商务合作
动脉网APP
可切换为仅中文
AbstractN-methyl-D-aspartate (NMDA) receptors are ionotropic glutamate receptors involved in learning and memory. NMDA receptors primarily comprise two GluN1 and two GluN2 subunits. The GluN2 subunit dictates biophysical receptor properties, including the extent of receptor activation and desensitization.
摘要N-甲基-D-天冬氨酸(NMDA)受体是参与学习和记忆的离子型谷氨酸受体。NMDA受体主要包含两个GluN1和两个GluN2亚基。GluN2亚基决定了生物物理受体的特性,包括受体激活和脱敏的程度。
GluN2A- and GluN2D-containing receptors represent two functional extremes. To uncover the conformational basis of their functional divergence, we utilize single-molecule fluorescence resonance energy transfer to probe the extracellular domains of these receptor subtypes under resting and ligand-bound conditions.
含有GluN2A和GluN2D的受体代表两个功能极端。为了揭示其功能差异的构象基础,我们利用单分子荧光共振能量转移来探测静息和配体结合条件下这些受体亚型的细胞外结构域。
We find that the conformational profile of the GluN2 amino-terminal domain correlates with the disparate functions of GluN2A- and GluN2D-containing receptors. Changes at the pre-transmembrane segments inversely correlate with those observed at the amino-terminal domain, confirming direct allosteric communication between these domains.
我们发现,GluN2氨基末端结构域的构象特征与含GluN2A和GluN2D的受体的不同功能相关。跨膜前片段的变化与氨基末端结构域观察到的变化呈负相关,证实了这些结构域之间的直接变构通讯。
Additionally, binding of a positive allosteric modulator at the transmembrane domain shifts the conformational profile of the amino-terminal domain towards the active state, revealing a bidirectional allosteric pathway between extracellular and transmembrane domains..
此外,跨膜结构域上正变构调节剂的结合将氨基末端结构域的构象转变为活性状态,揭示了细胞外和跨膜结构域之间的双向变构途径。。
IntroductionThe majority of excitatory neurotransmission in the mammalian central nervous system is accounted for by glutamatergic signaling. The ionotropic glutamate receptor family includes N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, and delta receptors1,2,3,4,5,6.
引言哺乳动物中枢神经系统中的大多数兴奋性神经传递是由谷氨酸能信号传导引起的。离子型谷氨酸受体家族包括N-甲基-D-天冬氨酸(NMDA),α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA),红藻氨酸和δ受体1,2,3,4,5,6。
NMDA receptor signaling is involved in learning, memory, and synaptic plasticity, while dysfunction of NMDA receptors has been implicated in various neurological conditions, such as epilepsy, developmental delay, and ischemic stroke7,8,9. The NMDA receptor is a ligand-gated ion channel that requires simultaneous binding of glutamate and co-agonist glycine to activate5,10,11.
NMDA受体信号传导涉及学习,记忆和突触可塑性,而NMDA受体的功能障碍与各种神经系统疾病有关,如癫痫,发育迟缓和缺血性中风7,8,9。NMDA受体是一种配体门控离子通道,需要谷氨酸和共激动剂甘氨酸同时结合才能激活5,10,11。
NMDA receptors adopt a heterotetrameric structure, with each receptor comprising two obligatory glycine-binding GluN1 subunits and two glutamate-binding GluN2 (A-D) and/or glycine-binding GluN3 (A-B) subunits3,5,12,13,14,15. These various subunit types share a conserved architecture consisting of extracellular amino-terminal (ATD) and agonist-binding domains (ABD), a transmembrane domain (TMD), and an intracellular carboxyl-terminal domain (CTD)5,12,13,16.
NMDA受体采用异四聚体结构,每个受体包含两个必需的甘氨酸结合GluN1亚基和两个谷氨酸结合GluN2(a-D)和/或甘氨酸结合GluN3(a-B)亚基3,5,12,13,14,15。这些不同的亚基类型共享由细胞外氨基末端(ATD)和激动剂结合结构域(ABD),跨膜结构域(TMD)和细胞内羧基末端结构域(CTD)5,12,13,16组成的保守结构。
The binding of glutamate and glycine to the GluN2 and GluN1 agonist-binding domains induces conformational changes throughout the receptor, forming a transmembrane ion channel pore permeable to sodium, potassium, and calcium ions.Several functional characteristics of NMDA receptors, including their extent of activation, desensitization profiles, and agonist potency, are determined by the identity of the GluN2 subunit17,18,19,20,21.
