization studies. Int. J. Epidemiol. 40, 755–764 (2011).Article .

Hemani,G。等人。MR基础平台支持跨人类表型的系统因果推断。Elife 7(2018)。Burgess,S.,Thompson,S.G。&Collaboration,C.C.G。在孟德尔随机化研究中避免来自弱工具的偏见。国际流行病学杂志。40755-764(2011)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).Article

Giambartolomei,C。等人。使用汇总统计数据对遗传关联研究对之间的共定位进行贝叶斯检验。PLoS Genet。10,e1004383(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Yoo, M. et al. DSigDB: drug signatures database for gene set analysis. Bioinformatics. 31, 3069–3071 (2015).Article

Yoo,M。等人。DSigDB:用于基因组分析的药物特征数据库。生物信息学。313069-3071(2015)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Morris, G. M., Huey, R. & Olson, A. J. Using AutoDock for ligand-receptor docking. Curr. Protoc. Bioinform. Chap. 8, Unit. 8, 14 (2008).Pellenz, F. M. et al. Association of TYK2 polymorphisms with autoimmune diseases: A comprehensive and updated systematic review with meta-analysis. Genet.

Morris,G.M.,Huey,R。&Olson,A.J。使用AutoDock进行配体-受体对接。。普罗托克。生物信息。第8章,单位。8,14(2008)。Pellenz,F.M.等人,《TYK2多态性与自身免疫性疾病的关联:荟萃分析的全面和最新系统评价》。基因。

Mol. Biol. 44, e20200425 (2021).Article .

分子生物学。44,e20200425(2021)。第[UNK]条。

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Xu, F. et al. Type III interferon-induced CBFbeta inhibits HBV replication by hijacking HBx. Cell. Mol. Immunol. 16, 357–366 (2019).Article

Xu,F。等人。III型干扰素诱导的CBFbeta通过劫持HBx来抑制HBV复制。细胞。分子免疫。16357-366(2019)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).Article

。国家免疫修订版。14,36-49(2014)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Shimoda, K. et al. Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function. Immunity. 13, 561–571 (2000).Article

Shimoda,K。等人。Tyk2在IFN-α信号传导中起限制作用,尽管它是IL-12介导的T细胞功能所必需的。豁免。13561-571(2000)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Leit, S. et al. Potent and selective TYK2-JH1 inhibitors highly efficacious in rodent model of psoriasis. Bioorg. Med. Chem. Lett. 73, 128891 (2022).Article

Leit,S.等人。强效和选择性TYK2-JH1抑制剂在牛皮癣的啮齿动物模型中非常有效。生物组织医学化学。。73128891(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Strober, B. et al. Deucravacitinib versus placebo and apremilast in moderate to severe plaque psoriasis: efficacy and safety results from the 52-week, randomized, double-blinded, phase 3 program fOr evaluation of TYK2 inhibitor psoriasis second trial. J. Am. Acad. Dermatol. 88, 40–51 (2023).Article .

Strober,B。等人。Deucravacitinib与安慰剂和阿普司特治疗中重度斑块状银屑病:52周随机双盲3期评估TYK2抑制剂银屑病第二次试验的疗效和安全性结果。J、 美国科学院。皮肤病。88,40-51(2023)。文章。

PubMed

PubMed

Google Scholar

谷歌学者

Dragotto, M. et al. Therapeutic potential of targeting the JAK/STAT pathway in Psoriasis: focus on TYK2 inhibition. J. Clin. Med. 13, 3091 (2024).Article

Dragoto,M。等人。银屑病中靶向JAK/STAT途径的治疗潜力:关注TYK2抑制。J、 临床。医学133091(2024)。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Imafuku, S. et al. Efficacy and safety of the selective TYK2 inhibitor, deucravacitinib, in Japanese patients with moderate to severe plaque psoriasis: subgroup analysis of a randomized, double-blind, placebo-controlled, global phase 3 trial. J. Dermatol. 50, 588–595 (2023).Article

Imafku,S.等人。选择性TYK2抑制剂deucravacitinib在日本中重度斑块状银屑病患者中的疗效和安全性:一项随机,双盲,安慰剂对照的全球3期试验的亚组分析。J、 皮肤病。50588-595(2023)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Alfano, R. et al. Epigenome-wide analysis of maternal exposure to green space during gestation and cord blood DNA methylation in the ENVIRONAGE cohort. Environ. Res. 216, 114828 (2023).Article

Alfano,R.等人。孕妇在妊娠期间暴露于绿色空间的表观基因组分析和环境队列中的脐带血DNA甲基化。环境。第216、114828(2023)号决议。文章

PubMed

PubMed

PubMed Central

公共医学中心

Google Scholar

谷歌学者

Lee, B., Yao, X. & Shen, L. Alzheimer’s Disease Neuroimaging, I. Integrative analysis of summary data from GWAS and eQTL studies implicates genes differentially expressed in Alzheimer’s disease. BMC Genom. 23, 414 (2022).Article

Lee,B.,Yao,X。&Shen,L。阿尔茨海默病神经影像学,I。GWAS和eQTL研究总结数据的综合分析暗示了阿尔茨海默病中差异表达的基因。。23414(2022)。文章

Google Scholar

谷歌学者

Dang, X., Zhang, Z. & Luo, X. J. Mendelian randomization study using dopaminergic neuron-specific eQTL nominates potential causal genes for Parkinson’s Disease. Mov. Disord. 37, 2451–2456 (2022).Article

Dang,X.,Zhang,Z。&Luo,X。J。使用多巴胺能神经元特异性eQTL的孟德尔随机研究提名了帕金森病的潜在致病基因。莫夫。混乱。372451-2456(2022)。文章

PubMed

PubMed

Google Scholar

谷歌学者

Download referencesAcknowledgementsWe thank the eQTLGen Consortium, the Dönertaş HM and other researchers and participants for providing publicly available data for this analysis.FundingNone.Author informationAuthor notesXin Guo and Mengjun Tao are the joint first authors of this work.Authors and AffiliationsSchool of Public Health, Wannan Medical College, No.