谷氨酸和甘氨酸与GluN2和GluN1激动剂结合结构域的结合诱导整个受体的构象变化,形成可渗透钠,钾和钙离子的跨膜离子通道孔。NMDA受体的几种功能特征,包括其激活程度,脱敏谱和激动剂效力,由GluN2亚基17,18,19,20,21的身份决定。
GluN2A and GluN2D subunits represent opposite ends of the functional spectrum and differ in expression patterns. GluN1/GluN2A NMDA receptors are expressed broadly throughout the cortex and hippocampus3,.
GluN2A和GluN2D亚基代表功能谱的两端,表达模式不同。GluN1/GluN2A NMDA受体广泛表达于整个皮层和海马3,。
(1)
(1)
Where IVV and IVH are the measured fluorescence intensities with the excitation polarizer vertically oriented and the emission polarizer vertically and horizontally oriented, respectively. G is the grating correction factor for the detection system. As polarization ratios did not satisfy the Anderson-Darling normality test, they were compared using non-parametric Kruskal-Wallis and Dunn’s multiple comparisons tests, which were performed using GraphPad Prism version 10.0.3 (GraphPad Software).
其中IVV和IVH分别是激发偏振片垂直取向和发射偏振片垂直和水平取向的测量荧光强度。G是检测系统的光栅校正系数。由于极化率不满足Anderson-Darling正态性检验,因此使用非参数Kruskal-Wallis和Dunn的多重比较检验对它们进行了比较,这些检验是使用GraphPad Prism版本10.0.3(GraphPad软件)进行的。
P-values < 0.05 are considered significant. The calculated polarization ratio values are provided in Supplementary Table 1. The values range from 0.07 to 0.26, and there are no significant changes in the polarization ratios between the conditions measured (apo, liganded, and modulator bound) for a given site.
P值<0.05被认为是显着的。补充表1中提供了计算出的极化比值。该值的范围为0.07至0.26,并且对于给定位点,测量的条件(载脂蛋白,配体和调制器结合)之间的极化比没有显着变化。
Thus, it is unlikely that the changes in smFRET between the different conditions (apo, liganded, and modulator bound) measured here for a given site arise due to differences in the orientation factor68.To ensure that our data acquisition and analysis were not biased, one set of data for the amino-terminal domain smFRET was obtained blind for each investigated condition.
因此,对于给定位点,此处测量的不同条件(载脂蛋白,配体和调节剂结合)之间的smFRET变化不太可能由于取向因子68的差异而产生。为了确保我们的数据采集和分析没有偏差,对于每个研究的条件,都盲目获得了一组氨基末端结构域smFRET的数据。
The samples were prepared and unidentified by one lab member and collected and analyzed by a second without knowledge of the conditions. We observed that this set was statistically similar to the data obtained without blinding.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article..
样品由一名实验室成员制备和鉴定,并在不知道条件的情况下由第二名实验室成员收集和分析。我们观察到,这组数据在统计学上与无盲法获得的数据相似。报告摘要有关研究设计的更多信息,请参阅本文链接的Nature Portfolio Reporting Summary。。
Data availability
数据可用性
The data that support this study are available from the corresponding authors upon request. Source data are provided in this paper. The structural data referred to within this study was previously published and can be accessed via the Protein Data Bank (PDB) under the following accession numbers 7EOS, 8E96.
支持这项研究的数据可应要求从通讯作者那里获得。本文提供了源数据。本研究中提到的结构数据先前已发布,可以通过蛋白质数据库(PDB)以以下登录号7EOS,8E96访问。
Source data are provided in this paper..
本文提供了源数据。。
ReferencesIacobucci, G. J. & Popescu, G. K. NMDA receptors: linking physiological output to biophysical operation. Nat. Rev. Neurosci. 18, 236–249 (2017).Article
参考文献Iacobucci,G.J。和Popescu,G.K。NMDA受体:将生理输出与生物物理操作联系起来。神经科学杂志。18236-249(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
Hansen, K. B., Yi, F., Perszyk, R. E., Menniti, F. S. & Traynelis, S. F. NMDA Receptors in the Central Nervous System. Methods Mol. Biol. 1677, 1–80 (2017).Article
Hansen,K.B.,Yi,F.,Perszyk,R.E.,Menniti,F.S。&Traynelis,S.F。中枢神经系统中的NMDA受体。。1677,1-80(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010).Article
Traynelis,S.F.等人。谷氨酸受体离子通道:结构,调节和功能。药理学。修订版62405–496(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).Article
Hollmann,M。&Heinemann,S。克隆了谷氨酸受体。年。神经科学牧师。17,31-108(1994)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hansen, K. B. et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73, 298–487 (2021).Article
Hansen,K.B.等人。谷氨酸受体离子通道的结构、功能和药理学。药理学。修订版73298-487(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Carrillo, E., Gonzalez, C. U., Berka, V. & Jayaraman, V. Delta glutamate receptors are functional glycine- and D-serine-gated cation channels in situ. Sci. Adv. 7, eabk2200 (2021).Article
Carrillo,E.,Gonzalez,C.U.,Berka,V。&Jayaraman,V。δ谷氨酸受体是原位功能性甘氨酸和D-丝氨酸门控阳离子通道。科学。广告7,eabk2200(2021)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Newcomer, J. W., Farber, N. B. & Olney, J. W. NMDA receptor function, memory, and brain aging. Dialogues Clin. Neurosci. 2, 219–232 (2000).Article
Newcomer,J.W.,Farber,N.B。&Olney,J.W。NMDA受体功能,记忆和大脑衰老。对话临床。神经科学。2219-232(2000)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dupuis, J. P., Nicole, O. & Groc, L. NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron 111, 2312–2328 (2023).Article
Dupuis,J.P.,Nicole,O。&Groc,L。NMDA受体在健康和疾病中的功能:老演员,新维度。神经元1112312-2328(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Iacobucci, G. J. et al. Complex functional phenotypes of NMDA receptor disease variants. Mol. Psychiatry 27, 5113–5123 (2022).Article
Iacobucci,G.J.等人。NMDA受体疾病变体的复杂功能表型。摩尔精神病学275113-5123(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Kleckner, N. W. & Dingledine, R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835–837 (1988).Article
Kleckner,N.W。&Dingledine,R。激活非洲爪蟾卵母细胞中表达的NMDA受体对甘氨酸的要求。科学241835-837(1988)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Benveniste, M. & Mayer, M. L. Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys. J. 59, 560–573 (1991).Article
。谷氨酸和甘氨酸各有两个结合位点。生物物理。J、 59560-573(1991)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Lee, C. H. et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197 (2014).Article
Lee,C.H.等人。NMDA受体结构揭示了亚基排列和孔结构。自然511191-197(2014)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Karakas, E. & Furukawa, H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997 (2014).Article
Karakas,E。和Furukawa,H。异四聚体NMDA受体离子通道的晶体结构。科学344992-997(2014)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Clements, J. D. & Westbrook, G. L. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7, 605–613 (1991).Article
Clements,J.D。和Westbrook,G.L。激活动力学揭示了N-甲基-D-天冬氨酸受体上谷氨酸和甘氨酸结合位点的数量。神经元7605-613(1991)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Pérez-Otaño, I., Larsen, R. S. & Wesseling, J. F. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat. Rev. Neurosci. 17, 623–635 (2016).Article
Pérez-Otaño,I.,Larsen,R.S。和Wesseling,J.F。含有GluN3的NMDA受体在中枢神经系统中的新兴作用。神经科学杂志。17623-635(2016)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Reiner, A. & Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron 98, 1080–1098 (2018).Article
Reiner,A。&Levitz,J。中枢神经系统中的谷氨酸能信号传导:离子型和代谢型受体协同作用。神经元981080-1098(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paoletti, P., Bellone, C. & Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14, 383–400 (2013).Article