下载参考文献致谢我们感谢eQTLGen联盟,DönertaşHM和其他研究人员和参与者为这项分析提供了公开可用的数据。资金无。作者信息作者注释郭欣欣和陶梦君是这项工作的联合第一作者。作者和附属机构皖南医学院公共卫生学院,第号。

22, Wenchang West Road, Yijiang District, Wuhu, Anhui, ChinaXin Guo, XinCan Ji, MengQi Han, Yue Shen, Cheng Hong, HaoYang Guo, Wei Shi & Hui YuanDepartment of Health Management Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, ChinaMeng-jun TaoAuthorsXin GuoView author publicationsYou can also search for this author in.

中国安徽省芜湖市弋江区文昌西路22号郭新国,纪新灿,韩孟琦,岳深,程红,郭浩阳,魏世辉,皖南医学院附属第一医院卫生管理中心,中国芜湖市孟军陶作者郭新维作者出版物你也可以在中搜索这位作者。

PubMed Google ScholarMeng-jun TaoView author publicationsYou can also search for this author in

PubMed Google ScholarmangJun TaoView作者出版物您也可以在

PubMed Google ScholarXinCan JiView author publicationsYou can also search for this author in

PubMed谷歌学术期刊JiView作者出版物您也可以在

PubMed Google ScholarMengQi HanView author publicationsYou can also search for this author in

PubMed Google Scholarmangqi HanView作者出版物您也可以在

PubMed Google ScholarYue ShenView author publicationsYou can also search for this author in

PubMed Google ScholarYue ShenView作者出版物您也可以在

PubMed Google ScholarCheng HongView author publicationsYou can also search for this author in

PubMed Google ScholarCheng HongView作者出版物您也可以在

PubMed Google ScholarHaoYang GuoView author publicationsYou can also search for this author in

PubMed谷歌学者Haoyang GuoView作者出版物您也可以在

PubMed Google ScholarWei ShiView author publicationsYou can also search for this author in

PubMed Google ScholarWei ShiView作者出版物您也可以在

PubMed Google ScholarHui YuanView author publicationsYou can also search for this author in

PubMed Google ScholarHui YuanView作者出版物您也可以在

PubMed Google ScholarContributionsXin Guo, Wei Shi and XinCan Ji conceptualized and designed the study. Xin Guo and XinCan Ji MengQi Han, Yue Shen and Cheng Hong collected data and were involved in analysis and visualization. Xin Guo wrote the original draft. Mengjun Tao was responsible for editing the draft.

PubMed谷歌学术贡献Xin Guo,Wei Shi和XinCan Ji概念化并设计了这项研究。Xin Guo和XinCan Ji MengQi Han,Yue Shen和Cheng Hong收集数据并参与分析和可视化。郭欣写了原稿。孟俊涛负责编辑草案。

Hui Yuan was responsible for review, editing the draft and funding acquisition. Xin Guo and Mengjun Tao contributed equally to this work. All authors read and approved the final manuscript.Corresponding authorsCorrespondence to.

慧远负责审查、编辑草案和资金获取。Xin Guo和Mongjun Tao对这项工作做出了同样的贡献。所有作者都阅读并批准了最终稿件。通讯作者通讯。

Wei Shi or Hui Yuan.Ethics declarations

魏氏或慧元。道德宣言

Competing interests

相互竞争的利益

The authors declare no competing interests.

作者声明没有利益冲突。

Ethics approval and consent to participate

道德批准和同意参与

Not applicable because it was a secondary data analysis.

不适用,因为这是二次数据分析。

Additional informationPublisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Electronic supplementary materialBelow is the link to the electronic supplementary material.Supplementary Material 1Rights and permissions

Additional informationPublisher的noteSpringer Nature在已发布地图和机构隶属关系中的管辖权主张方面保持中立。电子补充材料流是指向电子补充材料的链接。补充材料1权利和许可

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.

开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。

You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。

To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..

要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..

Reprints and permissionsAbout this articleCite this articleGuo, X., Tao, Mj., Ji, X. et al. Validation of TYK2 and exploration of PRSS36 as drug targets for psoriasis using Mendelian randomization.

转载和许可本文引用本文Guo,X.,Tao,Mj。,Ji,X。等人。使用孟德尔随机化验证TYK2和探索PRSS36作为牛皮癣的药物靶标。

Sci Rep 14, 23902 (2024). https://doi.org/10.1038/s41598-024-74148-3Download citationReceived: 12 March 2024Accepted: 24 September 2024Published: 13 October 2024DOI: https://doi.org/10.1038/s41598-024-74148-3Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.

科学报告1423902(2024)。https://doi.org/10.1038/s41598-024-74148-3Download引文接收日期:2024年3月12日接受日期:2024年9月24日发布日期:2024年10月13日OI:https://doi.org/10.1038/s41598-024-74148-3Share本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。

Provided by the Springer Nature SharedIt content-sharing initiative

由Springer Nature SharedIt内容共享计划提供

KeywordsPsoriasisMendelian randomizationDrug targetsGenetics

关键词SPSORISSMENDELIAN随机化药物靶标遗传学