Paoletti,P.,Bellone,C。&Zhou,Q。NMDA受体亚基多样性:对受体特性,突触可塑性和疾病的影响。神经科学杂志。14383-400(2013)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Erreger, K., Dravid, S. M., Banke, T. G., Wyllie, D. J. & Traynelis, S. F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563, 345–358 (2005).Article
Erreger,K.,Dravid,S.M.,Banke,T.G.,Wyllie,D.J。&Traynelis,S.F。亚基特异性门控控制大鼠NR1/NR2A和NR1/NR2B NMDA通道动力学和突触信号传导谱。J、 生理学。563345-358(2005)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Cull-Candy, S., Brickley, S. & Farrant, M. NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11, 327–335 (2001).Article
Cull Candy,S.,Brickley,S。&Farrant,M。NMDA受体亚基:多样性,发育和疾病。。奥平。神经生物学。11327-335(2001)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Vicini, S. et al. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol. 79, 555–566 (1998).Article
Vicini,S.等人。重组N-甲基-D-天冬氨酸受体之间的功能和药理学差异。J、 神经生理学。79555-566(1998)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Monyer, H. et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221 (1992).Article
Monyer,H。等人。异聚NMDA受体:亚型的分子和功能区分。科学2561217-1221(1992)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Yuan, H., Hansen, K. B., Vance, K. M., Ogden, K. K. & Traynelis, S. F. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 29, 12045–12058 (2009).Article
Yuan,H.,Hansen,K.B.,Vance,K.M.,Ogden,K.K。&Traynelis,S.F。通过NR2亚基氨基末端结构域控制NMDA受体功能。J、 神经科学。2912045-12058(2009)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hansen, K. B. et al. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 150, 1081–1105 (2018).Article
。J、 一般生理学。1501081-1105(2018)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Misra, C., Brickley, S. G., Wyllie, D. J. & Cull-Candy, S. G. Slow deactivation kinetics of NMDA receptors containing NR1 and NR2D subunits in rat cerebellar Purkinje cells. J. Physiol. 525, 299–305 (2000).Article
Misra,C.,Brickley,S.G.,Wyllie,D.J。和Cull-Candy,S.G。大鼠小脑浦肯野细胞中含有NR1和NR2D亚基的NMDA受体的缓慢失活动力学。J、 生理学。525299-305(2000)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Vance, K. M., Simorowski, N., Traynelis, S. F. & Furukawa, H. Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat. Commun. 2, 294 (2011).Article
Vance,K.M.,Simorowski,N.,Traynelis,S.F。&Furukawa,H。GluN1/GluN2D NMDA受体的配体特异性失活时间过程。国家公社。2294(2011)。文章
ADS
广告
PubMed
PubMed
Google Scholar
谷歌学者
Chen, P. E. et al. Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. 586, 227–245 (2008).Article
Chen,P.E.等人。在非洲爪蟾卵母细胞中表达的含有嵌合NR2A/2D亚基的大鼠重组NMDA受体中甘氨酸效力的调节。J、 生理学。586227-245(2008)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Hansen, K. B. et al. Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors. Mol. Pharmacol. 84, 114–127 (2013).Article
Hansen,K.B.等人。N-甲基-D-天冬氨酸受体谷氨酸结合位点激动剂功效的结构决定因素。摩尔药理学。。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Chou, T. H., Kang, H., Simorowski, N., Traynelis, S. F. & Furukawa, H. Structural insights into assembly and function of GluN1-2C, GluN1-2A-2C, and GluN1-2D NMDARs. Mol. Cell 82, 4548–4563 (2022).Article
Chou,T.H.,Kang,H.,Simorowski,N.,Traynelis,S.F。&Furukawa,H。对GluN1-2C,GluN1-2A-2C和GluN1-2D NMDAR组装和功能的结构见解。分子细胞824548-4563(2022)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, J. et al. Distinct structure and gating mechanism in diverse NMDA receptors with GluN2C and GluN2D subunits. Nat. Struct. Mol. Biol. 30, 629–639 (2023).Article
Zhang,J.等人。具有GluN2C和GluN2D亚基的不同NMDA受体的独特结构和门控机制。自然结构。分子生物学。30629-639(2023)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, H. et al. Gating mechanism and a modulatory niche of human GluN1-GluN2A NMDA receptors. Neuron 109, 2443–2456 (2021).Article
Wang,H。等人。人类GluN1-GluN2A NMDA受体的门控机制和调节生态位。神经元1092443-2456(2021)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Jalali-Yazdi, F., Chowdhury, S., Yoshioka, C. & Gouaux, E. Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell 175, 1520–1532 (2018).Article
Jalali Yazdi,F.,Chowdhury,S.,Yoshioka,C。&Gouaux,E。锌和质子抑制GluN1/GluN2A NMDA受体的机制。细胞1751520-1532(2018)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Zhang, J. B. et al. Structural basis of the proton sensitivity of human GluN1-GluN2A NMDA receptors. Cell Rep. 25, 3582–3590 (2018).Article
Zhang,J.B.等人。人GluN1-GluN2A NMDA受体质子敏感性的结构基础。Cell Rep.253582–3590(2018)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Bleier, J. et al. Subtype-specific conformational landscape of NMDA receptor gating. Cell Rep. 43, 114634 (2024).Article
Bleier,J。等人。NMDA受体门控的亚型特异性构象景观。细胞代表43114634(2024)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Madry, C., Mesic, I., Betz, H. & Laube, B. The N-terminal domains of both NR1 and NR2 subunits determine allosteric Zn2+ inhibition and glycine affinity of N-methyl-d-aspartate receptors. Mol. Pharmacol. 72, 1535–1544 (2007).Article
Madry,C.,Mesic,I.,Betz,H。&Laube,B。NR1和NR2亚基的N-末端结构域决定了N-甲基-d-天冬氨酸受体的变构Zn2+抑制和甘氨酸亲和力。摩尔药理学。。文章
PubMed
PubMed
Google Scholar
谷歌学者
Tajima, N. et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534, 63–68 (2016).Article
Tajima,N。等人。NMDA受体的激活和艾芬地尔的抑制机制。自然534,63-68(2016)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Tian, M. & Ye, S. Allosteric regulation in NMDA receptors revealed by the genetically encoded photo-cross-linkers. Sci. Rep. 6, 34751 (2016).Article
Tian,M。&Ye,S。遗传编码的光交联剂揭示了NMDA受体的变构调节。科学。代表634751(2016)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hackos, D. H. & Hanson, J. E. Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology 112, 34–45 (2017).Article
Hackos,D.H。&Hanson,J.E。NMDA受体阳性变构调节的多种模式:机制和后果。神经药理学112,34-45(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Geoffroy, C., Paoletti, P. & Mony, L. Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J. Physiol. 600, 233–259 (2022).Article
Geoffroy,C.,Paoletti,P。&Mony,L。NMDA受体的正变构调节:机制,生理影响和治疗潜力。J、 生理学。600233-259(2022)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Wang, T. M. et al. A novel NMDA receptor positive allosteric modulator that acts via the transmembrane domain. Neuropharmacology 121, 204–218 (2017).Article
Wang,T.M.等人。一种通过跨膜结构域起作用的新型NMDA受体阳性变构调节剂。神经药理学121204-218(2017)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Perszyk, R. E. et al. Biased modulators of NMDA receptors control channel opening and ion selectivity. Nat. Chem. Biol. 16, 188–196 (2020).Article
Perszyk,R.E。等人。NMDA受体的偏向调节剂控制通道开放和离子选择性。自然化学。生物学16188-196(2020)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sirrieh, R. E., MacLean, D. M. & Jayaraman, V. A conserved structural mechanism of NMDA receptor inhibition: A comparison of ifenprodil and zinc. J. Gen. Physiol. 146, 173–181 (2015).Article
Sirrieh,R.E.,MacLean,D.M。&Jayaraman,V。NMDA受体抑制的保守结构机制:艾芬地尔和锌的比较。J、 一般生理学。146173-181(2015)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Sirrieh, R. E., MacLean, D. M. & Jayaraman, V. Amino-terminal domain tetramer organization and structural effects of zinc binding in the N-methyl-D-aspartate (NMDA) receptor. J. Biol. Chem. 288, 22555–22564 (2013).Article
Sirrieh,R.E.,MacLean,D.M。&Jayaraman,V。氨基末端结构域四聚体组织和N-甲基-D-天冬氨酸(NMDA)受体中锌结合的结构效应。J、 生物。化学。28822555–22564(2013)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Hackos, D. H. et al. Positive allosteric modulators of gluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron 89, 983–999 (2016).Article
Hackos,D.H.等人。含有gluN2A的NMDAR的正变构调节剂,具有不同的作用模式和对电路功能的影响。。文章
PubMed
PubMed
Google Scholar
谷歌学者
McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91, 1941–1951 (2006).Article
McKinney,S.A.,Joo,C。&Ha,T。使用隐马尔可夫建模分析单分子FRET轨迹。生物物理。J、 911941-1951(2006)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Liu, Y., Park, J., Dahmen, K. A., Chemla, Y. R. & Ha, T. A comparative study of multivariate and univariate hidden Markov modelings in time-binned single-molecule FRET data analysis. J. Phys. Chem. B 114, 5386–5403 (2010).Article
Liu,Y.,Park,J.,Dahmen,K.A.,Chemla,Y.R。&Ha,T。多变量和单变量隐马尔可夫模型在时间分箱单分子FRET数据分析中的比较研究。J、 物理。化学。B 1145386-5403(2010)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Durham, R. J. et al. Conformational spread and dynamics in allostery of NMDA receptors. Proc. Natl. Acad. Sci. USA 117, 3839–3847 (2020).Article
Durham,R.J.等人,《NMDA受体变构中的构象扩散和动力学》。程序。纳特尔。阿卡德。科学。美国1173839–3847(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dolino, D. M. et al. The structure-energy landscape of NMDA receptor gating. Nat. Chem. Biol. 13, 1232–1238 (2017).Article
Dolino,D.M.等人,《NMDA受体门控的结构-能量景观》。自然化学。生物学113232-1238(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Dolino, D. M. et al. Structural dynamics of the glycine-binding domain of the N-Methyl-D-aspartate receptor. J. Biol. Chem. 290, 797–804 (2015).Article
Dolino,D.M.等人。N-甲基-D-天冬氨酸受体甘氨酸结合结构域的结构动力学。J、 生物。化学。290797-804(2015)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dolino, D. M., Rezaei Adariani, S., Shaikh, S. A., Jayaraman, V. & Sanabria, H. Conformational selection and submillisecond dynamics of the ligand-binding domain of the N-methyl-d-aspartate receptor. J. Biol. Chem. 291, 16175–16185 (2016).Article
Dolino,D.M.,Rezaei Adariani,S.,Shaikh,S.A.,Jayaraman,V。&Sanabria,H。N-甲基-D-天冬氨酸受体配体结合结构域的构象选择和亚毫秒动力学。J、 生物。化学。29116175-16185(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Amico-Ruvio S. A. et al. Contributions by N-terminal domains to NMDA receptor currents. Preprint at bioRxiv https://doi.org/10.1101/2020.08.21.261388 (2020).Zhu, S. et al. Mechanism of NMDA receptor inhibition and activation. Cell 165, 704–714 (2016).Article
Amico Ruvio S.A.等人,N末端结构域对NMDA受体电流的贡献。bioRxiv预印本https://doi.org/10.1101/2020.08.21.261388(2020年)。朱,S。等。NMDA受体抑制和激活的机制。细胞165704-714(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Bhatia, N. K., Carrillo, E., Durham, R. J., Berka, V. & Jayaraman, V. Allosteric changes in the NMDA receptor associated with calcium-dependent inactivation. Biophys. J. 119, 2349–2359 (2020).Article
Bhatia,N.K.,Carrillo,E.,Durham,R.J.,Berka,V。&Jayaraman,V。与钙依赖性失活相关的NMDA受体的变构变化。生物物理。J、 1192349-2359(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paudyal, N., Bhatia, N. K. & Jayaraman, V. Single molecule FRET methodology for investigating glutamate receptors. Methods Enzymol. 652, 193–212 (2021).Article
Paudyal,N.,Bhatia,N.K。&Jayaraman,V。用于研究谷氨酸受体的单分子FRET方法。方法酶法。652193-212(2021)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Durham, R. J., Latham, D. R., Sanabria, H. & Jayaraman, V. Structural dynamics of glutamate signaling systems by smFRET. Biophys. J. 119, 1929–1936 (2020).Article
Durham,R.J.,Latham,D.R.,Sanabria,H。&Jayaraman,V。smFRET对谷氨酸信号系统的结构动力学。生物物理。J、 1191929-1936(2020)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Litwin, D. B., Durham, R. J. & Jayaraman, V. Single-molecule FRET methods to study glutamate receptors. Methods Mol. Biol. 1941, 3–16 (2019).Article
Litwin,D.B.,Durham,R.J。&Jayaraman,V。研究谷氨酸受体的单分子FRET方法。。1941年,3-16(2019)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Yi, F. et al. Structural basis for negative allosteric modulation of GluN2A-containing NMDA receptors. Neuron 91, 1316–1329 (2016).Article
。神经元911316-1329(2016)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000).Article
Armstrong,N。&Gouaux,E。激活和拮抗GluR2配体结合核心的AMPA敏感谷氨酸受体晶体结构的机制。神经元28165-181(2000)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Dürr, K. L. et al. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 158, 778–792 (2014).Article
Dürr,K.L.等人。AMPA受体GluA2在静息,预开放和脱敏状态下的结构和动力学。细胞158778-792(2014)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Prieto, M. L. & Wollmuth, L. P. Gating modes in AMPA receptors. J. Neurosci. 30, 4449–4459 (2010).Article
Prieto,M.L。和Wollmuth,L.P。AMPA受体的门控模式。J、 神经科学。304449-4459(2010)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Du, M., Rambhadran, A. & Jayaraman, V. Luminescence resonance energy transfer investigation of conformational changes in the ligand binding domain of a kainate receptor. J. Biol. Chem. 283, 27074–27078 (2008).Article
Du,M.,Rambadran,A。&Jayaraman,V。发光共振能量转移研究红藻氨酸受体配体结合结构域的构象变化。J、 生物。化学。28327074-27078(2008)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Litwin, D. B., Carrillo, E., Shaikh, S. A., Berka, V. & Jayaraman, V. The structural arrangement at intersubunit interfaces in homomeric kainate receptors. Sci. Rep. 9, 6969 (2019).Article
Litwin,D.B.,Carrillo,E.,Shaikh,S.A.,Berka,V。&Jayaraman,V。同源红藻氨酸受体亚基间界面的结构排列。科学。代表96969(2019)。文章
ADS
广告
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Litwin, D. B., Paudyal, N., Carrillo, E., Berka, V. & Jayaraman, V. The structural arrangement and dynamics of the heteromeric GluK2/GluK5 kainate receptor as determined by smFRET. Biochim. Biophys. Acta Biomembr. 1862, 183001 (2020).Article
Litwin,D.B.,Paudyal,N.,Carrillo,E.,Berka,V。&Jayaraman,V。由smFRET测定的异源GluK2/GluK5红藻氨酸受体的结构排列和动力学。生物化学。生物物理。生物膜学报。1862183001(2020)。文章
PubMed
PubMed
Google Scholar
谷歌学者
Carrillo E. et al. Mechanism of modulation of AMPA receptors by TARP-γ8. J. Gen. Physiol. 152, (2020).Chen, S. et al. Activation and desensitization mechanism of AMPA receptor-TARP complex by cryo-EM. Cell 170, 1234–1246 (2017).Article
Carrillo E.等人。TARP-γ8调节AMPA受体的机制。J、 一般生理学。152,(2020年)。Chen,S.等人,《cryo-EM对AMPA受体TARP复合物的激活和脱敏机制》,Cell 1701234-1246(2017)。文章
PubMed
PubMed
PubMed Central
公共医学中心
Google Scholar
谷歌学者
Paudyal, N., Das A., Carrillo, E., Berka, V. & Jayaraman, V. Partial agonism in heteromeric GLUK2/GLUK5 kainate receptor. Proteins https://doi.org/10.1002/prot.26565 (2023).Hale, W. D. et al. Allosteric competition and inhibition in AMPA receptors. Nat. Struct. Mol. Biol. (2024).Lakowicz J.
Paudyal,N.,Das A.,Carrillo,E.,Berka,V。&Jayaraman,V。异源GLUK2/GLUK5红藻氨酸受体的部分激动作用。蛋白质https://doi.org/10.1002/prot.26565(2023年)。Hale,W.D.等人。AMPA受体的变构竞争和抑制。自然结构。分子生物学。。拉科维奇J。
R. Principles of Fluorescence Spectroscopy, 3rd edn, (2006).Haas, E., Katchalski-Katzir, E. & Steinberg, I. Z. Effect of the orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarization. Biochemistry 17, 5064–5070 (1978).Article .
R、 荧光光谱原理,第三版(2006)。Haas,E.,Katchalski-Katzir,E。&Steinberg,I.Z。施主和受主取向对涉及混合极化电子跃迁的能量转移概率的影响。生物化学175064-5070(1978)。文章。
PubMed
PubMed
Google Scholar
谷歌学者
Download referencesAcknowledgementsThis project was supported by a training fellowship from the Gulf Coast Consortia on the Houston Area Molecular Biophysics Program (Grant No. T32 GM008280) to P.B. and National Institutes of Health Grant (R35GM122528) to V.J. The authors declare no competing financial interests.Author informationAuthors and AffiliationsThe University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USAPaula A.
下载参考文献致谢该项目得到了海湾沿岸财团对休斯顿地区分子生物物理学计划(批准号T32 GM008280)和美国国立卫生研究院对V.J.的资助(R35GM122528)的培训奖学金的支持。作者声明没有相互竞争的经济利益。作者信息作者和附属机构德克萨斯大学安德森癌症中心UTHealth Houston生物医学科学研究生院,德克萨斯州休斯顿,USAPULA A。
Bender & Vasanthi JayaramanDepartment of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center at Houston, Houston, TX, USAPaula A. Bender, Subhajit Chakraborty, Ryan J. Durham, Vladimir Berka, Elisa Carrillo & Vasanthi JayaramanAuthorsPaula A. BenderView author publicationsYou can also search for this author in.
。
PubMed Google ScholarSubhajit ChakrabortyView author publicationsYou can also search for this author in
PubMed Google ScholarSubhajit ChakrabortyView作者出版物您也可以在
PubMed Google ScholarRyan J. DurhamView author publicationsYou can also search for this author in
PubMed Google ScholarRyan J.DurhamView作者出版物您也可以在
PubMed Google ScholarVladimir BerkaView author publicationsYou can also search for this author in
PubMed Google ScholarVladimir BerkaView作者出版物您也可以在
PubMed Google ScholarElisa CarrilloView author publicationsYou can also search for this author in
PubMed Google ScholarElisa CarrilloView作者出版物您也可以在
PubMed Google ScholarVasanthi JayaramanView author publicationsYou can also search for this author in
PubMed Google ScholarVasanthi JayaramanView作者出版物您也可以在
PubMed Google ScholarContributionsP.A.B. performed the smFRET measurements, analyzed the smFRET data, and wrote and edited the manuscript. E.C. performed the electrophysiology measurements analyzed the electrophysiology data, and also assisted with cell culture. S.C. performed part of the smFRET experiments for GluN2D, and for GluN2D with GNE-9278, R.J.D.
PubMed谷歌学术贡献SP。A、 B.进行smFRET测量,分析smFRET数据,并撰写和编辑手稿。E、 C.进行电生理测量,分析电生理数据,并辅助细胞培养。S、 C.对GluN2D和带有GNE-9278的GluN2D进行了部分smFRET实验,R.J.D。
performed part of the smFRET experiments for GluN2D, and V.B. trained P.A.B. to do the smFRET experiments and performed part of the smFRET experiments and analyzed the smFRET data. V.J. designed the research, analyzed the data, and wrote and edited the manuscript.Corresponding authorCorrespondence to.
对GluN2D进行了部分smFRET实验,V.B.培训了P.A.B.进行了smFRET实验,并进行了部分smFRET实验并分析了smFRET数据。五、 J.设计了研究,分析了数据,撰写并编辑了手稿。对应作者对应。
Vasanthi Jayaraman.Ethics declarations
瓦桑蒂·贾亚拉曼。道德宣言
Competing interests
相互竞争的利益
The authors declare they have no competing interests.
。
Peer review
同行评审
Peer review information
同行评审信息
Nature Communications thanks Paul Selvin, who co-reviewed with Rohit Vaidya, and the other anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.
Nature Communications感谢与Rohit Vaidya共同审查的Paul Selvin和其他匿名审稿人对这项工作的同行评审做出的贡献。同行评审文件可用。
Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Supplementary informationSupplementary InformationReporting SummaryTransparent Peer Review fileSource dataSource DataRights and permissions
Additional informationPublisher的注释Springer Nature在已发布的地图和机构隶属关系中的管辖权主张方面保持中立。
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
开放获取本文是根据知识共享署名非商业性NoDerivatives 4.0国际许可证授权的,该许可证允许以任何媒介或格式进行任何非商业性使用,共享,分发和复制,只要您对原始作者和来源给予适当的信任,提供知识共享许可证的链接,并指出您是否修改了许可材料。
You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
根据本许可证,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可证中,除非该材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的许可或超出许可用途,则您需要直接获得版权所有者的许可。
To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/..
要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/..
Reprints and permissionsAbout this articleCite this articleBender, P.A., Chakraborty, S., Durham, R.J. et al. Bi-directional allosteric pathway in NMDA receptor activation and modulation.
转载和许可本文引用本文Bender,P.A.,Chakraborty,S.,Durham,R.J。等人。NMDA受体激活和调节中的双向变构途径。
Nat Commun 15, 8841 (2024). https://doi.org/10.1038/s41467-024-53181-wDownload citationReceived: 16 April 2024Accepted: 04 October 2024Published: 13 October 2024DOI: https://doi.org/10.1038/s41467-024-53181-wShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard.
《国家公社》158841(2024)。https://doi.org/10.1038/s41467-024-53181-wDownload引文接收日期:2024年4月16日接受日期:2024年10月4日发布日期:2024年10月13日OI:https://doi.org/10.1038/s41467-024-53181-wShare本文与您共享以下链接的任何人都可以阅读此内容:获取可共享链接对不起,本文目前没有可共享的链接。复制到剪贴板。
Provided by the Springer Nature SharedIt content-sharing initiative
由Springer Nature SharedIt内容共享计划提供